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THE RESTRICTED SINGULAR VALUE DECOMPOSITION:
PROPERTIES AND APPLICATIONS*

PART L. R. DE MOORt AND GENE H. GOLUB$

Abstract. The restricted singular value decomposition (RSVD) is the factorization of a given
matrix, relative to two other given matrices. It can be interpreted as the ordinary singular value
decomposition with different inner products in row and column spaces. Its properties and structure,
as well as its connection to generalized eigenvalue problems, canonical correlation analysis, and other
generalizations of the singular value decomposition, are investigated in detail.

Applications that are discussed include the analysis of the extended shorted operator, unitarily
invariant norm minimization with rank constraints, rank minimization in matrix balls, the analysis
and solution of linear matrix equations, rank minimization of a partitioned matrix, and the connection
with generalized Schur complements, constrained linear and total linear least squares problems with
mixed exact and noisy data, including a generalized Gauss-Markov estimation scheme.

Key words, generalized SVD, generalized matrix inverses, (total) linear least squares, (gener-
alized) Schur complements, matrix balls, shorted operator
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1. Introduction. The ordinary singular value decomposition (OSVD) has a long
history with original contributions by Seltrami (1873) [2], Sylvester (1889) [26], Au-
tonne (1902) [1], Eckart and Young (1936) [12] and many others (see, e.g., the refer-
ences in [15], [21], [27]). It has become an important tool in the analysis and numerical
solution of numerous problems arising in such diverse applications as psychometrics,
statistics, signal processing, and system theory. Not only does it allow for an ele-
gant problem formulation, but at the same time it provides geometrical and algebraic
insight together with an immediate numerically robust implementation [15].

Recently, several generalizations to the OSVD have been proposed and their prop-
erties analysed. The one that is best known is the generalized SVD as introduced by
Paige and Saunders in 1981 [22], which we propose to rename as the Quotient SVD
(QSVD) [8]. Another example is the Product SVD (PSVD) as proposed by Fer-
nando and Hammarling in 1987 [14] and further analysed in [10]. The third one is
the Restricted SVD (RSVD), introduced in its explicit form by Zha in [32] and fur-
ther developed and discussed in this paper. In [8] we have proposed a standardized
nomenclature for the singular value decomposition and its generalizations. This set
of names has the advantage of being alphabetic and mnemonic, O-P-Q-R-SVD. For
the structure and properties of the OSVD, PSVD, and QSVD, we also refer to [8].

The RSVD, which is the main subject of this paper, applies for a given triplet
of matrices A,B, C of compatible dimensions (Theorem 1). In essence, the RSVD
provides a factorization of the matrix A, relative to matrices B and C. It could be
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considered as the OSVD of the matrix A, but with different (possibly nonnegative-
definite) inner products in its column and in its row space. It will be shown that the
RSVD not only allows for an elegant treatment of algebraic and geometric problems
in a wide variety of applications, but that its structure provides a powerful tool in
simplifying proofs and derivations that are algebraically rather complicated.

Soon after the present paper was completed, Zha and de Moor discovered that
the RSVD is only one of the three possible SVD-like factorizations for three matrices.
Similar generalizations of the OSVD are not only limited to two or three matrices,
but can be derived for 4, 5, ..., i.e., any number of matrices of compatible dimen-
sions. The PSVD and the QSVD serve as basic building blocks in this infinite tree of
generalizations of the OSVD. For instance, the RSVD which is analysed in this paper
can also be considered as a double QSVD. This is the reason why we have called it
the QQ-SVD in [11], where the complete structure of this tree of generalizations is
also developed in detail.

This paper is organised as follows. In 2, the main structure of the RSVD is anal-
ysed in terms of the ranks of the concatenation of certain matrices. The factorization
is related to a generalized eigenvalue problem (2.2.1). A variational characterization
is provided in 2.2.2. A generalized dyadic decomposition is explored in 2.2.3 to-
gether with a geometrical interpretation. It is shown how the RSVD contains other
generalizations of the OSVD, such as the PSVD and the QSVD, as special cases in

2.2.4. In 3, several applications are discussed:
Rank minimization and the extended shorted operator are the subject of 3.1,
as well as unitarily invariant norm minimization with rank constraints and
the relation with matrix balls. We also investigate a certain linear matrix
equation which is directly related to the Moore-Penrose pseudo-inverse of a
matrix.
The low rank approximation o.f a partitioned matrix when only one of its
blocks can be modified is explored in 3.2, together with total least squares
with mixed exact and noisy data and linear constraints. While the role of the
Schur complement and its close connection to least squares estimation is well
understood, it will be shown in this section that there exists a similar relation
between constrained total linear least squares solutions and a generalized
Schur complement.
Generalized Gauss-Markov models, possibly with constraints, are discussed
in 3.3 and it is shown how the RSVD simplifies the solution of linear least
squares problems with constraints.

In 4 the main conclusions are presented together with some perspectives. Let us
conclude this Introduction by referring to the reports mentioned in [9] for a detailed
constructive proof of the main theorem of this paper.

Notation, conventions, and abbreviations. Throughout the paper, capitals
denote matrices. The lower case letters i, j, k, l, m, n,p, q, r are nonnegative integers.
Other lower case letters denote vectors. The set of real numbers is denoted by .
Scalars (possibly complex) are denoted by Greek letters. The matrices A (m x n),
B (m p), C (q x n) are given matrices. Their ranks will be denoted by ra, rb, rc.
D is a p x q matrix. M is the matrix with A, B, C, D* as its blocks: M (cA D. ).
We shall also frequently use the following ranks: rac rank(), rabc rank( B0 ),
tab rank( A B ). A is the transpose of a (possibly complex) matrix A and is the
complex conjugate of A. A* denotes the complex conjugate transpose of a (complex)
matrix: A* . The matrix A-* represents the inverse of A*. Ik is the k x k
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identity matrix. The subscript is omitted when the dimensions are clear from the
context. Identity vectors with the ith component equal to 1 and all others zero, are
denoted by ei (m 1). A matrix X is called an A(i, j,...)-inverse of the matrix A if
it satisfies equation i, j,... of the following:

1. AXA=A,
2. XAX X,
3. (AX)* AX,
4. (XA)* XA.

An A(1) inverse is also called an inner inverse and denoted by A-. The A(1,2,3, 4)
inverse is the Moore-Penrose pseudo-inverse denoted by A+ and it is unique. We
shall also need the following lemmas.

LEMMA 1 (inner inverse of a factored matrix). Let the matrix A be factored as

o o Q-

where Da is square ra ra nonsingular.
written as

Then, every inner inverse A- can be

Z12 ) p,(1) A- Q Z21 Z22

where Z12, Z21, Z22 are arbitrary matrices. Conversely, every matrix A- of this form
is an inner inverse of A.

For a detailed discussion of generalized inverses, we refer to [21]. The matrices Ua
(mxm), Va (nn), Vb (pp), Uc (qq) are unitary, i.e., UaU Im UUa, VaV
In VVa, VbV Ip VVb, UcU Iq UUc. The matrices P (m m) and Q
(n n) are square nonsingular. The nonzero elements of the diagonal matrices S, $2,
and $3, which appear in the theorems, are denoted by hi,/3i, and 7i. The vector ai
denotes the ith column of the matrix A. The range (column space) of the matrix A is
denoted by R(A) {yJy Ax}. The row space of A is denoted by R(A*). The null
space of the matrix A is represented as N(A) (xlAx= 0}. The symbol denotes
the intersection of two vector spaces. We shall use the following well-known result.

LEMMA 2 (the dimension of the intersection of subspaces).

dim(R(A) N R(B)) ra + rb rab

dim(R(A*) N R(C*)) ra + rc re.

JJAJl is any unitarily invariant matrix norm while JJAJJF is the Frobenius norm: JJAJJ 2F--
trace(AA*). The norm of the vector a is denoted by ]la]12 where ]la]122 a*a. Moreover,
we will adopt the following convention for block matrices: Any (possibly rectangular)
block of zeros is denoted by 0, the precise dimensions being obvious from the block
dimensions. The symbol I represents a matrix block corresponding to the square
identity matrix of appropriate dimensions. Whenever a dimension indicated by an
integer in a block matrix is zero, the corresponding block row or block column should
be omitted and all expressions and equations in which a block matrix of that block
row or block column appears, can be disregarded. An equivalent formulation would
be that we allow 0 n or n 0 (n # 0) blocks to appear in matrices. This permits
an elegant treatment of several cases at once. Finally, we would like to introduce the
term quasi-diagonal matrix for a matrix, the block rows and block columns of which
are a permutation of a diagonal matrix.
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2. The restricted singular value decomposition (RSVD). The idea of a
generalization of the OSVD for three matrices is implicit in the S, T-singular value
decomposition of Van Loan [30] via its relation to a generalized eigenvalue problem.
Zha [32] introduced an explicit formulation of the RSVD constructing it through the
use of several OSVDs and QSVDs (see also [9]). For the sake of brevity, we have
omitted our constructive proof based on a sequence of OSVDs and PSVDs. It can be
found in [9]. In this section, we first state the main theorem (2.1), which describes
the structure of the RSVD, followed by a discussion of the main properties in 2.2,
including the connection to generalized eigenvalue problems, a generalized dyadic
decomposition, geometrical insights, and the demonstration that the RSVD contains
the OSVD, the PSVD, and the QSVD as special cases.

2.1. The RSVD theorem. With the notation and conventions of 1, we have
the following theorem.

THEOREM 1 (the restricted singular value decomposition). Every triplet of ma-
trices A (m n), B (m p), and C (q n) can be factorized as

A P-*SaQ-1,
B=P-*SbV,
C USQ-,

where P (m m) and Q (n n) are square nonsingular, and Vb (p p) and Uc (q q)
are unitary. Sa (m n), Sb (m p), and Sc (q n) are real quasi-diagonal matrices
with nonnegative elements and the following block structure:

1
2
3
4
5

=6

1 2 3 4 5 6 1 2 3 4
’$1 0 0 0 0 0 I 0 0 0
0 I 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 I 0 0
0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 S
0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 0 0, 0 0 0 0 S 0

The block dimensions of the matrices Sa, Sb, Sc are the following.

Block columns .of Sa and Sc Block columns of Sb
1. rabc ra rac rab
2. re,b rc rabc
3. rac d- rb rabc
4. rabc rb rc
5. rac ra
6. n rac

Block row8 of Sa and S’b’
l. l’abc -- ?’a tab l’ac
2. tab -[- rc rabc
3. rac d- rb rabc
4. rabc rb rc
5. tab ra
6. m rab

rabc -]- ra rac rab
rac d- rb rabc
p-- rb
tab ra

Block rows of S
rabc d- l’a tab rac
tab - l’c rabc
q-rc
rac ra
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The matrices $1, $2, $3 are square nonsingular diagonal with positive diagonal ele-
ments.

Let ai, j, "Yk be the diagonal elements of the matrices $1, $2, $3. We propose to
call the following triplets of numbers the restricted singular value triplets:

rabc + ra- tab- rac triplets of the form (ai, 1, 1) with ai > 0. By convention,
they will be ordered as

tab + rc rabc triplets of the form (1, 0, 1).
rac + rb rabc triplets of the form (1, 1, 0).
rabc rb rc triplets of the form (1, 0, 0).
tab --r triplets of the form (0, j, 0), j > 0 (elements of $2).
rac ra triplets of the form (0, 0, "k), ’k > 0 (elements of $3).
min(rn rb, n r) trivial triplets (0, 0, 0).

We propose to call the factorization of a matrix triplet, as described in Theorem 1,
the restricted singular value decomposition because the RSVD allows us to analyse
matrix problems that can be stated in terms of the matrices A + BDC and

in which the matrices B and C represent certain restrictions on the type of operations
that are allowed. Typically, we are interested in the ranks of these matrices as the
matrix D is modified. The rank of the matrix A + BDC can only be reduced by
modifications that belong to the column space of B and the row space of C. It will be
shown how the rank of M can be analysed via a generalized Schur complement, which
is of the form D* CA-B, where again, C and B represent certain restrictions and
A- is an inner inverse of A. Moreover, the RSVD yields the restriction of the linear
operator represented by the matrix A to the column space of B and the row space of
C. Finally, the RSVD can be interpreted as an OSVD but with certain restrictions
on the inner products to be used in the column and row space of the matrix A (see

Some algorithmic issues related to the RSVD are discussed in [11], [13], [29], [28],
and [33], though a full portable and documented algorithm for the RSVD is still to
be developed.

2.2. Properties of the RSVD. The OSVD, as well as the PSVD and the
QSVD, can all be related to a certain (generalized) eigenvalue problem. It comes as
no surprise that this is also the case for the RSVD. First, the generalized eigenvalue
problem for the RSVD will be analysed in 2.2.1 and we shall point out an interesting
connection with canonical correlation analysis. A variational characterization of the
RSVD is provided in 2.2.2. A generalized dyadic decomposition and some geometrical
properties are investigated in 2.2.3. In 2.2.4, it is shown how the OSVD, PSVD,
and QSVD are special cases of the RSVD.

2.2.1. Relation to a generalized eigenvalue problem. Consider the gener-
alized eigenvalue problem

(2) ( AO, A 0
0
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Let p be the ith column of P and q the ith column of Q. Obviously, the column
vector (p q)* is a generalized eigenvector of the pencil (2). There are four types
of generalized eigenvalues (finite nonzero, zero, infinite, and arbitrary), which can be
related to the restricted singular value triplets of Theorem 1.

Note that if BB* Im and C*C I, the eigenvalues are :i= the singular values
of the matrix A. In the case that the matrices BB* and C*C are nonsingular, it can
be shown that the generalized eigenvalue problem (2) is equivalent to a singular value
decomposition. It follows from (2) that

If BB* and C*C are both nonsingular, then there exist square nonsingular matrices
Wb and We (for example, the Cholesky decomposition) such that BB* WWb and
C*C WWc. Then, we have that

(W[*AW-l)(Wcqi) (Wbpi)Ai,
(W-*A*W’I)(Wbpi) (Wcqi)Ai.

From Theorem 1, it follows that P* (BB*)P SbS and Q*(C*C)Q StcSc. Hence,
if BB* is nonsingular, the column vectors of P are orthogonal with respect to the
inner product provided by the positive-definite matrix BB*. A similar observation
applies for the column vectors of Q with respect to C*C. The BB*-orthogonality of
the vectors pi and the C*C-orthogonality of the vectors qi implies that the vectors
Wbpi and Wcqi are (multiples of) the left and right singular vectors of the matrix

W-*AW-.
Consider the RSVD of the matrix triplet (A’B, A*, B) and its related generalized

eigenvalue problem:

A*B A 0(o.0 0 0

This is nothing more than the eigenvalue problem that arises in canonical correlation
analysis (principal angles and vectors between subspaces; see, e.g., [3], [15]). There
exist applications where the matrices BB* and C*C are (almost) singular (see, e.g.,
[13], [18]). The matrices BB* and C*C can be (sample) covariance matrices that
are (almost) singular. This is, for instance, the case in [18], where a generalized type
of canonical correlation analysis is required, allowing singular covariance matrices.
Another example is generalized Gauss-Markov estimation as described in 3.3. It is
in these situations that the RSVD may provide essential insight into the geometry
of the singularities and at the same time yield a numerically robust and elegant
implementation of the solution by avoiding the explicit solution (with its "implicit
squaring") of the generalized eigenvalue problem.

2.2.2. A variational characterization. Let (x, y) x*Ay be a bilinear form
of 2 vectors x and y. We wish to maximize (x, y) over all vectors x, y subject to
x*BB*x 1 and y*C*Cy 1. It follows directly from the RSVD that a solution
exists only if one of the following situations occurs"

rabc T ra -rab --rac O. In this case, the maximum is equal to the largest
diagonal element of S and the optimizing vectors are x p (first column
vector of P) and y q (first column vector of Q) so that (pl, q)
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rabc + ra --tab- rac O. The norm constraints on x and y can only be
satisfied if

and

rac -t- rb rabc > 0 or tab ra 0

tab rc rabc 0 or rac ra > O.

In either case, the maximum is 0.
If none of these conditions is satisfied, there is no solution.

Assume that the maximum is achieved for the vectors x pl and y q.
Then, other extrema of the objective function (x, y) x*Ay, constrained to lie in
subspaces that are BB*-orthogonal to p and C*C-orthogonal to q, can be found in
an obvious recursive manner. All of these extrema are then generated by the columns
of the matrices P and Q.

2.2.3. A generalized dyadic decomposition and geometrical properties.
Denote P’ P-* and Q-1 Q’*. Then, with an appropriate partitioning of the
matrices P’, Q’, Uc, and Vb, corresponding to the diagonal structure of the matrices
Sa, Sb, Sc of Theorem 1, it is straightforward to obtain the following sums:

A PSQ’* ,r),* Q,*+ P Q’i +. +
B PV + PV2 + PS2V,
c + ’*+ UaSaQ .

Hence,

R(P) + R(P) R(A)’ R(B),

R(Q’) + R(Q’) R(A*)N R(C*).

The decomposition of A can be interpreted as a decomposition relative to R(B) and
R(C*): The four terms of this decomposition can be classified geometrically as follows:

in R(C*)
not in R(C*)

in It(B) not in R(B)
PSQ’* ,r),*

’’* .’’*
"g3 4g 4

Obviously, the term PSQ’* represents the restriction of the linear operator repre-
sented by the matrix A to the column space of the matrix B and the row space of the
matrix C, while the term PQ* is the restriction of A to the orthogonal complements
of R(B) and R(C*).

Also, we find that

R(B*) R(Vb)+ R(Vb) + R(Vb),
It(C) I(Uc) + R(Uc2)+ R(Uc4),

and

BVb3 0 === N(B) R(Vb3),
U3C 0 ==v N(C*) R(Uc3).
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Finally, some of the block dimensions in the RSVD of the matrix triplet (A, B, C) can
be related to geometrical interpretations by repeated application of Lemma 2.

dim R( )NR(Bo )]--rac-i-rb--rabc,
dim[ R(A B)* f’ R(C 0)* rab -- 1"c rabc,

dim[ R(A)

dim[ R(A*) R(C*)

It is easy to show that

R(Q) N(A) N N(C),

R(P) N(A*)"] N(B*).

Hence Q provides a basis for the common null space of A and C, which is of dimension
n- rac, while P provides a basis for the common null space of A* and B*, which is
of dimension m tab.

2.2.4. Relation to (generalized) SVDs. The RSVD reduces to the OSVD,
the PSVD, or the QSVD for special choices of the matrices A, B, and/or C. For the
precise structure of the PSVD and the QSVD, we refer to [8].

THEOREM 2 (special cases of the RSVD).
1. RSVD of (A, Im, In) is an OSVD of A.
2. RSVD of (Ira, B, C)is a PSVD of (B*, C).
3. RSVD of (A,B, In) is a QSVD of (A,B).
4. RSVD of (A, Ira, C) is a QSVD of (A, C).

Proof. 1. B I,, C In. Consider the RSVD of (A, Ira, In). By definition,
Im= P-*SbV and In UcScQ-1. This implies P-* VS-1 and
Hence, we find that A Vb(S[SaSI)U, which is an OSVD of A.

2. A Ira. Consider the RSVD of (Ira, B, C). Then Im P-*SaQ-, which
implies Q- SiP*. Hence, B* VbSP-, C Uc(ScS)P*, which is nothing
else than a PSVD of (B*, C).

3. C In. Consider the RSVD of (A, B, In). Then In UcSQ-, which implies
Q- S[IU. Then, A P-*(SaS[)U, B P-*SDVb* which is (up to a diagonal
scaling) a QSVD of the matrix pair (A, B).

4. B Ira. The proof is similar to part 3.

3. Applications. In this section, we shall first explore the use of the RSVD in
the analysis of problems related to expressions of the form A/BDC where A, B, C are
given matrices. The connection with Mitra’s concept of the extended shorted operator
[20] and with matrix balls will be discussed, as will the solution of the matrix equation
BDC A, which led Penrose to rediscover the pseudo-inverse of a matrix [24], [25].
In 3.2, it is shown how the RSVD can be used to solve constrained total linear least
squares problems with exact, noiseless rows and columns and the close connection to
Carlson’s generalized Schur complement [4] is emphasized. In 3.3, we discuss the
application of the RSVD in the analysis and solution of generalized Gauss-Markov
models, with and without constraints.

Throughout this section, we shall use a matrix E, defined as

(3) E VDUc



RESTRICTED SINGULAR VALUE DECOMPOSITION 409

with a block partitioning derived from the block structure of Sb and Sc as follows:

(4)
rabc -" ra tab rac rab -t- rc rabc q rc rac ra

rabc + ra rab rac Eli El2 El3 El4
rac + rb rabc E21 E22 E23 E24
p rb E31 E32 E33 E34
tab ra E41 E42 E43 E44

3.1. On the structure of A + BDC. The RSVD provides geometrical insight
into the structure of a matrix A relative to the column space of a matrix B and the
row space of a matrix C. As will now be shown, it is an appropriate tool to analyse
expressions of the form A / BDC where D is an arbitrary p q matrix. The RSVD
allows us to analyse and solve the following questions:

1. What is the range of ranks of A / BDC over all possible p q matrices D
(3.1.1)?

2. When is the matrix D that minimizes the rank of A + BDC unique (3.1.2)?
3. When is the term BDC that minimizes rank(A + BDC) unique? It will be

shown how this corresponds to Mitra’s extension of the shorted operator [20]
in 3.1.3.

4. In the case of nonuniqueness, what is the minimum norm solution (for uni-
tarily invariant norms) D that minimizes rank(A + BDC) (3.1.4)?

5. The reverse question is the following: Assume that IIDII _< 5 where 5 is a
given positive real scalar. What is the minimum rank of A + BDC? This can
be linked to rank minimization problems in so-called matrix balls (3.1.5).

6. An extreme case occurs if we look for the (minimum norm) solution D to
the linear matrix equation BDC A. The RSVD provides the necessary
and sufficient conditions for consistency and allows us to parameterize all
solutions (3.1.6).

3.1.1. The range of ranks of A+BDC. The range of ranks of A + BDC for
all possible matrices D is described in the following theorem.

THEOREM 3 (on the rank of A + BDC).

rab +rac- rabc

_
rank(A + BDC) <_ rain(tab, rac).

For every number r in between these bounds, there exists a matrix D such that
rank(A + BDC) r.

Proof. The proof uses the RSVD structure of Theorem 1"

A + BDC P-*SaQ- + P-*SbVDUcScQ-P-*(Sa + SbESc)Q-,
where E VDUc. Because of the nonsingularity of P, Q, Uc, Vb, we have that
rank(A + BDC) rank(Sa + SbESc). Using elementary row and column operations
and the block partitioning of E as in (4), it is easy to show that

S + EI 0 0 0 E14S3 0
0 I 0 0 0 0

rank(A+BDC)=rank 0 0 I 0 0 0
0 0 0 I 0 0

$2E41 0 0 0 $2E44S3 0
0 0 0 0 0 0
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the block dimensions of which are the same as those of Sa in Theorem 1. Obviously,
a lower bound is achieved for Ell -$1, E14 0, E4 0, E44 0. The upper
bound is achieved for almost every ("random") choice of E,E4, E4,E44.

Observe that, if ra tab -t- rac rabc, then there is no S block in Sa and the
minimum rank of A + BDC will be ra. Also observe that the minimum achievable
rank, rab -b rac- rabc, is precisely the number of restricted singular values triplets of
the form (1, 0, 1), (1, 1, 0), and (1, 0, 0).

3.1.2. The unique rank minimizing matrix D. When is the matrix D that
minimizes the rank of A+BDC unique? The answer is given in the following theorem.

THEOREM 4. Let D be such that rank(A + BDC) tab + rac rabc and assume
that ra > rab q-rac- rabc. Then the matrix D that minimizes the rank of A + BDC
is unique if and only if:

1. rc q,
2. rb--P
3. rabc rab q- rc rac q- rb.

In the case where these conditions are satisfied, the matrix D is given as

D Vb 0 0

Observe that the expression for the matrix D is nothing more than an OSVD!
Proof. It can be verified from the matrix in (5) that the rank of A / BDC is in-

dependent of the block matrices El2, El3, E21, E22, E23, E24, E31, E32, E33, E34, E42,
E43. Hence, the rank minimizing matrix D will not be unique, whenever one of the
corresponding block dimensions is not zero, in which case it is parameterized by the
blocks Eij in

(6)
-S E2 E13 0
E21 E22 E23 E24D V Ea Ea Eaa Ea U.
0 E42 E43 0

Setting the expressions for these block dimensions equal to zero results in the necessary
conditions. The unique optimal matrix D is then given by D VbEU2, where

q + ra rac rac ra

tab ra E41 E44 0 0
[3

3.1.3. On the uniqueness of BDC: The extended shorted operator. A
question related to the one of 3.1.2 concerns the uniqueness of the product term BDC
that minimizes the rank of A / BDC. As a matter of fact, this problem has received
much attention in the literature where the term BDC is called the extended shorted
operator and was introduced in [20]. It is an extension to rectangular matrices, of the
shorting of an operator considered by Krein, Anderson, and Trapp only for positive
operators (see [20] for references).

DEFINITION 1 (the extended shorted operator). Let A (m n), B (m p), and
C (q n) be given matrices. A shorted matrix S(A]B, C) is any m n matrix that
satisfies the following conditions:

We have slightly changed the notation that is used in [20].
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R(S(AIB, C)) c_ R(B), R(S(AIB, C)*)

_
R(C*).

2. If F is an m n matrix satisfying It(F) C_ R(B) and It(F*) C_ R(C*), then

rank(A F) _> rank(A 8(AIB C)).

Hence, the shorted operator is a matrix whose column space belongs to the column
space of B, whose row space belongs to the row space of C, and which minimizes the
rank of A- F over all matrices F, satisfying these conditions. From this, it follows
that the shorted operator can be written as

8(AIB, C) BDC

for a certain p q matrix D. This establishes the direct connection of the concept of
extended shorted operator with the RSVD.

The shorted operator is not always unique, as can be seen from the following
example. Let

1 0 0)A= 1 1 1 B=
0 1 0

Then, all matrices of the form

1 0 0)a 0
0 0 0

minimize the rank of A- S, which equals 2, for arbitrary a and .
Necessary conditions for uniqueness of the shorted operator can be found in a

straightforward way from the RSVD.
THEOREM 5 (on the uniqueness of the extended shorted operator). Let the RSVD

of the matrix triplet (A, B, C) be given as in Theorem 1. Then

,S(AIB, C) P-*,S(S,[Sb, Sc)Q-.
The extended shorted operator 8(A[B, C) is unique if and only

1. rabc rc -[- tab,

2. rabc rb rac
and is given by

-S 0 0 0 0
0 0 0 0 0

S(A[B,C)=P-* 0 0 0 0 0 Q-1
0 0 0 0 0
0 0 0 0 0

Proof. It follows from Theorem 3 that the minimum rank of A + BDC is tab +
rac- rabc, and that in this case EI -S1,E14 0, E41 0, E44 0. A short
computation shows that

-S E2 0 0 0 0
0 0 0 0 0 0
E2 E22 0 0 E24S3 0 -1BDC P-* 0 0 0 0 0 0 Q
0 $2E42 0 0 0 0
0 0 0 0 0 0
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Hence, the matrix BDC is unique if and only if the blocks El2, E22, E42, E21, E22, and
E24 do not appear in this decomposition. Setting the corresponding block dimensions
equal to zero proves the theorem.

Observe that the conditions for uniqueness of the extended shorted operator BDC
are less restrictive than the uniqueness conditions for the matrix D (Theorem 4). As a
consequence of Theorem 5, we also obtain a parameterization of all shorted operators
in the case where the uniqueness conditions are not satisfied. All possible shorted
operators are then parameterized by the matrices El2, E21, E22, E24, E42. Observe
that the shorted operator is independent of the matrices El3, E23, E31, E32, E33,
E34, E43. The result of Theorem 5, derived via the RSVD, corresponds to Theorem
4.1 and Lemma 5.1 of [20]. Some connections with the generalized Schur complement
and statistical applications of the shorted operator can also be found in [20].

3.1.4. The minimum norm solutions D that reduce the rank ofA+BDC.
Consider the problem of finding the matrix D of minimal (unitarily invariant) norm

]ID]I such that"

rank(A + BDC) r < r,

where r is a prescribed nonnegative integer.
It follows from Theorem 3 that a necessary condition for a solution to exist is

that ra > r >_ tab + rac rabc. Observe that if ra tab + rac rabc, no solution
exists. In this case, there is no diagonal matrix $1 in Sa of Theorem 1. Assume that
the required rank r equals the minimal achievable" r tab + rac rabc. Then, if the
conditions of Theorem 4 are satisfied, the optimal D is unique and follows directly
from the RSVD. The interesting case occurs whenever the rank minimizing D is not
unique. Before examining matrices D that minimize the rank of A / BDC, note that,
whenever min(rab, rac) --ra > 0, there exist many matrices that will increase the rank
of A + BDC. In this case,

in,f{ e IIDII rank(A + BDC) > ra} O,

which implies that there exist arbitrarily "small" matrices D that will increase the
rank.

THEOREM 6. Consider all matrices D satisfying

tab + rac --rbc <_ r rank(A + BDC) < r

where r is a given integer and let I[.11 be any unitarily invariant norm. A matrix D of
minimal norm IlDll is given by

D=--Vb( SO O0 )Uc,
where S[ is a singular diagonal matrix

,r r / rabc tab rac (
ra r

r / rabc rac tab ra r

o o)0 S

contains the ra- r smallest diagonal elements of St.
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Proof. From the RSVD of the matrix triplet A, B, C it follows that

A + BDC P-*(S + Sb(VDUc)Sc)Q-P-*(Sa + SbESc)Q-
with IIEll IIVDUcll IIDll. The result follows immediately from the partitioning
of E as in (4) and from equation (5). [:]

We could use Theorem 6 to define the restricted singular values ak as

ak inef{e amax(D) rank(A + BDC) k- 1 }

where amax(.) denotes the maximum ordinary singular value. Because the rank of
A + BDC cannot be reduced below tab "+" rac- rabc, there will be tab +rac- rabc
infinite restricted singular values. There are ra + rabc- rab- rac finite restricted
singular values, corresponding to the diagonal elements of $1. From (5), it can be
seen that the diagonal elements of $2 and $3 can be used to increase the rank of
A + BDC to min(rab, rac). However, from (7) it is obvious that min(rac ra, rab ra)
restricted singular values will be zero.

3.1.5. The reverse problem: Given IIDII, what is the minimal rank of
A+BDC? The results of 3.1.3 and 3.1.4 allow us to obtain in a simple fashion the
answer to the reverse question: Assuming we are given a positive real number 5 such
that IIDII _< , what is the minimum rank rmin of A + BDC?

The answer is an immediate consequence of Theorem 6. Note that the optimal
matrix D is given as the product of three matrices, which form its OSVD! Hence,
IIDII IIS[II and the integer rmin c&n be determined as follows. Let S/be the x
diagonal matrix that contains the smallest elements of $1. Then,

(8) rmin ----ra- (m.ax {size(S/) such that IISill <_ 5}).

It is interesting to note that expressions of the form A +BDC with restrictions on the
norm of D can be related to the notion of matrix balls, which show up in the analysis
of so-called completion problems [6].

DEFINITION 2 (matrix ball). For given matrices A (m x n), B (m x p), and
C (q x n), the closed matrix ball Ti(AIB C) with center A, left semiradius B, and
right semiradius C is defined by

T(AIB, C) { X IX A + BDC where IIDII2 _< 1}.

Using Theorem 6 and (8), we can find all matrices of least rank within a certain
given matrix ball by simply requiring that amax(D) <_ 1. The solution is obtained from
the appropriate truncation of S[ in Theorem 6. Since the solution of the completion
problems investigated in [6] are described in terms of matrix balls, it follows that we
can find the minimal rank solution in the matrix ball of all solutions of the completion
problems, using the RSVD.

3.1.6. The matrix equation BDC A. Consider the problem of investigat-
ing the consistency of, and, if consistent, finding a (minimum norm) solution to, the
linear equation in the unknown matrix D:

BDC A.
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This equation has an historical significance because it led Penrose to rediscover what
is now called the Moore-Penrose pseudo-inverse [21], [24]. Of course, this problem
can be viewed as an extreme case of Theorems 3 and 6, with the prescribed integer
r-0o

THEOREM 7. The matrix equation BDC A in the unknown matrix D is
consistent if and only if

rab rb rac rc rabc rb -[-rc.

All solutions are then given by

$1 El3 0 )D=Vb E3 E33 E34 U
0 E43 0

and a minimum norm solution corresponds to E3 O, E3 O, E33 0, E34 0,
E43 O.

Proof. Let E VDUc and partition E as in (4). The consistency of BDC A
depends on whether the following is satisfied with equality

EI E2 0 0 E14S3 0 ’1 0 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0 0
E2 E22 0 0 E24S3 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0 I 0 0

$2E41 $2E42 0 0 $2E44S3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Comparing the diagonal blocks, the conditions for consistency follow immediately as

rabc tab q-rc rac -b rb rb -[-rc, which implies rab rb and rac rc. These
conditions express the fact that the column space of A should be contained in the
column space of B and that the row space of A should be contained in the row space
of C. If these conditions are satisfied, the matrix equation BDC A is consistent
and the matrix E VDUc is given by

ra q rc rc ra
ra (E El3 El4 )E p rb E31 E33 E34
rb ra E41 E43 E44

The equation BDC A is equivalent to

$2E41 $2E44$3 0 0 0 0
0 0 0 0 0 0

This is solved for EI S, El4 0 E41 0, E44 0. Observe that the solution
is independent of the blocks E3, E3, E33, E34, E43. Hence, all solutions can be
parameterized as

D Vbl Vb3 Vb4 E3 E33 E34
0 E43 0

The minimum norm solution follows immediately.



RESTRICTED SINGULAR VALUE DECOMPOSITION 415

Penrose originally proved [21], [24] that a necessary and sufficient condition for
BDC A to have a solution is:

(9) BB-AC-C =A,

where B- and C- are inner inverses of B and C.
written as

All solutions D can then be

(10) D B-AC- + Z- BB-ZC-C,

where Z is an arbitrary p x q matrix. It requires a tedious though straightforward
calculation to verify that our solution of Theorem 7 coincides with (10). In order to
verify this, consider the RSVD of A, B, C and use Lemma 1 to obtain an expression
for the inner inverses of B and C, which will contain arbitrary matrices. Using the
block dimensions of Sa, Sb, Sc as in Theorem 1, it can be shown that the consistency
conditions of Theorem 7 coincide with the consistency condition (9).

Before concluding this section, it is worth mentioning that all results of this section
can be specialized for the case where either B or C equals the identity matrix. In this
case, the RSVD specializes to the QSVD (Theorem 2) and mutatis mutandis, the same
type of questions, now related to two matrices, can be formulated and solved using
the QSVD such as shorted operators, minimum norm rank minimization, solution of
the matrix equation DC A, etc.

3.2. On low rank approximations of a partitioned matrix. In this section,
the RSVD will be used to analyse and solve problems that can be stated in terms
of the matrix2 M (DA S

D* where A, B, C, D are given matrices. The main results
include the analysis of the (generalized) Schur complement [4] in terms of the RSVD
(3.2.1), the range of ranks of the matrix M as D is modified, and the analysis of the
(non)unique matrix D that minimizes the rank of M (3.2.2), and finally the solution
of the constrained total least squares problem with exact and noisy data by imposing
additional norm constraints on D (3.2.3).

3.2.1. (Generalized) Schur complements and the RSVD. The notion of
a Schur complement S of the matrix A in M (which is S D* -CA-1B when A is
square nonsingular), can be generalized to the case where the matrix A is rectangular
and/or rank deficient [4] as follows.

DEFINITION 3 ((Generalized) Schur complement). A generalized Schur comple-
ment of A in M (cA .)is any matrix S D*-CA-B where A- is an inner
inverse of A.

In general, there are many generalized Schur complements, because from Lemma
1 we know that there are many inner inverses. However, the RSVD allows us to
investigate the dependency of S on the choice of the inner inverse.

THEOREM 8. The Schur complement S D* -CA-B is independent of A- if
and only if ra tab =rac. In this case, S is given by

EI Sf
S Uc E[2

E3

2 In order to keep the notation consistent with that of 3.1, we use the matrix D*, which is the
complex conjugate transpose of D in 3.1, as the lower right block of M. This allows us, for instance,
to use the same matrix E as defined in (3) and (4).
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Proof. Consider the factorization of A as in the RSVD. From Lemma 1, every
inner inverse of A can be written as

S- 0 0 0 X X
0 I 0 0 X25 X26

A- Q 0 0 I 0 x3 x36 p.
0 0 0 I x45 x46
Xl X52 X3 X4 X
X61 X. X3 X4 X X6

for certain block matrices Xij, where the block dimensions correspond to the block
dimensions of the matrix S of Theorem 1. It is straightforward to show that

S 0 0 XS
CA-B Uc 0 0 0 X2S. V0 0 0 0

SX SX3 0 SzXS

Hence, this product is dependent on the blocks X5, X25, Xh, X53, X55. The corre-
sponding block dimensions are 0 if and only if ra rab rac. [3

Observe that the theorem is equivalent with the statement that the (generalized)
Schur complement S D* -CA-B is independent of the precise choice of A- if and
only if R(B) C R(A) and R(C*) C R(A*). This corresponds to Carlson’s statement
of the same result (Proposition 1 of [4]). In the case that these conditions are not
satisfied, all possible generalized Schur complements are parameterized by the blocks
X5, X53, X15, X25, and X55 as

3.2.2. How does the rank of M change with changing D? Define the
A Bmatrix M([9) (c D*-b. )" We shall also use D D D. How can we modify the

rank of M(/) by changing the matrix/? Before answering this question, we need to
state the following (well-known) lemma.

LEMMA 3 (rank of a partitioned matrix and the Schur complement). If A is
square and nonsingular, then

rank C D* rank(A) + rank(D* CA-B).

Proof. Observe that:

o) (, 0 )(,C D* CA- I 0 D*-CA-IB 0

Thus we have Theorem 9.
THEOREM 9.

Arank C D* rab + rac ra + rank E2 E2 3.’2E3 E3 "33
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Proof. From the RSVD, it follows immediately that the required rank is equal to
the rank of the matrix

’ S1 0 0 0 0 0 I 0 0 0
0 I 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 I 0 0
0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 EI EI E E
0 I 0 0 0 0 E2 E22 E3,2 E2
0 000 0 0

\ 0 0 0 0 $3 0 E4 E34 E44
From the nonsingularity of $2 and $3, it follows that the rank is independent of
E41, E42, E43, El4, E24, E34, E44. The result then follows immediately from Lemma
3, taking into account the block dimensions of the matrices. [:]

A consequence of Theorem 9 is the following result.
COROLLARY 1. The range of ranks r of M attainable by an appropriate choice

of[9 in M (A BCO’-[9*) is

tab + rac ra

_
r

_
min(p +rac, q + tab).

The minimum is attained for

(12) /*=Uc
E3 E,3 E3 E3

E4 E4 E4 E4
where the matrices/4,/24,/34,/41,/42,/43, and 44 are arbitrary matrices.

Compare the expression of D of Corollary i with the expression for the generalized
Schur complement of A in M, as given by (11). Obviously, the set of matrices D
contains all generalized Schur complements, which are those matrices D for which
/34 E34 and E43 E43. If these blocks are not present in E, there are no matrices
D, other than generalized Schur complements, that minimize the rank of M. Hence,
we have proved the following theorem.

THEOREM 10. The rank of M([9) is minimized for [9 equal to a generalized Schur
complement of A in M. The rank of M([9) is minimized only for D D* CA-B
where A- is an inner inverse of A, if and only ff rab ra or rc q and rac rc or

rb p. If ra tab rac, then the minimizing D is unique.
Proof. The fact that each generalized Schur complement minimizes the rank of

M(/) follows directly from the comparison of/ in Corollary 2 with the expression for
the generalized Schur complement in (11). The rank conditions follow simply from
setting the block dimensions of E34 and E43 in (4) equal to 0. The condition for
uniqueness of/ follows from Theorem 8.

This theorem can also be found as Theorem 3 of [4], where it is proved via a
different approach. Related results can be found in [7] and [31].

3.2.3. Total linear least squares with exact rows and columns. The
nomenclature total linear least squares was introduced in [16]. The technique is an
extension of least squares fitting in the case where there are errors in both the ob-
servation vector b and the data matrix A for overdetermined sets of linear equations
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Ax b. The analysis and solution is given completely in terms of the OSVD of the
concatenated matrix (A b). In the case where some of the columns of A are noise-free
while the others contain errors, a mixed least squares-total least squares strategy was
developed in [17]. The problem where some rows are also error-free was analysed via
a Schur complement-based approach in [7]. One of the key canonical decompositions
(Lemma 2 of [7]) and related results concerning rank minimization were described
earlier in [4]. Another useful reference is [31]. We shall now show how the RSVD
allows us to treat the general situation in an elegant way. Again, let the data matrix
be given as M (cA DB.) where A, B, C are free of error and only D is contaminated
by noise. It is assumed that the data matrix is of full row rank.

The constrained total linear least squares problem is the following.
Find the matrix/) and the nonzero vector x such that

C D*

and lID-/)IIF is minimized.
A slightly more general problem is the following.
Find the matrix/) such that lid-/)IIF is minimal and

(in) rank C /). _< r.

The error matrix D-/ will be denoted by . Assume that a solution x is found.
By partitioning x conformally to the dimensions of A and B, we find that the vector
x satisfies

Axl + Bx2 O,
Cx + [9*x O.

Hence, the total least squares problem can be interpreted as follows. The rows of A
and B correspond to linear constraints on the solution vector x. The columns of the
matrix C contain error-free (noiseless) data while those of the matrix D are corrupted
by noise. In order to find a solution, we must modify the matrix D with minimum
effort, as measured by the Frobenius norm of the "error matrix" /), into the matrix
/). Without the constraints imposed by matrices A and B, the problem reduces to a
mixed linear-total linear least squares problem, as is analysed and solved in [17].

From the results in 3.2.2, we already know that a necessary condition for a
solution to exist is r >_ tab +rac- ra (Corollary 1). The class of rank minimizing
matrices/) is described by Corollary 1 when r tab + rac- ra. Theorem 9 shows
how the generalized Schur complements of A in M form a subset of this set. From
Corollary 1, it is straightforward to find the minimum norm matrix/) that reduces
the rank of M() to r rab -t- rac ra. It is given by

EI-Sf E E 0 1E2 E2 0* U i: E9. E3 0 vb*"
0 0 0 0

The minimum norm generalized Schur complement that minimizes the rank of M is
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given by

E[-S E
El2 E2S Uc E3 E23
0 0 /o

0

This corresponds to a choice of inner inverse in (11) given by X15 EIS1, X25
E2S-1, X51 S1E4, X53 S-1E4, X55 S-1E4S- 1.

We shall now investigate two solution strategies, both of which are based on the
RSVD. The first one is an immediate consequence of Theorems 6, but, while elegant
and extremely simple, might be considered as suffering from some "overkill." It is
a direct application of the insights obtained in analysing the sum A + BDC. The
second one is less elegant but is more in the line of results reported in [4] an,d7]. It
exploits the insights obtained from analysing the partitioned matrix M ( .

3.2.3.1. Constrained total linear least squares directly via the I:tSVD.
It is straightforward to show that the constrained total least squares problem can be
recast as a minimum norm problem as discussed in Theorem 6 as follows.

Find the matrix D of minimum norm I[DII such that

rank((A B ) (Omq)f).C D* + Iq (0nn /P)

The solution is an immediate consequence of Theorem 6.
COROLLARY 2. The solution of the constrained total linear least squares problem

follows from the application of Theorem 6 to the matrix triplet A’, B’, C’ where

C D* Ia =(0pxn Ip).

Hence, all that we need is the RSVD of the matrix triplet (A’, B’, C) and the
truncation of the matrix $1 as described in Theorem 6. It is interesting to also apply
Theorem 3 to the matrix triplet (A, B, C)

A B 0 )ra,b,=rank C D* Iq =tab+q,

ra, c, rank C D* rac + Po

ra’b’c’ rank C D* ra + p + q.

Hence, from Theorem 3, the minimum achievable rank is ra’b’ q-ra’c’- ra’b’c’
rab q-rac- ra, which corresponds precisely to the result from Corollary 1.

As a special case, consider the Golub-Hoffman-Stewart result [17] for the total
linear least squares solution of (A B)x , O, where A is noise-free and B is contami-
nated with errors. Instead of applying the QR-SVD-least squares solution as discussed
in [17], we could as well achieve the mixed linear-total linear least squares solution
from the following.

Minimize I[/1[ such that

rank((A B)- J0(0pn Ip)) <_ r,
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where r is a prespecified integer. This can be done directly via the QSVD of the
matrix pair ((A B), (Opn Ip)) and it is not too difficult to provide another proof of
the Golub-Hoffman-Stewart result derived in [17], now in terms of the properties of
the QSVD.

As a matter of fact, the RSVD of the matrix triplet of Corollary 2 allows us to
provide a geometrical proof of constrained total linear least squares, in the line of the
Golub-Hoffman-Stewart result, taking into account the structure of the matrices B’
and C’. We shall not, however, consider this any further in this paper.

3.2.3.2. Solution via RSVD-OSVD. While the solution to the constrained
total least squares problem as presented in Corollary 2 is extremely simple, we might
object to it because of the apparent "overkill" in computing the RSVD of the matrix
triplet (A, B, C), where B and C have an extremely simple structure (zeros and
the identity matrix). It will now be shown that the RSVD, combined with the OSVD,
may lead to a computationally simpler solution, which more closely follows the lines
of the solution as presented in [7].

Using the RSVD, we find that

.) 0)( o 0)C D* 0 Uc Sc U2D*Vb 0 V(

Let E* UD*Vb. Since Uc and Vb are unitary matrices, the problem can be restated
as follows.

Find/ such that liE-/llF is minimal and

Srank Sc /*

The constrained total least squares problem can now be solved as follows.
THEOREM 11 (RSVD-OSVD solution of constrained total least squares). Con-

sider the OSVD

Ell-S El2 E3 )E2 E22 E23 Z
E31 E32 E33 i-1

where re is the rank of this matrix. The modification of minimal Frobenius norm fol-
lows immediately from the OSVD of this matrix by truncating its dyadic decomposition
after r tab rac + ra terms. Let

r--tab--rac

U gr

i=1

Then the optimal [9 is given by

o o u;.

Proof. From Theorem 9, it follows that the rank of ( j.) can be reduced by
reducing the rank of the matrix

E S- E12 El3 )E21 E22 E23
E31 E32 E33
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The matrix/) is then obtained from (12) by setting the blocks/14, /24, /34, /41,
/42,/43,/43 to 0 in order to minimize the Frobenius norm and then truncating the
OSVD of the matrix above.

We conclude this section by pointing out that more results as well as algorithms to
solve total least squares problems with and without constraints and given covariance
matrices, can be found in [7], [28], [29], and [31].

3.3. Generalized Gauss-Markov models with constraints. Consider the
problem of minimizing Ilyll 2 + Ilzll 2 y*y + z*z over all vectors x, y, z satisfying

b Ax + By, z Cx

where A, B, C, b are given.
This formulation is a generalization of the conventional least squares problem

where B Im and C 0. The formulation above admits singular or ill-conditioned
matrices B and C. The problem formulation as presented here could be considered
as a "square root" version of the problem as follows.

Find x such that

is minimized, where Ilullwb u*Wbu and Wb and Wc are nonnegative-definite sym-
metric matrices.

In the case that BB* is nonsingular, we can put Wb (BB*)- and Wc C*C.
The solution can then be obtained as follows.

Minimize Ilyll 2 + Ilzl] 2 where

y*y (b- Ax)*Wb(b- Ax),
z* z X*C* Cx.

Setting the derivative with respect to x equal to 0, results in

(14) x (A*WbA + Wc)-IA*Wbb.

In the case where Wb =Im and C 0, (14) reduces to the classical least squares
expression. For the more general case, we can see a connection with so-called regular-
ization problems. Consider the case where C : 0 and B Im. If the matrix A is ill
conditioned (because of so-called collinearities, which are (almost) linear dependencies
among the columns of A), the addition of the term C*C may possibly make the sum
better suited for numerical inversion than the original product A*A, hence stabilizing
the solution x.

The matrix B acts as a "static" noise filter: Typically, it is assumed that the vec-
tor y is normally distributed with the covariance matrix E(yy*) being a multiple of the
identity. The error vector By for the first equation can only be in a direction which
is present n the column space of B. If the observation vector b has some component
in a certain direction not present in the column space of B, this component should
be considered as error-free. The matrix C represents a weighting on the components
of x. It reflects possible a priori information concerning the unknown components
of x or may reflect the fact that certain components of x (or linear combinations
thereof) are more "likely" or less costly than others. The fact that we try to minimize
y*y + z*z reflects the intention to explain as much as possible (i.e., min y’y) in terms
of the data (columns of the matrix A), taking into account a priori knowledge of the
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geometrical distribution of the noise (the weighting Wb). The matrix C reflects the
cost per component, expressing the preference (or prejudice?) of the modeller to use
more of one variable in explaining the phenomenon than of another. In applications,
however, typically the matrix A contains many more rows than columns, which cor-
responds to the fact that better results are to be expected if there are more equations
(measurements) than unknowns. However, the condition that BB* is nonsingular
requires a priori knowledge concerning the statistics of the noise. Because typically
this knowledge is rather limited, B will have fewer columns than rows, implying that
BB* is singular and (14) does not apply. In this case, however, the RSVD can be ap-
plied. It provides important geometrical information on the sensitivity of the solution.
Inserting the RSVD of the matrix triplet (A, B, C), the problem can be rewritten as

(P’b) Sa(Q-lx) + Sb(V , y),
(U2z)

Define b’ P*b,x’ Q-ix, y Vy,z Uz. Then, with obvious partitionings of
b, x, y, z’, it follows that

Observe that b’6 0 is a consistency condition. It reflects the fact that b is not
allowed to have a component in a direction that is not present in the column space of
(A B). The components of x and x can be estimated without error while the fact
that b5 S2y could be exploited to estimate the variance of the noise.

Most terms in the object function y*y + z*z can now be expressed with the
subvectors x’, (i 1,..., 6),

The minimum solution follows from differentiation with respect to these vectors and
results in

+ + +
2 b Y’2 0, z2 b,

X 3 b 3, Y3 0, Z3 0,
X4 b, Y4 Sb5, z4 0,
x5 0
X6 arbitrary.

Statistical properties, such as (un)biasedness and consistency, can be analysed in the
same spirit as in [23], where Paige has related the Gauss-Markov model without the
z-equation, to the QSVD. Similarly, the RSVD also allows us to analyse the sensitivity
of the solution. If, for instance, $2 is ill conditioned, then the minimum of the object
function will tend to be high, whenever b has strong components among the "weak"
singular vectors of $2, because of the term b*
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A related problem is the following.
Minimize y*y subject to b Ax / By and Cx c where A, B, C, b, c are given.
This is also a Gauss-Markov linear estimation problem as in [23], but now with

constraints. The solution is again straightforward from the RSVD. With b’ P’b,
x’ Q-ix, y’ Vy, c’ Uc, and an appropriate partitioning, we find

X’ ,,--la,
3 4

x arbitrary.

y’ b S-i c,y =0,
Y3:0

Observe that c b and c 0 are two consistency conditions.

4. Conclusions and perspectives. In this paper, we have derived a general-
ization of the OSVD, the restricted singular value decomposition (RSVD), which has
the OSVD, PSVD, and QSVD as special cases. A constructive proof, based upon a
sequence of OSVDs and PSVDs can be found in [9]. We have also analysed in detail
its structural and geometrical properties and its relations to generalized eigenvalue
problems and canonical correlation analysis. It was shown how the RSVD is a valu-
able tool in the analysis and solution of rank minimization problems with restrictions.
First, we have shown how to study expressions of the form A+BDC and find matrices
D of minimum norm that minimize the rank. It was demonstrated how this problem
is connected to the concept of shorted operators and matrix balls. Second, we have
analysed in detail low rank approximations of a partitioned matrix, when only one
of its blocks can be modified. The close relation with generalized Schur complements
was discussed and it was shown how the RSVD permits us to solve constrained total
linear least squares problems with mixed exact and noisy data. Third, it was demon-
strated how the RSVD provides an elegant solution to Gauss-Markov models with
constraints. The fact that the RSVD is only the tip of an iceberg of generalizations
of the OSVD for 2, 3, 4, matrices, is fully explored in [11].
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