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QSVD approach to on- and olf-line state-space identification

MARC MOONENt and JOOS VANDEWALLEt

Moonen et al. (1989 a), presented an SVD-based identification scheme for com-
puting state-space modeIs for multivariable linear time-invariant systems. In the
present paper, this identification procedure is reformulated making use of the
quotient singular value decomposition (QSVD). Here the input-output error co-
variance matrix can be taken into account explicitly, thus extending the applica-
bility of the identification scheme to the case were the input and output data are
corrupted by coloured noise. It turns out that in practice, due to the use of various
pre-filtering techniques (anti-aliasing, etc.), this latter case is most often encoun-
tered. The extended identification scheme explicitly compensates for the filter char-
acteristics and the consistency of the identification results foIIows from the
consistency results for the QSVD. The usefulness of this generalization is demon-
strated. The development is largely inspired by recent progress in total least-squares
solution techniques (Van Huffel 1989)for the identification of static linear relations.
The present identification scheme can therefore be viewed as the analogous counter-
part for identifying dynam ic linear relations.

1. Introduction
Identification aims at finding a mathematical model from the measurement record

of inputs and outputs of a system. A state-space model is a most obvious choice for
a mathematical representation because of its widespread use in system theory and
control. Still, reliable general purpose state-space identification schemes have not
become standard tools so far, mostly due to the computational complexity involved.

An elegant identification scheme was presented in an earlier paper (Moonen el
al. 1989a). The main step consists in computing the singular value decomposition
(SVD) of a block Hankel matrix, constructed with 1/0 data. This procedure clearly
resembles weUknown realization algorithms that compute a state-space model from
the SVD of a block Hankel matrix, this time constructed with Markov parameters
(Kung 1978, Zeiger and McEwen 1974).These realization algorithms suffer however
from severe model inconsistency when there is noise on the data, due to loss of the
Hankel structure when the 'noise singular values' are implicitly set to zero. Moreover,
the sequence of Markov parameters might be hard to obtain in some applications.
Instead, the above-mentioned identification scheme computes a state-space model
immediately from the 1/0 data, which in practice turns out to be its main advantage.
Even using a Hankel matrix, as weU, the identification procedure can be shown to
provide consistent results if both the input and output data are corrupted by additive
white (measurement) noise (Fig. 1).

In practice, however, the 1/0 data are mostly corrupted by coloured noise, due
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to the use of various pre-filtering techniques (e.g. anti-aliasing, or band pass filtering
if a model for a limited frequency range is sought) (Fig. 2). Under these conditions it
appears to be reasonable to assume that the noise colouring is completely defined
through the filter characteristics, so that an error covarianee matrix (up to a factor
of proportionality) can be computed from the filter impulse response (see below for
an example). Following recent progress in total least-squares solution techniques
(Van Huffe11987, 1989)for the identification of statie linear relations, the above identi-
fication scheme can be reformulated in a QSVD framework (De Moor and Golub 1989).
Then any input-output error covariance matrix (possibly even rank-deficient) can be
taken into account explicitly. In this way consistent model estimates can be computed,
even for the coloured noise case.
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In § 2 the original identification scheme is briefty reviewed and shown to pro vide
consistent estimates in the white noise case. In § 3 the generalized procedure for the
coloured noise case is presented. It is illustrated by practical examples in §4..Finally,
§ 5 gives an outline of an adaptive version of the QSVD-based identification scheme.

2. SVD-based system identification: white noise case
For the time being we consider time-invariant linear, discrete-time, multivariabie

systems with the state-space representation

Xu 1 = A .Xk + B .Uk

Yk =C .Xk + D . Uk
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where Uk'Yk and Xk denote the input (m-vector), output (I-vector) and state vector at
time k, the dimension of Xk being the minimal system order n. A, B, C and D are the
unknown system matrices to be identified, making use only of recorded 1/0 sequences
Uk' Uk+1, ... and Yk, Yk+1'....

2.1. ldentification scheme
Moonen et al. (1989) showed how a state vector sequence can be computed from

1/0 measurements only, as follows. Let Hl and H2 be defined as

Uk + 2i - 1 Uk + 2i Uk+2i+j-2

Yk + 2i-l Yk+2i Yk+2i+j-2

j~i

and let the state vector sequence X be defined as

X= [Xk+i XUi+l ... Xk+i+j-l]

Then, under certain conditions (Moonen et al. 1989)

spanrow(X)= spanrow(Hd n spanrow(H2)

so that any basis for this intersection constitutes a valid state vector sequence X with
the basis vectors as the consecutive row vectors.

Once X is known, the system matrices can be identified by solving an (overdeter-
mined) set of linear equations: .

[

Xk+i+ 1

YUi

... Xk+i+j-l

]
=

[

A B

]

.
[

Xk+i ... Xk+i+j-2

]... Yk+i+ j- 2 C D Uk +i ... Uk+i+ j- 2

The above results constitute the heart of a two-step identification scheme. First
a state vector sequence is realized as the intersection of the row spaces of two block
Hankel matrices, constructed with 1/0 data. Then the system matrices are obtained
at once from the least-squares solution of a set of linear equations.

Uk Uk+ 1 ... Uk + j - 1

Yk YUl ... YUj-l

Uk+l Uk+2 ... Uk+j

H1=1 YUl YU2 ... YUj

Uk+ i-I Uk+i ... Uk+j+i- 2

Yk + i-I Yk+l ... Yk+j+i-2

Uk+i Uk+i+ 1 ... Uk+i+j-l

YUi Yk +i + 1 ... Yk+i+j-l

Uk+i+l Uk+i + 2 ... Uk+i +j

H2= I Yk + i + 1 Yk+i+2 ... Yk+i+j
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2.2. Computational details

The following derivation (which is slightly different from the one in Moonen et
al. (1989» shows how these computations can be carried out quite easily, resulting in
a consistent double SVD identitication algorithm.

As a tirst step the intersection of thc row spaces spanned by Hl and H2, can he
rccovered from the SVD of the concatenation

H = [::]

[
HI

J [
Uu

H = = Uil . SIl . J1, =
H2 U21

U I2

J
.
[

Su 0

J
. V'1l

U22 0 0

dim (U 11) = (mi + li) x (2mi + n)

dim (U 12) = (mi+ li) x (2li- n)

dim (U 2d = (mi + li) x (2mi + n)

dim (U22)= (mi + li) x (2li - n)

dim (S 11) = (2mi + n) x (2mi + n)

(see Moonen et al. 1989 for details). From

U~2 .Hl = - U~2 .H2

it follows that the row space of U~2 .Hl is equal to the required intersection. How-
ever, U~2 . Hl contains 2li - n row vectors, only n of which are linearly independent
(i.e. nis the dimension ofthe intersection). Thus it remains to select n suitable combina-
tions of these row vectors.

Making usc of a CS decomposition (Golub et al. 1983),one can easily show that

[

l(/i-n) x (/i-n)

]
_ (1) (2) (3). .

UI2-[UI2 UI2 UI2] Cnxn V'.

O(II-n) x(II-n)

[

O(II-n) x (II-n)

]
U - [UU) U(2) U(3) ] . S . yt22- 22 22 22 nXn .

l(/i-n) x(li-n)

C =diag (Cl>..., Cn)

S = diag (SI, ..., Sn)

Inxn= C2 + S2

where uW then constitutes the (li - n)-dimensionalorthogonal complement of Hl.
Clearly, only uW delivers useful combinations for the computation ofthe intersection,
and we can take .

x.= uWt .Hl

The above expressions for U12 and U22 are in themselves SVDs of these matrices,
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and can be computed as such. It thus suffices to compute, for example, the SVD of
U12' Computation of the required intersection then reduces to computation of two
successiveSVDs for Hand U12'

Note that the above derivation is nothing more than a double SVD approach to
computing the QSVD of the matrix pair (H1, H 2), following from the constructive
QSVD proof of Paige and Saunders (1981). From this last remark, one might be
tempted to apply immediately a one-stage QSVD procedure to the matrix pair, as
developed by Paige (1986). This latter method would, however, compute the exact
intersection of the row spaces, which in the presence of noise turns out to be com-
pletely absent (generically). The outcome of applying Paige's algorithm would then
be a zero-dimensional intersection, as could have been guessed beforehand. The
difference between these methods turns out to be the intermediate rank decision after
the first SVD in the first approach (double SVD) that fixes the dimension of the
approximate intersection to be computed next. Although this (possibly difficult) inter-
mediate rank decision has been a main motive for developing a one-stage QSVD
algorithm, for our purpose it is somehow inevitable.

In the second step, the system matrices are to be identified from a set of linear
equations. Much as was done by Moonen et al. (1989), it can be shown straight-
forwardly that the system matrices can be computed from the following reduced set
as weil (obtained after discarding the common orthogonal factor VH).

[

UWI. UH(m + I + I :(i + 1)(m + 1),1: 2mi + n)' SlI

]UH(mi+ li + m + I :(m + I)(i + 1), 1: 2mi + n)' SlI

[

A B

][
uWt'UH(1:mi+li,I:2mi+n)'S11

]= C D UH(mi+li+l:mi+li+m,I:2mi+n)'S11

where UH(r:s, v: w) is a submatrix of UH at the intersection of rows r, r + 1, ..., s and
columns v, v + I, ..., w.

2.3. Consistency

The identification procedure is proven to be consistent if the number of columns
in H tends to infinity and if the input-output measurements are corrupted with
additive white measurement noise, or in other words, if the columns in H are subject
to independently and identically distributed errors with zero-mean and common
error covariance matrix equal to the identity matrix, up to a factor of proportionality.
For that case it can indeed be shown (De Moor 1988a) that the left singular basis
UHcan be computed consistently (as opposed to the singular values SH and the right
singular basis VH).As the system matrices are next computed essentially from UH
only (see the above set of equations), the model estimate is clearly consistent. (The
matrix SH in this set imposes weights on the different equations. This does not
influence the outcome if the set of equations can be solved exactly, which is the case
under the assumed conditions.) The corresponding noise model is depicted in Fig. 1.

2.4. Adaptive identification

The above algorithm is easily converted into an adaptive one, where model updat-
ing should account for time variance. Every time step, a new input-output measure-
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ment becomes available, detining a new column to be appended to the matrix H. On
the ot her hand, older measurements should be discarded, e.g. by exponential weight-
ing. The off-line algorithm of the previous section is then applied to the updated H-
matrix.

Since only UH and SHin the SVD of Hare needed for further computations, H
need not be constructed explicitly since the weighting can be applied to SH as weil.
It then suffices to update only UH and SH in every time step, as outlined in the
following algorithm.

Aigorithm 1
Initialize

U 11(0)= 112mi+ 2/i) x 12mi + 2/i)

SHIO) = 012mi + lIi) x 12mi + 2/i)

(m and I being the number of inputs and outputs, respectively, 2i being the number
of block rows in the tictitious matrix H). For k = 1,... do the following.

Step 1
Construct new column column to be added to Hlk-1), using the 2i latest 1/0

measurements.

Step 2
Calculate SVD

UIIIk) .SHIk) . J1IHlk) = [ex. UIIlk - I) .SHCk - I) column]

and partition

[

U11

U liCk)= U21

U 12

]
dim (U11) =(mi + li) x (2mi + n)

U22

[

Sl1

SlIlk) = 0

0

]
dim (S 11) = (2mi + n) x (2mi + n)

S22

Step 3
Calculate the SVD:

U12 = [UW uW

[

Illi-n) x l/i-n)

UW]. enxn

]

.~

°l/i-n)xlli-n) ·

Step 4
Solve the set of linear equations

[
UWI. HHlk)(m + 1+ 1 :(i + 1)(m + 1),1 :2mi + n). Sl1

]Ulllk)(mi + li + m + 1:(m + I)(i + 1), 1:2mi + n). Sll

[

Alk) Blk)

][
UWI.Ulllk)(I:mi+li,I:2mi+n),.S11

]= elk) Dik) UHlk)(mi + li + 1:mi+ li + m, 1:2mi+ n). S11



--- -

QSVD in state-space identification 1139

Clearly, the model-updating boils down to SVD-updating (Step 2), followed by a
limited number of additional operations. The overal efficiency therefore c10sely de-
pends on the efficiency with which the SVD-updating can 00 carried out. Efficient
parallel algorithms for updating the singular value decomposition are dealt with by
Moonen et al. (1989 b).

3. QSVD-based system identification: coloured noise case
Let us proceed to the case where the 1/0 data are corrupted by coloured noise.

For instance, in Fig. 2, the use of pre-filtering (F(q» does not change the dynamic
relation between input and output, but it introduces a colouring of the additive
(measurement) noise.

Assume that the columns in the concatenated matrix

H - [::]
are subject to identically distributed errors with zero mean and common error covari-
ance matrix !1 up to a factor of proportionality, where

!1= Rb..R~

is the Cholesky factorization of !1 (Rb.lower triangular).
One can easily verify that the columns in the transformed matrix Ril. H have

an error covariance matrix equal to the identity matrix up to a factor of proportional-
ity. One way of carrying out the identification would then consist of having the
identification based on the SVD of Ril. H (with a consistent computation of the
left singular basis, see § 2) instead of H, and inc1uding a kind of retransformation with
R~ 1. The overall identification scheme would then deliver a consistent estimate.
However, if Rb. is singular or iII-conditioned, the matrix inverse R~ I should not 00
computed explicitly. Instead, one should make use of the quotient singular value
decomposition (QSVD) of the matrix pair (H, Rb.) (which in the non-singular case
indeed reduces to the SVD of R~ 1 . H). We can now show how a double QSVD
identification scheme can 00 designed, analogous to the double SVD scheme for the
white noise case (the latter being a special case of the former where every single
QSVD reduces to an SVD, as can easily be verified).

The QSVD of (H, Rb.) is a simultaneous reduction of the two matrices (having
the same numOOr of rows) by two orthogonal matrices QH and QR. and a non-
singular matrix X (Van Loan 1976, Paige and Saunders 1981).

XI .H .QH = 1:H

XI . Rb. . QR. = :ER.

where

1:H = diag (oei' ..., oe2li+lmi)

:ER. = diag (Plo ..., Plli+lmi)

oei oel oe21i+ lmi->->... >
Pl Pl P21i+lmi
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(ah Pi) is called a quotient singular value pair, whereas adPi is a quotient singular
value.

Alternatively, one can write

H = X-I .~H .Qk

RA = X-I . ~R.' Q~.

Although the above QSVD foem is not the most desirabie one in teems of either
numerical stability or eflicient parallel implementation, it is quite expository and
instructive for our purpose. We therefore stick to this representation, keeping in mind
that in actual practice one should preferably make use of an alternative QSVD
computation scheme (see Paige 1986).

A geometrical interpretation for the matrix X is as follows. Ir the error covariance
matrix A is equal to the identity matrix (up to a factor), then so does RA' and one
can easily verifythat X corresponds to UHin the SVD of H (H = UH' SH' JFlH),up

to a possible sealing of its column vectors. The column vectors of X then define
directions in which the oriented signal energy in the column space of H is extremal
(De Moor et al. 1988).Similarly, in the general case where A :Ff, the column vectors
of X define directions in which the oriented signal-to-noise ratio is extremal (De Moor
et al. 1988).Much as was done for the white noise case, where the intersection ofthe
row spaces of Hl and H 2 was computed using the directions of minimal oriented
signal energy for

H ~ [::]
that is

[
U12

]U22

(remember U~2' Hl = -U~2' H2), we can now compute the intersection making
use of the directions of minimal oriented signal-to-noise ratio

[

X 12

]X22

to be defined next.
It is instructive to consider first the noise-free case (error covariance proportional

to A, but with a zero factor of proportionality), and then demonstrate th at the
derivations still hold if there is a non-zero error contribution. Ir the data are noise-
free, then from the above QSVD definition it follows that

[
Hl

] [
Xll X12

]
-1

[
~11 0

]H= =X-I'~H'Qk= . 'Qk
H2 X21 X22 0 0

dim (X 11) = (mi + li) x (2mi + n)
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dim (X 12) = (mi + U) x (2U- n)

dim (X 21) = (mi + U) x (2mi + n)

dim (X 22) = (mi + U)x (2U- n)

dim (1:1d = (2mi + n) x (2mi + n)

Again, from

X\ 2 - Hl = - X~2- H 2

it follows that the row space of X\ 2 - Hl is equal to the required intersection. As
X\2 - Hl contains 2U - n row vectors,only n of whichare linear independent(due to
the dimension of the intersection), it remains to select n suitable combinations of
these row vectors.

Making use of a QSVD, one can easily show that

[

/lIi_n) X(/i-n)

X12 = [XW xW xWJ-

[

O(/i_n) x (/i-n)

X22 = [XW xW XWJ-

e = di ag (Ch ..., cn)

S = diag (Slo ..., sn)

I ftxn = e2 + S2

Clearly, only X\21 delivers useful combinations for the computation of the intersection,
and we can take

enxn

]
- r.

O(li-n) x (/i-n)

Snxn

]
- r.

1(// -nI x (11-nI

X=XWI- Hl

Note th at in the white noise case, this last QSVD reduced to a es decomposition
and could then he computed from a single SVD, resulting in an overall double SVD
scheme for the computation of the intersection. In the general case, the computation
of this intersection is carried out in a double QSVD scheme.

In the second step, the system matrices can be computed from the following
reduced set of equations (obtained after discarding the common orthogonal factor
QH)

[
XWI - X-I(m + I + 1:(i + I)(m + 1),1 :2mi + n) -1:11

]X-'(mi + U+ m + 1:(m + I)(i + 1), 1:2mi + n) -1:11

[

A B

][

XWI-X-I(I:mi+U,I:2mi+n)-1:11

]= e D X-1(mi+U+l:mi+U+m,I:2mi+n)-1:11

where X-1(r: s, v: w) is a submatrix of X -I at the intersection of rows r, r + 1, ..., s
and columns v, v + 1, ..., w.
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ft remains to show that the above identification scheme delivers consistent results
if the number of columns in H tends to infinity, and if the columns in H are subject
to identically distributed errors with zero mean and a common error covariance
matrix equal to A, up to a factor of proportionality. For that case, it can again
be shown (De Moor 1988) that the matrix X in the QSVD can be computed con-
sistently. As the system matrices are next computed essentially from X only (the
matrix 1:Hin the above set of equations again imposes weights that do not inftuence
the solution in the case considered, see § 2), the model estimate is clearly consistent.

A final remark concerns trivial quotient singular values a.;/PI= 0/0. As these cor-
respond to vectors in the ortbogonal complement of H (a.l= O)-and additionally
correspond to noise-free directions as PI= O-they should be treated as such. In
other words, tbe column vectors in X corresponding to trivial quotient singular
valuesshould be reckoned in

4. Examples
The followingsmall examples iIIustrate the usefulnessof the generalizedidenti-

ficationprocedure.

Example1
First let us consider a first-order single-inputsingle-output system, with state-

space equations

Xk + i = 0.5Xk + Uk

Yk = Xk

The general set-up is depicted in Fig. 2. An 1/0 sequence was generated using a
random input sequence, with additive white noise superimposed on both the input
and the output sequence next. Finally, the noise-corrupted 1/0 sequence was passed
through a linear filter F(q), with filter characteristics as shown in Fig. 3. The noise
colouring, or equivalently the noise error covariance matrix for the columns in H (to
be introduced next), can be determined from tbe filter impulse response bo, bi, b2, ...,

-. .-- ._-.. .-- -----

- - --

r"]X22

1.5
filter characteristic

1

"jjj
1>1I

0.5

0
0 0.5 1

normalized frequency

Figure 3.
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as follows (symmetrie Toeplitz matrix):

where E{ .} is the expectation operator, and /kUlis the output of the filter for a white
noise input sequence Fln. The zero entries are due to the fact that the additive noise
sequences on the input and output (Ut and Yt) are assumed to be uncorrelated.

E{f~u1J:u;.,}can be computed as follows (Papoulis 1980):

00

E{f~ulJ:u;.'}=O"~oiS' L <5,<5'+1
,=0

(O"~oiS'is a factor of proportionality that need not be known.) Making use of the
Cholesky factor of A, one can then apply the QSVD-based identification procedure.
Figure 4 shows the identified pole as a function of the number of columns in H, both
for the QSVD-based identification scheme and for the SVD-based scheme. The latter
cannot compensate for the noise colouring. For small noise contributions (I %) the
difference between the two results turns out to be relatively small (Fig. 4 (a)). For
larger values of the signal-to-noise ration (10% in Fig. 4 (b)), only the QSVD scheme
delivers useful results. Furthermore, the estimate cIearly improves as the number of
columns in H increases (consistency).

svd(--) qsvd(-) svd(--) qsvd(-)

cu
ë
~

."

.2!
::::
....
s::

~ -0.5

oI-~./\.-\j\ ~___

500 1000
-1

o 500 1000

malrix dimension malrix dimension

(a) (b)

Figure4.

Example 2
As a second example, we again consider the same first-order SISO system. IConly

the output is corrupted by additive white noise (Fig. 5) the error covariance matrix

E{fU'fU' } 0 E{fU'J:u;. 1 } 0

0 E{J:u'J:u,} 0 E{f'kU'J:u;. 1 } 0

A(211 + 2mi) x (211 + 2mi) = I E{fU'fu;. 1 }
0 E{fu'fu' } 0

0 E{J'ku'J: d 0 E{J:u'J:u,}

1

cu
ë 0.51.....

."

.2! 0
::::....
s::cu -0.5

-1
0
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clearly equals

ij 0 0 0

o I 0 0

d(2Ii+2mi)x(21i+2mi)= I 0 0 0 0
000

(which is a rank deficient matrix). Figure 6 shows the identified pole as a function of
the number of columns in H, both for the QSVD-based identification scheme and
for the SVD-based scheme. Again, only the QSVD scheme delivers consistent results.

INPUT
u. LINEAR SYSTEM

A,B,C,D

OUTPUT
Y.

'+"_ WHITE'V NOISE

IDENTIFICATION

ALGORITHM MEASURED
OUTPUT

Figure 5.

0.6 svd(--) qsvd(-)

'* I>! ' ----------
p, 0.4
'"
-~...

~ 0.2
Q)

~
o
o 500 1000

matrix dimension

Figure 6.

5. Adaptive QSVD-based identification
Much as for the SVD-based scheme, the above QSVD-based algorithm is easily

converted into an adaptive one for time-varying systems, making use of QSVD-
updating and exponential weighting. Ir the error covariance matrix is time-~nvariant,
the following algorithm straightforwardly applies. Again, H is never constructed
explicitly but its factors I:H and X are stored and updated.

Algorithm 2
Initialize

X(O) = 1(2mi+21i)x (2mi+21i)

I:H101= O(2mi+21i)x (2mi+21i)
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(m and I being the number of inputs and outputs respectively, 2i the number of block
rows in the tictitious matrix H).

For k = I, ...

Step 1
Construct new column column to be added to H(k-1), using the 2i latest 1/0

measurements.

Step 2
Calculate QSVD

Xii)'. I:Hlk) . Q},lkl = [0( .X(;;~ 1)I:Hlk- \) column]

Xik)'. I:R~I. Q~~I= X(;;~ 1)I:R~-1I

and partition

[
XlI

X(k) = X21

X 12

]
dim (X 11) = (mi + ti) x (2mi + n)

X22

[
0

]
I:11

I:H1k) = 0 I:22
dim (I: 11) = (2mi + n) x (2mi + n)

Step 3
Calculate QSVD

[

1(Ii_n)X(Ii-n)

X - [X (I) X (2) X (3)
]
. C12- 12 12 12 nXn

[

O(/Olln)X (Ii-n)

X - [X (I) X (2) X (3) ] . S22 - 22 22 22 n x n

]
. TI

0(li-n)X(Ii-n) *

]
.r.

1(Ii-n) x(li-n) *

Step 4
Solve the set of linear equations

[
XWI .Xii)(m + I + 1: (i + 1)(m+ I), 1: 2mi + n) . I:II

]Xik)'(mi + ti + m + 1:(m + I)(i + 1),1: 2mi + n). I:ll

[

A(k) B(k)

] [
XWI . Xik)'(1 : mi + ti, 1: 2mi + n) . I:ll

]= elk) D(k) Xik)'(mi + ti + 1:mi+ ti + m, I :2mi+ n). I:ll

Again, the model-updating boils down to QSVD-updating (Step 2), followed by
a limited number of additional operations. The overall efficiency therefore closely
depends on the efficiency with which the QSVD-updating is carried out. Efficient
parallel algorithms for updating the quotient singular value decomposition are dealt
with in Moonen et al. (1989 b).



---

1146 QSVD in state-space identification

6. Conclusions
A double SVD scheme for state-space identification that applies to the case where

the available data are subject to additive white (measurement) noise has been general-
ized to a double QSVD scheme for the coloured noise case. By use of examples the
practical relevance ofthis identification scheme has been demonstrated. Finally, much
like the SVD scheme, the QSVD scheme can easily be converted into an adaptive
algorithm for on-line model updating.
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