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Motivated by a number of typical applications, a generalization of the classical linear complementarity
problem is presented together with an algorithm to determine the complete solution set. The algorithm
is based on the double description method for solving linear inequalities and succeeds in describing
continucus as well as unbounded solution sets.
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1. Introduction

The generalized linear complementarity problem (GLCP) can be formulated as

follows:
Given a real mxn matrix M, find all real elementwise nonnegative vectors

x=[&, &, ., &1 =0 such that
MXZO, (1)

C(x)2

i

T ~

kqu & =0. (2)

Equation (2) consists of [ complementarity conditions of the form [[,_, & =0
(where each 2, is a given subset of {1,..., n}). This formulation is equivalent to
the generalization of the LCP stated by Cottle and Dantzig in [3].

The L.CP has been recognized as a unifying description of a large class of problems,
including linear and quadratic programming [2], fixed point problems and sets of
piecewise linear equations [7, 8], bimatrix equilibrium points [9] and variational
inequalities [4]. An impressive collection of applications can be found in [12].
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Typical electrical engineering applications lie in the analysis of piecewise linear
resistive circuits [14, 16] and in optimization. In [17] we have applied the insights
of this paper to the analysis and complete solution of piecewise linear resistive
electrical circuits.

An obvious, exponential algorithm for solving the GLCP (1)-(2) consists in
enumerating all sign patterns alfowed by the complementarity conditions and check-
ing their feasibility. Excluding such drastic methods, no method is known for
processing GLCPs of the form (1)-(2) although the recently described algorithm
of [1] could possibly be modified to solve our GLCP.

The aim of this paper is to indicate the relevance of the generalized form of the
LCP in electrical engineering applications, and to describe a new method for
implicitly generating_,.alf solutions together with a geometrical description of the
solution set. In essence, the proposed method interleaves the construction of vertices
of the polytope induced by the equality and inequality constraints with the
verification of their complementarity.

The paper is organized as follows. In Section 2, some motivating examples of the -
GLCP are presented. Section 3 contains a geometrical description of the solution
set of the GLCP, which will lead us to the statement of the aigorithm in Section 4.
Section 5 provides some insight in the computational complexity of the algorithm.

2. Generalizations of the LCP

In this section, we motivate the generalized form of the LCP as in {1)-(2) with a
number of typical examples. The interested reader may find additional examples in

[6,17].

2.1. Current-voltage characteristic of a series connection of two piecewise linear
resisiors

A simple, but typical application of complementarity theory in circuit analysis is
depicted in Figure 1. The problem is to trace the current-voltage characteristic of
the series connection of the two resistors. We start with the formulation of Kirchhofl’s

laws:

10 -1t 0 -1 0
01 0 -1t 0o ol j=0 . 3
o1 0 0 0 -t

| iy ]
The resistor characteristics can be parametrized with the parameters A and p as
shown in Figure 1. Using the notation

x* = max(0, x}, x~=max(0, —x),
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Fig. 1. Series connection. of -lwo piecewise linear resistors and their respective current-voltage
: B ) characteristics.
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Fig. 2. Resulting current-voltage characteristic of the series connection circuit in Figure 1.
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this leads to the equations:
& Resistor %#:

MR ER SO EA R @

where we used a new variable A, =A —1 or
AT—A =A% —r"-1 (5)

@ Resistor &,:
v ] 2], [-2] - 2] ..[0] .
[1-7][4}[_4}“ +[—2]“ {3]““ )

+ - % -
pypmpy =g —p 1
Substituting equations'('4,_5, 6) into (3} delivers the LCP:

with

1 0 10 2 01"%
o 1 30 o oll"
0 -t o0 0 4 ol|™
0 0 -1t 1 0 0 ’\1_
o o o0 o0 -1 1J{*"
| M
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with

LA AL, =0,

VLA AL a0,

pT et TR AT A AT p Ty =0,
The solution to this problem can be computed by the algorithm of Section 4 and
is represented in Figure 2. Equations (7) are of the following type:

Mw+Mz=¢qg, M cR™" McR™" (8)
subject to
w,z=0, w'z =1,

Observe that:
— This LCP is rectangular, i.e., the number of equations is less than the number

of complementary pairs (m=5<<n==6).
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— Even if the LCP were square, nothing guarantees the existence of a reordering
of the columns of M, and M, such that the new M, becomes invertible and the
GLCP reduces to the classical form. Moreover this would require a matrix inversion
that might be ill-conditioned.

— In order to trace the complete i-v-characteristic, it is important to find all
solutions to (&), including the solutions at infinity. This can be achieved by adding
to equations (8) an unknown real scalar p = 0:

Myw+ M,z =qp,
w=0, z=0, p=0,
w'z =10,
We can now convert this set of equations to the form of the GLCP (1)-(2):
w
[M, M, —q]| z =09,
Je

with the conditions
w=0, z=0, p=0, wz=0

Solutions with p # 0 can be normalized to satisfy p = 1. A solution vector with p=0
will be called a solution at infinity. These solutions often have physical relevance.
For instance, in Figure 2, the solutions at infinity generate the 2 branches left and
right {labelled with 1 and 7) for which the breaking point corresponds to a direction.

2.2. A geometrical problem

The resistors in the above examples are two-terminal devices and can be described
by a one-dimensional piecewise linear manifold. Many electronic circuits contain
multiterminal nonlinear devices, which can be modelled by higher-dimensional
piecewise linear manifolds. These manifolds can be parametrized in an elegant way
by using the more general complementarity conditions in {2) (see {6] for details).
The following geometrical problem should give an idea of the usefulness of these
generalized complementarity conditions. Consider the object formed by the edges
of the tetrahedron in R, generated by the origin and the three unit vectors (1, 0, 0),
(0,1,0) and (0,0, 1). This object can be described compactly as

X 0 1 0 0
yI=&]0[FE|O[FE&]T | +E[0], 9)
z 0 0 0 1

with £, &, &, 620, §{i+ &+ 6+ 6 =1 and
E156+ 5166+ 6 EETEEE,=. (10)

Similar objects could be defined by varying the complementarity conditions, and
geometrical problems involving such objects lead to equations of the form (1)-(2),
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2.3. The regular linear complementarity problem

In conclusion, it can be pointed out that these examples can be captured as special
cases of the GLCP (1)-(2) stated in the introduction. This formulation includes the
classical LCP

Py - 0=

as a special case:

M=[P: L],
n=2p, I=p,
a]:-":a2p=wla"'swpsz¥:"‘:zp: T

B, =k k+pt, k=1,....p.

3. Geometric description of the solution set of systems of constrained equalities and
of the GLCP

The GLCP can be viewed as a set of linear equations with nonnegativity constraints
and complementarity requirements. We drop the latter for a while and discuss the
geometric properties of the solution set of

mxn

Ax={, with a given AcR""",
1
x={0, a1
The geometrical description of the solution set will be summarized in Theorems 1
and 2 below. These theorems follow from basic facts that can be found in most
textbooks on linear programming (e.g. [13]}. In Theorem 3, we take the complemen-
tarity conditions into account and describe the general solution set of the GLCP.
The pointed polyhedral cone ¥, ={x=0]Ax=0} (the intersection of the first
orthant in R" and the subspace ker A) can be defined completely by all positive
linear combinations of its g extreme rays {v, v°,..., 07}

Definition 1. A nonzero vector v' €R” is an extreme ray of £, if there exists a
hyperplane V={xeR"|h'x =0} such that Vn £, ={x[x= A A =0

The following result provides necessary and sufficient conditions for a vector to .
be an extreme ray.

Theorem 1. A necessary and suflicient condition for a solution v € £ to be an extreme
ray is that no other nonzero solutions possess zeros at the same positions as v: call
F,={k|v, =0}, then v is an extreme ray of L, iff $,< F,, Aw=0, w=0 implies
w=yp [
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Corollary 1. If the rows of A are independent, then a necessary cendition for extremity
is that the number of zeros in v is greater than or equal to n—m—1. []

Definition 2. Two extreme rays v and w are adjacent if there exists a supporting
hyperplane V={x|h'x=0, h'z=0, Vze %,} such that VnZ,={x=A0+ 1w,
Ay, A.=0}. The set of all convex combinations of two adjacent rays is called a
two-dimensional face of the cone.

Theorem 2. A necessary and sufficient condition for two extreme solutions v and w
to be adjacent is that there exist no other extreme solutions with zeros at the same
positions as the common zeros of v and w. Call $,,={k|v, =0 and w; =0}, then v
and w are adjacent iff $,,<F,, Az=0, 220 implies z= A v+ A,w for some X,,
A,=0. O

Corollary 2. If the rows of A are linearly independent, then a necessary condition for
extreme solutions to be adiacent is that the number of common zeros in v and w s

greater than or equal ton—m—2. []

We are now ready to return to the GLCP (1)-(2}, which will be treated as a set
of linear equations

Mx=0, x[:(fia§2>"';§n),

12
fr' = 03 ( )
with extra constraints
!
Cix)=% 1] &=0. (13}

i=1 ke d;

The solution set of (12) generalized polytope determined by a set of vertices. For
instance, if x'=[§&, & ... &, p] the solution set is a generalized polytope defined by
a set of vertices (') =[& & ... & p'], with p' =1 for a finite vertex or with p' =0
for a vertex at infinity, where the polytope becomes unbounded.

The complementarity conditions (13) change this picture quite drastically. In
order to provide a geometrical description of the solution set to (12)-(13), we first
need to introduce the notion of cross-complementarify:

Definition 3. A set of nonnegative complementary vectors v le B, C{v')=0, where
@ is a given index set are called cross-complementary if their sum is complementary:
C(Y,.5 v") =0. This implies that each convex combination of these vertices satisfies

the complementarity condition.

We are now in a position to describe the solution set of the GLCP (12)-{13):

Theorem 3. The solution set of the GLCP
Mx=0, x=0, C(x}=0 {14)
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consists of all convex combinations of vertices of
Mx=0, x=0, (15)
with the following restrictions:
® all vertices of (15) that are not complementary (C(x}>0) should be discarded,

® only convex combinations of vertices that are cross-complementary are allowed.
Hence, the solution set is a collection of generalized polytopes. [

These generalized polytopes correspond to the cliques in a graph where each
node represents a complementary vertex of {15}, and where two nodes are joined
by an edge if the corresponding vertices are cross-complementary.

4, The GLCP-algorithm

In 1953 Motzkin et al. ([11]} proposed an algorithm for the solution of sets of linear
inequalities that can ecasily be adapted for the GLCP [5, 6, 17]. We first describe an
inductive algorithm for the solution of (11} and then investigate the modifications
necessary to include the complementarity conditions.

Call (a')'=the ith row of A. We denote by §“ ¢ R"*% the matrix formed by the
g, extreme rays of the solution set of

(a')Yx=0, i=1,...,k

x=0. (16)

Starting from S° = I, the algorithm moves inductively from $* to $**! by computing
the intersection between S* and the hyperplane {x|(a*"')'x = 0}. This can be done
as follows:

Let (s**")'=(a*"")'S* a 1xgq, matrix. For each element in (s*"')" three
possibilities exist: .

Case 1. s{"'=0, indicating that S} (jth column in S*} lies in the hyperplane
(a k+1 )tx =,

Case 2 and 3. 55*'>0 or 557" <0, indicating that S} lies in either of the two
halfspaces defined by (a**")'x=0.

The construction of the extreme rays S°™', can then proceed as follows:

Case 1. 1f an extreme ray in S* lies in the hyperplane (¢*™")'x =0 it is also an
extreme ray of §°1.

Case 2 and 3. The extreme face generated by any two adjacent extreme rays that
lie on either side of hyperplane (a*"')'x = 0, intersects the hyperplane. This intersec-
tion is an extreme ray of $*"': If st 7' <0 and s} 7' > 0 and S; and ST are adjacent
{cf. Definition 2), then |s5*'|- SF+[si*'|- SF e §*7'. The adjacency tests are described
in Theorem 2 and Corollary 2.

The validity of these operations is an immediate consequence of Theorems 1 and 2:

— An extreme ray of §*, lying in the hyperplane, will still satisfy the condition
for extremity in Theorem 1 after updating.
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— Theorem 2 implies that for any convex combination of two adjacent extreme
rays that lies in the hyperplane {a**')'x =0, the condition in Theorem 1 will be
fulfilled after updating.

The GLCP algorithm is now obvious from a combination of

® the inductive algorithm for the solution of (11),

® Theorem 3 which allows to eliminate at each stage those vertices of 8% that do
not satisfy the complementarity condition. In other words, in Case 2 and 3 of the
algorithm, an extra requirement will be added: two extreme rays that lie on either
side of the hyperplane are to be combined only if they are adjacent and cross-
complementary.

The matrix S* then contains at each stage the solution of the rectangular kxn
GLCP, formed by the first k rows of (12).

We summarize the algorithm for the solution of (12)-(13) where M eR™™":

GLCP-algorithm.
® S,=1I,, the nxn identity matrix,
@ fork=1tem
compute {s°) = (m"*)'§*".
- for all sf=0, add S} to S%;
- for all s¥<0 and all sf>0, if Sf™' and S/ are adjacent and cross-
complementary vertices of $¥7', add |s¥|SF '+ [sf]SE " to S
end
® Let S be the final set of solution vertices. The geometrical description of the
solution set can be obtained by detecting all maximal subsets of vertices that are
cross-complementary {=enumerating all cliques}.

Let us conclude this section with the following remarks:

- For large problems the computationally most demanding step is the verification
whether all pairs of vertices lie at opposite sides of the hyperplane, especially when
the necessary and sufficient condition for adjacency stated in Theorem 2 is used.
One might consider to replace this condition by the much simpler necessary condition
of Corollary 2, at risk of leaving a number of redundant vectors in the solution set.
These redundant vectors can be eliminated from the final solution set by applying
Theorem 1 and its corollary.

— In this context, the importance of the complementarity tests in each step should
be stressed. It has been experienced that, depending on the order in which the
equations are taken, the complementarity tests cause a dramatic decrease of the
number of vertices as will be demonstrated in the numerical examples below.

— Another important aspect that influences the computational complexity is the
sparsity of the matrix M of the GLCP. The sparser this matrix, the smaller the
number of intermediate vertices that is to be processed in each step. This will clearly
be demonsirated in the examples below.

— Algorithms for the cligue enumeration problem can be found in the literature
{see, e.g., [15]). Although the enumeration of all cliques in a given graph can be a
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formidable task in general, it is not the most demanding step in the present
application. In many cases the solutions to the GLCP will even be isolated and the
cligue enumeration will be trivial.

5. Influence of sparsity

In these examples, we investigate the influence of the sparsity of the matrices on
the number of vertices that has to be processed in each recursion of our GLCP
algorithm. We have generated LCPs of the form w=Mz+gq with w, z=0 and
w'z =0, where a specified number of elements of M and ¢ is zero. The elements of
M have a normal distribution and the elements of ¢ are uniformly distributed
between 0 and 1. Nonnegativity of g guarantees the existence of at least one solution.
Three sets of experiments have been performed for M being of dimensions 10, 15
and 20. For each dimension, we have generated 10 random LCPs for 4 different
sparsity percentages: 90% zeros, 60%, 30% and 0% zeros. The results are summarized
in Figure 3. The following conclusions can be drawn from these resuits:

— If the matrix M is very sparse (90%), our GLCP algorithm is quite effective as
the number of intermediate vertices on the average decreases as a function of the
number of processed rows. This could be an advantage as compared to conventional
methods based on pivoting, which tends to destroy sparsity. For a noise level of
60% we see that the Intermediate number of vertices increases, an effect that becomes

150 LCP lp x 10 2000 :ILCP 15x 15.
15001 e |
o £y 1000 Py |
00 15
40 LCP20x320 15 x104 LCP20x20
35+ ~ 'f\.‘
ik SN 1
30} S
25\ o5l ‘,"‘ .“‘ |
20+
1 L L L i) e . LTl
50 3 10 15 20 0 5 10 15 20

Fig. 3. Average number of vertices as a function of processed rows with full line (90% sparsity); ——

{60% sparsity); - - - (30% sparsity); —+ —+ (0% sparsity); For the LCPs of dimension 20, the lower left

plot is the average for the 90% sparsity case over 10 random LCPs, while the lower right is the average
for only 2 random LCPs of dimension 20 with sparsity 60%.
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more pronounced as the matrices become less sparse. This phenomenon can be
“explained as follows. In the first stages of the algorithm the intermediate vertices
are still relatively sparse and the complementarity constraints are easily satisfied.
For increasing k however, there is a gradual fill-in and more and more vertices are
discarded as noncomplementary.

— One of the reviewers pointed out that the observation in [10] might also be
applicable to our LCP algorithm, namely that the double description method
outperforms pivoting methods on small systems of linear inequalities, but that for
large problems, pivoting methods are better. We would however like to suggest that
the combined effect of sparsity and the presence of complementarity conditions might
enhance the efficiency of the double description method. This is however a subject
of current research.

6. Conclusions

The method described in this paper is expected to be particularly useful when one
is interested in all solutions to the linear complementarity problem or in those
applications where the LCP does not have the classical standard form. Typical
problems are large and sparse and have no specific matrix structure nor property
(such as P-matrices etc. [12]) which could be exploited. The extensions that we
have introduced include rectangular LCPs, “singular” cases where no reordering
of the complementary variables w and z yields an LCP in standard form, problems
with more general complementarity conditions. Qur algorithm to solve the GLCP
delivers all solutions to the problem, including those at infinity, which often have
physical relevance. Apparently, the efficiency increases with the degree of sparsity.
Though some preliminary numerical results have been reported, further research
remains to be done on a clear analysis of the computational complexity.
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