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ABSTRACT

The product singular value decomposition is a factorization of two matrices, which
can be considered as a generalization of the ordinary singular value decomposition, at
the same level of generality as the quotient (generalized) singular value decomposi-
tion. A constructive proof of the product singular value decomposition is provided,
which exploits the close relation with a symmetric eiger salue problem. Several
interesting properties are established. The structure and the nonuniqueness proper-
ties of the so-called contragredient transformation, which appears as one of the factors
in the product singular value decomposition, are investigated in detail. Finally, a
geometrical interpretation of the structure is provided in terms of principal angles
between subspaces.

1. INTRODUCTION

The ordinary singular value decomposition (OSVD) has become an
important tool in the analysis and numerical solution of numerous problems.
Not only does it allow for an elegant problem formulation, but at the same
time it provides geometrical and algebraic insight accompaniec by a numeri-
cally stable implementation of the solution. Several algorithms and applica-
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tions are discr'ssed in e.g. [7], [12], and the references therein. Recently,
several generalizations of the singular value decomposition have been de-
rived and analysed. The best-known example is the so called “generalized”
singular value decomposition of Van Loan [19] and Paige and Saunders [18].
In [4], we propose to call it the quotient singular value decomposition
(QSVD), as opposed to the product singular value decomposition (PSVD),
which was introduced in its explicit form by Fernando and Hammarling in
[8] (who called it the TISVD). In [20], Zha introduced yet another generaliza-
tion of the OSVD, this time for three matrices, which was called the
restricted singular value decomposition (RSVD) in [4] and [3]. In [4] we have
proposed a standardized nomenclature for generalizations of the OSVD, and
we shall use it in this paper.

A common feature of all these generalizations is that they are related to
the OSVD on the one hand and to generalized eigenvalue problems on the
other hand. While a lot of their properties and structure can be established
by exploiting these relationships, the explicit forms of the generalizations
themselves are important in their own right: Not only do they possess a
richer structure than their corresponding generalized eigenvalue problems,
but it is expected that their direct numerical computation wili be better
behaved than the computation via transformation to a generalized eigenvalue
or OSVD problem. The reason is that, typically, generalizations of the OSVD
are related to the OSVD or to generalized eigenvalue problems by AA’
squaring type of operations or matrix (pseudo)inversions, which may cause
nontrivial losses of numerical accuracy when implemented on a finite preci-
sion machine.

The PSVD is a generalization for two matrices of the OSVD. In this
respect, it is a kind of “dual” generalization of the OSVD with respect to the
QSVD. For instance, we have shown in {3] that both the PSVD and the
QSVD play an important role in the construction of the RSVD, which is a
generalization of the OSVD for three matrices. Hence, it can be expected
that the structural and geometrical properties of both the PSVD and the
QSVD will play an important role in the future work on formulations,
numerical implementations, and applications of other generalizations of the
OSvVD.-

While the geometrical properties and numerical implementations of the
OSVD and QSVD are by now well understood, similar knowledge for the
PSVD is less well developed. It is one of the goals of this paper to provide
some more insight into the structure and geometry of the PSVD.

'As a maiter of fact, recently, Zha Hongyuang and the author in [5] have established a most
interesting result that both the PSVD and the QSVD are “parents” of an infinite chain of

X %o as . _ £ R _ 8
geweralizativns of e OSVE %r any number of matrices.
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Algorithmic ideas to actually implement the PSVD in a numerically
ust wav can be found in [8] and [13] Annlications inclide the arthaoanal
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canonical correlation an: ySiS. ine mair difference between
he two approaches lies in the fact that canonical corr=lation analysis firsc
performs a normalization of the data, hence normalizing the relevant signal
energy and the pure noise energy to the same level, while the PSVD can be
considered as a way of decomposing the cross-covariance matrix into canoni-
cal directions, without an @ priori normalization. However, these issues will
not be discussed in this paper.

The main results of this paper concentrate arcund two constructive proofs
of the PSVD. The first one, in Section 2, exploits the close relationship of the
PSVD to the OSVD and several eigenvalue problems. In the second proof,
given in Section 3, we provide a profound analysis of the nonuniqueness
properties of the so-called contragredient transformation which appears as
one of the factors in the PSVD. Surprisingly encugh, this turns out to be a
considerably complicated problem. In essence, our result is a parametrization
of all contragredient transformations for two symmetric nonnegative definite
matrices of the form A’A and B'B in terms of matrices that can be derived
from the OSVDs of the two matrices A and B.

o
]

NotaTion AND ABBREVIATIONS. All matrices and vectors in this paper
are real. Matrices are denoted by capitals, and vectors by lowercase letiers
other than ¢, j,k,I,m,n,p,q,r, which are nonnegative integers. Scalars are
denoted by Greek letters. The range {column space) of a mairix A will be
denoted by R(A), its row space by R(AY), its null space by N(A). The
orthogonal projection of the column space of a matrix B onto the coiumn
space of a matrix A is denoted by I1,R(B). The orthogonalization of the
celumn space of a matrix B to the column space of a matrix A is denoted by
I1, R(B). The subspace that is the intersection of the column spaces of two
matrices A and B is denoted by R(A)N R(B). The direct sum of two
mutually orthogonal subspaces R(U,) and R(U,) (U{U, = 0) is denoted by
R(U,)®R(U,). The dimension of a subspace is abbreviated as dim; hence
dim R(A) = rank A = dim R(AT). By #{0(A) =1} we denote the number of

singular values of A equal to 1.

In this section, we shall first state the main theorem and provide a
constructive proof of the PSVD, which is based on some results that relate



98 BART L. R. DE MOOR

the OSVD of the matrix AB‘BA’ to the eigenvalue decomposition of the
matrices B‘BA‘A and A‘AB’B. We shall also prove a lemma that permits us to
express the PSVD of the matrix pair A, B in terms of their OSVDs when

AB! = 0. In Section 2.2, we shall provide a variational characterization of the
PSVD.

2.1. A Constructive Proof of the PSVD

Tueorem 1 (The PSVD). Every pair of real matrices A (m X n) and B
(p X n) can be factorized as

A=U,S,X",
B=UgS;X"".

All the matrices are real. The matrices Uy, Uy are square orthonormal, and X
is square nonsingular. S, and Sg have the following structure:

r Fg— 1Ty L= ﬂ"",,-‘l‘b'.'rl
s,= _n[si? o 0 o ]
T oo I o 0

“lo o o 0 )

n rg—r rp,—r n‘—r,—r,,-!-r,
.- nfsi o o 0 ‘
RN I 0 I 0 ’

0 0 o 0 )

where S, is square diagonal with positive elements and r, = rank(AB").

While some related eigenvalue problems were discussed in [13] and [16),
the explicit formulation of the PSVD is in Theorem 1 was given for the first
time by Fernando and Hammarling in [8], who called it the IISVD.

21n {8), also a constructive proof was provided. It is however based on a lemma (Lemma 1
in [8)) of which the proof is not correct. To give a counterexample to the proof, consider the pair

of matvices
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Throughout the paper, we shall also use the matrix Y defined as Y= X"". In
[8), the factorization is presented in a slightly different form, where a QR
factorization of X is used. While this may be preferable in analysing
numerical issues related to the PSVD, such an additional factorization is not
relevant for our present purpose, which is the detailed exploration of
structural and geometrical properties. We propose to call the pairs of nonzero
elements of S, and Sz in Theorem 1 the prodict singular value pairs, and
their product the product singular values. Obviously. the pairs contaiz: iuure
structural information than the product singular values. There are four
possibilities: There are r, pairs of the form (\/o_‘,- , \/0—',- ) with corresponding
product singular value o;, i=1,....r,. By convention, they are ordered so
that o; >0;,,. There are r, —r, pairs (1,0) with corresponding product
singular value 0. There are r, — r, pairs (0,1) with corresponding product
singular value 0. There are n —r, — r, + r, pairs (0,0), which we shall call
the trivial product singular value pairs, in analogy with the trivial quotient
singular value pairs [4].

In the constructive proof of Theorem 1, we shall need the following four
lemmas:

Lemma 1. Let the OSVD of a matrix A be given as

PN LT
al a2 0 0 Vatz .
Then the set of solutions of the consistent matrix equation AX = B is charac-
terized by X =V,,S;,'U!\B +V,,T, where T is an arbitrary matrix.

The first term is nothing else than A'B, where A’ is the Moore-Penrose
pseudoinverse of A. It is also the unique minimum Frobenius norm solution.
Recall that A’ is the Moore-Penrose inverse of A if it is the unique solution
T=A' of

ATA=A, (1)
TAT =T, (2)
(AT)" = AT, (3)
(TA) =TA. (4)

This pair of matrices satisfies the condition required by the lemma in [8] that AB' is diagonal.
With the notation of [8), we have that i =1, j=1, k=2, r =5. While the proof of the lemma
states that r —i— j =k, this is not true in general, because for our example k <r—i~—j.
Hence, the proof of Lemma 1 in [8] is not correct.
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In Section 3, we shall also use the notions of a 1-2-3-inverse of the matrix A,
which is any matrix T satisfying (1), (2), (3).

Lemaa 2. For any pair of m X n matrices A and B, the nonzero
e:genvalues of AB' and B'A are the same.

An immediate consequence of Lemma 2 is the following:

CoroLrary 1. Denote by A(-) the nonzero eigenvalue spectrum of a
matrix. Then A(AB'BA') = A(BA'AB') = A(A'AB'B) = A(B'BA'A).

Another result we shall need concerns the PSVD of two matrices in the
special case that their row spaces are orthogonal, i.e. AB*=0.

Lemma 3. Let A (m X n) and B (p X n) be such that AB* = 0. Assume
that A and B have OSVDs:

A (U r? )’Sal 0\ 'Va‘l\ (5)
= a “a2 ’
l [0 0]V,
(s,. o\{v)
B=(U,, Upx)|™" "l (6)
\ 0 0)\V,

where S, is r, X r, (r,=rank A) and S, is r, X r;, (r;, = rank B). Assume
that the common null space is generated by the columns of the orthonormal

mtm Vab2:
A
( B )Vab2 =0.
Then @ PSVD of A, B is given by
r¢ "', n—r.—r,, r SalVa‘l ]
A= (Ual Ua2) (Ir. 0 0 ) Sl:llVb‘l
0 0 0 Ly |

Ta o R=Fy=1ry S ;llVa‘l

B=(U, th)( 0 I, 0 \' So Vi
0 0 0 / \ Va‘b2 J
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We have written “a” PSVD instead of “the” PSVD because of the
nonuniqueness of V,;,, (which for instance can be postmultiplied by any
orthonormal matrix) and possibly of U,,,U,,,V,,,V,5,U;,,U;,V,,,, V. from
the (non)uniqueness properties of the OSVD. A detailed analysis of the
nonuniqueness properties of the PSVD in general is the subject of Section 3.

Proof. Observe that, because of the orthogonality of the row spaces of ..
and B, it follows that

A
rank( B} =r,+ 71,

Herce, the dimension of the common null space is n—r,—r,. It is
straightforward to find that V,, and Vj, can be chosen as

{ 7t \
V' - Vbl
a2 =~ V' ’
\ Yabh2
( 'l
¢ _ a
VY’)?.— ¢
ab2

The theorem then follows. The matrices S;;' and S;;' are inserted because
the right hand factors of A and B must be related to each other as X' and
X' (see Theorem 1). @

The central idea of the proof of Theorem 1 is to exploit the clese
connection between the OSVD of AB* and the eigenvalue decompositions of
B'BA'A and A'AB'B, which is the subject of the following lemma:

Lemwma 4. Let the OSVD of AB' be given as

AB'=UD\V* (7)

-, vz)(f,‘ g)(‘;} ()

where S, {r, X r, with r, = rank{AB")) contains the nonzero singular values
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of AB'. Consider the eigenvalue problem
(B'BA'A)Y = YD,. (9)

Consider also the OSVD of A as in (5). Then ail possible matrices of
eigenvectors Y can be written as

Y=(Y, Y, Y;)=(a "2)(, T, 4)'

where T, =V, B'BA'U,S 2, U, is any matrix such that R(A) = R(U,)® R(U,),
U, is any matrix such that N(A')= R(U,), T, and T, are arbitrary matrices
that can be chosen to ensure that rank(Y)=n, and

%]
-t

D, =

== =]
oL @
o0 o

Proof. From Corollary 1 it follows that the nonzero eigenvalues of
AB'BA’ and B'BA'A are the same. We shall show that there exist r,=
rank(AB’) eigenvectors correspording to SZ. These will form the nXr,
matrix Y,. Then we shall show that it is possible to choose an n X(r, —r,)
matrix Y, and an nX(n—r,) matrix Y;, both containing eigenvectors
corresponding to zero eigenvalues, such that the nXn matrix Y=
(Y, Y, Y,) is nonsingular.

Proof for Y,: From the fact that r, = rank(AB') < r, = rank 4, it follows
that R(U,) € R(A), so that AA'U; = U,. The matrix Y, will contain eigenvec-
tors corresponding to S? if

(B'BA'A)Y, = Y,S2. (10)

Premultiply this expression with A to find (AB'BA")AY, = AY,S}. But from
the OSVD (8) of AB', it follows then that we can put AY,=U,, and using
Lemma i it follows that Y, = A'U, + V,,T,. The matrix T, is however not
arbitrary, because Y, has to satisfy (10). Substitating the last equation into
(10) results in B'BA'A(A'U, + V,,T,) = (A"U, V,,T,)S:. Premultiplying this
wﬂh V,, results in T,=V,B'BA'U,S;2. Hence we find that Y, =

VaiSa'ULU, + VoV EB'BA’U,S, 2. Let us now verify that Y, satisfies ( 10)

Flrst observe that from the OSVD of AB* (8) and the OSVD of A (5) it
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follows that V,, B'BA'U, = S,'U},U,S?. Together with the expression for T,
this implies the following identity:

a2

Vﬂ! a
(Vt‘)B'BA'UF( ‘)( wSa UnU, +V,,T,)SE.

But because (V,; V,,) is nonsingular, it follows from that B'BA'U, = (A'L, +
V,oT)ST =Y, S" It can be verified that U, = AY,. Substitute this to find
B'BA‘AY = )’,S 1> which proves that Y, contains the eigenvectors correspond-
ing to the eigenvalues that are diagonal elements of S2.
Proof for Y,: Observe that R(A)= R(U,)® R(U,) implies that U/U, = 0.
Furthermore, because R(U;)C R(A), it follows that AA'U, =U,. Let Y, be
given as Y, = A'U, + V,,T,, where T, is an arbitrary matrix. Then

B'BA'AY, = B'BAA(A'U, + V,,T;) = B'BA'U, = B'V,SU{U, = 0.

Hence, the column vectors of Y, belong to the null space of B'‘BA'A, and
rank Y, =rankU;=r,—r,.

Proof for Y,: Assume that Y, =AU, +V,T,=V,T,. It follows that
B'BA'AY, = B'BA'AV,,T, = 0. This implies that the column vectors of Y,
belong to the null space of B‘BA'A, and obviously rank Y; = rankV,, =n—r,
if T, is nonsingular.

Finally, we have to verify that with fixed U,, U,, U,, and T}, we can
always chose T; and T, to inake the matrix

u, u, U
Y=(Y, Y, Y3)=(A’r V“"")(T, T, T4) (11)
of full rank. Rewrite (11), using the OSVD of A (5), as
vLu, ULU, ULU
= -1 al™1 al“3 el™4 X 12
Y (Valsal Va2)( Tl TS T4 } ( )

The matnx Y is now written as a product of two factors: The first factor
(v, V,o) is square nonsingular. Obvnously, the second factor can always
be made nonsingular by an appropriate choice of T; and T,. &
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An immediate consequence of Lemma 4 is:

CoroLLARrY 2. Consider the eigenvalue problem for B'BA'A as in (9):
(B'BA'A)Y = YD,, where Y is chosen as described in Lemma 4. Then X =Y
contains the eigenvectors of A'AB'B: (A'AB'B)X = XD,.

Proof. The proof follows from the nonsingularity of Y and from transpos-
ing (9). [ |

Obviously, the column vectors of X are the left eigenvectors of B‘BA‘A.
We are now ready to prove Theorem 1:

Proof of Theorem 1. The proof consists of three steps:

Step 1. First we'll show that A and B can be decomposed as

A—Uw“ O)X'
| 0 A, 7

§:4 0
= 11 ¢
B=v{ szz)r

with XY =1

Step 2. 1nen it will he shown that A, and B, aic diagonal.

Step 3. It will be shown that A',, B}, =9. This orthogonality of the row
spaces of A’p, and B}, allows us to apply Lemma 3 to the pair (4A',,, B},).

Combining steps 1, 2, 3 will then prove the theorem.

Step 1. Combining the OSVD (8) of AB* and the eigenvalue decomp-
osition (9) results in B‘BA‘AY = B'(BA')AY = B‘(VD{U*)AY =YD,. Pre-
multiplying with A results in AB'(VDIU')AY = AYD, whence
(UD\V'XVD{U"')AY = AYD,, whence (D, D{XU‘AY)={U'AY)D,, or with
the block structure of D, and D,,

St 0 vy (1t 2 0
(0l o)wAY) (UAY)(O 0)'

Now cail A" =U‘AY, and partition A" according to the block structure of D,
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and D, as

e
I

[ [
T An Al2 .
(4 ¢
m-=ry Az: 22

Then obviously

(3 o) )t )55 0)

0 0){Ay; Ay Ay Apfl0 OFf

which implies that S3A',, = A},S3, A, =0, and A’,, = 0. Recall from Lemma
4 that Y is nonsingular. Hence the matrix A =UAY"! can be written as

A 0

A=U(" , ﬁ”. (13)
0 22

Because U and Y are nonsingular matrices, we have that

rank A}, +rank A,, = rank A. (14)

Using Corollary 2 and applying a similar derivation to the matrix A’AB‘B
results in a decomposition of the matrix B as

B, 0
B=V(" ,)Yﬁ (15)
0 22

where B' =V*'BY~* and B, is the upper r, X r, biock of B'. Moreover,

rank B}, +rank B, = rank B. (16)

Step 2. Carrying out the multiplication AB‘ with the two factorizations
(13) and (15) results in

17)

ABt=U(A'llB'1ti J )V',

’ ot
0 22322

but from the uniqueness properties of the OSVD (8), it follows immediately
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that we can put A,,B};=S,. Hence, we have rank A, =rank B}, =r,, so
that B}, =(A,,)"!S,. When we require that A', = B),, one can always take
A}, = B}, = S}/2. In the case that the elements of S, are distinct, this solution
is unique. If some of the elements coincide, the solution is unique up to
block diagonal orthonormal matrices, which can however by incorporated
int~ the orthonormal matrices U and V in the factorization of AB‘ (17).
Step 3: It follows from the (non)uniqueness properties of the OSVD in
(17 and (8) that A', B, = 0. Moreover, from (14) and (16), it follows that

rank A, =rankA—r,=r,—r,,
rank By, =rank B—r,=r, —r,.

The proof is now straightforward by applying Lemma 3 to the pair A',,, B},
and inserting the corresponding factorizations for A',, and Bj, into (13) and
(15). ]

2.2. A Variational Characterization
Note that, from Theorem 1, Lemma 4, and Corollary 2, it follows that
there are four eigenvalue decompositions that can be related to the PSVD:

(A'AB'B) X = X(S45,5:Ss).
(B'BA'A)Y = Y(S;S5S4S4)-
(AB'BA"YU, = U,(S,S5S5S4)-
( BA'AB')Ug = Ug(S5S4S,Sh)-

The last two of them are OSVDs. Let us now derive a variational interpreta-
tion of the PSVD. Consider the following optimization prcblem:

Maximize over all vectors x and y
(y‘A'Ay)(x'B'Bx) (18)
subject to

x'y=1. (19)
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Assume that the maximum is achieved for some vectors x, and y,. Then
consider the following set of problems:

Find the vectors xk,y", k=2.3,..., that maximize
[(!‘l")'A%y"][(x")'B‘Bx*] (20)
subject to
(=*) 'yt =1, (21)
(M)'yi=0, j=1,..k-1, (22)
(x)'y*=0, i=1,...k-1. (23)

It can be shown that the PSVD delivers the solution: The maximum of (18) is
achieved for the first column vectors of X and Y and is equal to the largest

product singular value. The other column vectors of X and Y provide the
solutions to (20)-(23).

3. ON THE STRUCTURE OF THE CONTRAGREDIENT
TRANSFORMATION

In this section, we shall investigate in detail the structure of the matrix
X, including its (non)uniqueness properties. As a matter of fact, aiready in
Lemma 4 we have provided a parametrization of possible matrices X =Y ™'
in terms of matrices U, T,, U,, and T,. In this section, however, we shall
make a more detailed analysis of the nonuniqueness.

First, in Section 3.1, we summarize some known results on contragredi-
ent and balancing transformations of pairs of symmetric matrices, one of
which is positive definite and the other nonnegative or positive definite.
Then, in Section 3.2, it is shown how certain submatrices of the contragredi-
ent transformation matrix X are solutions of a set of nonlinear matrix
equations. A solution of these is provided in Section 3.3 (a constractive
derivation can be found in the appendix). These “basic” solutions, which
themselves contain a certain degree of nonuniqueness, are then used to
parametrize all possible PSVDs of a pair of matrices, which is the subject of
Section 3.4.
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In summary, the main result of this section is a complete characterization
and description of the nonuniqueness properties of the PSVD, and in
particular, of a contragredient transformation for two nonnegative definite
matrices.

3.1. Contragredient and Balancing Transformations
In order to introduce the notion of a contragredient transformation,
observe that it follows from Theorem 1 that

A'A = X(S48,)X",
B'B=X"*(S§Sp)X"",
so that
X'AAX " =S.S,,
X'B'BX = S4S;.

Hence X~! diagonalizes the matrix AA, while X’ diagonalizes the matrix
B'B. A double congruence transformation of this kind for a pair of matrices is
called contragredient [16].

Derinirion 1 (Contragredient transformation). The nonsingular n X n
matrix T is « contragredient transformation for a pair of matrices F,G if both
T~ 'FT~' and T'GT are real diagonal.

If both diagonal matrices are equal, we have:

Derinirion 2 (Balancing contragredient transformation). A contragredi-

ent transformation T is called balancing if T~'FT~'=T'GT is real diago-
nal.

Applications of (balancing) contragredient transformations can be found
in system and control theory (open loop balancing of stable plants [8, 16, 17]
and unstable systems [15]; closed loop balancing [14]; model reduction [11];
and H, controller design [10]).

An immediate consequence of Definition 2 is of course that balancedness
can only occur if F and G have the same inertia, because T is a congruence
transformation on F and G, which preserves :nertia. Obviously, a necessary
condition for the existence of a contragredient transformation for the pair
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F,G is that the product FG must be similar to a real diagonal matrix. An
example of a pair F,G for which no contragredient transformation exists is

_(3 1 [ 2 -2
P=(f ) (3 0)

The eigenvalues of FG are 1+ jY15; hence FG is not similar to a real
diagonal matrix. In case F and G are nonnegative definite (NND) and /o
positive definite (PD), a contragredient transformation always exists. This is
shown in Lemma 7, where F and G are both PD, and in Lemma 8, where F
is PD and G is NND. The case where both F and G are NND is analysed in
detail in Sections 3.2-3.4. These conditions of positive and nonnegative
definiteness are sufficient but not necessary. As an example, consider

=3 1) e=(2 )

Both F and G are indefinite. It is easy to check that

r=(} 3

is a contragredient transformation.

Lemma 5 (Existence of a contragredient transformation for positive
definite matrices). Suppose F = F' and G =G are both positive definite.
Let F and G have Cholesky factorization F = LL'; and G=L_Ly. Let

*.Lp have singular value decomposition L Lp=UZV' Then T =
L.V3~'2 is a contragredient balancing transformation. Also T~ '=
3-12yL.

Proof. [16, Theorem 1)}. 2

The next theorem addresses the case where one of F and G is nonnega-
tive definite, say G. In this case, the contragredient transformation cannot be
balancing because F and G do not have the same inertia.

LemMma 6 (Existence of a contragredient transformation for positive
definite F, nonnegative definite G). Let F = F' be positive definite and
G = G' be nonnegative definite. Let F have Cholesky factorization F = L L,
and G=L;L; be a Cholesky-like faciorization where Lg is nXrg=
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rank(G). Let the OSVD of L';L; be L'sL;=USV". Then T=L.U is a
contragredient fransformation.

Proof. [16). @

Observe that a contragredient transformation can only be unique up to a
diagonal matrix, because if T is contragredient, then TD, where D is
nonsingular diagonal, will also be contragredient. In case F and G are
positive definite, a balancing contragredient transformation is essentially
unique if the eigenvalues of FG are distinct. In case two or more eigenval-
ues of FG are repeated, their corresponding eigenvectors can be rotated
arbitrarily in the corresponding eigenspace. Ir case F is positive definite and
G nonnegative definite, similar statements apply. If however, both F and G
are nonnegative definite, nonuniqueness for balancing contragredient trans-
formations arises even in the distinct eigenvalue case, as is evident from the
foilowing example, borrowed from [16}:

{1 1 _f1 o0
F_(l 1)‘ G (0 0)'
Then

(1 0
FG—(l 0)

has distinct eigenvalues at 1 and 0. But the transformation

(2

is contragredient for any nonzero B and y, and balancing if 3=1 and y
nonzero. From Theorem 1, it can be seen that the PSVD provides a
contragredicnt transformation for the matrix pair AA and B’B, and the
conditions for this transformation to be balancing are obvious from the
structure of the matrices S, and Sg in Theorem 1.

The rest of this paper is devoted to a detailed analysis of the case of
nonnegative definite F and G, in case F =AA and G = B'B. When for
instance both the matrices A and B have more columns than rows, both A'A
and B'B are nonnegative definite. In particular, we shall analyse in detail all
possible causes of the nonuniqueness of the contragredient transformation X
that occurs in the PSVD of Theorem 1. Obviously, the results will also apply
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to the case where F and G are nonnegative definite, but not given explicitly
as F = A'A and G = B'B for some A and B. A suitable A and B can always
be obtained from (for instance) a Cholesky-like factorization as in Lemma 8.
The results of this section can then be applied to the Cholesky factors.

3.2. Expressing the PSVD via OSVDs

First, we shall show how to deflate a common null space of the matrices
A and B. This will allow us to assume without loss of generality that A and
B do not have a common null space. Then we shall relat-: the PSVD of the
matrix pair A, B to several OSVDs in Sections 3.2.2 and 3.2.3. This leads to a
set of nonlinear equations, which will be solved in Section 3.3.

3.2.1. Deflating the Common Null Space. Assume that the OSVD of
the concatenation of A and B is given by

( Vatbl \

A 344
\ Twiz,

(A B) _ (U U ) Sabl 0
abl ab2 0 ¢

where S, is r,, X r,,, diagonal and
A
ot = rank( B )

The common null space of A and B is then generated by the column vectors
of the nX(n—r,;) matrix V,,,. Define the matrices A, (m Xr) and B,

(pXr)as
A A, O
Var =
B)“ B, 0

with V,, =(V,,, V.,.). Obviously, A, and B, don’t have a common null
space. Now assume that a PSVD of the pair A, B, is given as

ab

Ag=U, Sx X&,

By=Up Sp X5 ",
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where S, is mXr,, Sg, is pXr,, and X, is r,, Xr,,. It follows
immediately that a PSVD of the pair A, B is given by

A=U, (S 0 X 0 v! (24
- Ao( Ag mX(n—r,,,)) 0 Wt ab> )
1
X' 0},
B = UBO( SBO Opx(""rb)) 0 W..l "ﬂl" (25)
i

where W, is an arbitrary but nonsingular (n — r ;) X(n — r,,) matrix. This
matrix represents the first source of possible nonuniqueness of the contragre-
dient transformation.

We assume from now on throughout the rest of Sections 3.2 and 3.3,
without loss of generality, that the matrices A and B do not have a common
null space and that

Tap= rank(';) =n.

Only in Sections 3.4 and 4 shall we again consider the possibility of A and B
having a common null space.

32.2. The OSVD of the Product. Let the OSVDs of A (m X r,,) and B
(p X f.ab) be

A=(U U ) Sal 0\ [Vall\ (26)
al a2 0 OJ LV:2J'

, (27)

B=(U, sz)(sm O}W""\

0 0)\Vy,,

where r, = rank A, r,=rankB, and S, is r,Xr, and S;; is r, Xr,
diagonal, the matrices of left and right singular vectors being partitioned
accordingly. Then the product can be written as

AB =(U,  U|SeVnSu O)[ Ui
0 0\ U,
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Consider the OSVD of the , X r, matrix

S, 0\[0Q}
SatValViuSm =(P,  P;) ( Ol 0 ) (Q: ) (28)
2

with r, =rank(AB') and S, (r, X r,) diagonal with the nonzero singusar
values of AB'. Again, the matrices of left and right singular vectors are
partitioned in an obvious way; e.g., P, is an r, X(r, — r,) matrix. The OSVD
of AB' can then be written as

S, 0 0)[0iU;
AB'=(Ua|P1 UaP, Ug,)i0 0 0 Q;Ub'2 . (29)
0 0 0 U,f2

Obviously, ry<min(r,,r,). Observe that if S, =1, and S, =1, the
OSVD of V)V, is nothing else than perferming a canonical correlation
analysis between the row spaces of the matrices A and B [2]. In other words,
the OSVD of S,V)V,;S;; could be considered as a weighted canonical
correlation analysis.

Let A(m X r,;,)and B (p X r,,) be matrices with no common null space.
Referring to (29) and the PSVD theorem of Section 2, introduce two

nonsingular r,, X r,, matrices X and Y and rewrite A and B as

sz 9 0\ {x:\
A= (UalPl UalP2 UaZ) 0 Ira—r‘ oj! Xé. > (30)
o o o0f|x ’

siz o0 o ||y}
B=(UyQ; UyQ: Ug)| 0 0 I _, ||Y:} (31)
o o0 o Jlv

where X, is r,, X1y, Xy is 1, X(r,— 1), X; is 74, X(r,, —17,), ¥, is
Tap X Ty, Y2 Tab x(rh - rl)’ and Y3 is Tab X(Tab - rb)’
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Then obviously X will be a contragredient transformation if
Xi

le= Xé (Y] Y2 Yg)=1r. (32)
X3

From the expressions (26) and (30) for A and (27) and (31) for B it is
obvious that

Xi==8§,"2P{S, V. (33)
Xé = P;S,\V, (34)
and
Y{ =S5 '2Qi8,Vsh. (35)
Y; = Q38,5 (36)

Obviously, rank X, =r,=rankY,, rank X, =r,—r|, and rankY;=r, —r,.
Moreover. it follows immediately that

Xiy,=1,, (37)
XLy, =0, (38)
Xiy,=0, (39)
XiY,=0. (40)

Because F, and Q,, containing singular vectors corresponding to nondistinct
z: 0 singular values, are not unique, X, and Y, are not unique. They are
only determined up to orthonormal matrices W, and W; as

X, =V, S0 PW,, (41)

Y; =V},,5,,0.W;, (42)



SINGULAR VALUE DECOMPOSITION 115

with WoWy =1, _ =W,W; and WiW, = I, ., =W,Wj. The fact that W,
and W; must be orthonormal also follows from (30) and (31): If X! (Y?) is
premultiplied there by Wy (Wy), then U,, P, (U,,Q,) must be postmultiplied
by W;* (W;*) but must remain orthonormal. In what follows, we shall
choose W, =1, _, and W;=1, _,. until Section 3.4, where we discuss
nonuniqueness issues in detail.

3.2.3. Refinement of the Block Structure. Let’s now have a closer look
at the dimensions of the blocks of the matrix product X'Y:

" te-rs mer

n (XY, Xty, X!y,
- | XLY, XY, XLY,
e | X3Y,  XLY, XLV,

Xty =

The reguirement that this product must be equal to the identity matrix
imposes the following structure. Since we know already that XY, =0, it
follows that r,j, —r,>r, —r,, or

Tap 2Ty tr,—r,. (43)

This follows also from X;Y, =0. The lower (r, — r,)X(r, — r,) matrix of
X3Y, is the identity matrix I, _, . The left (r,—r,) part of X}Y, equals
I, ., The upper right corner of X3Y, equals I, _, __ . .

According to these requirements, the block structure is refined as

[ x¢ )
xv=|% v, v, v, v)=1
=l x (Y Yy Yn Y3)=I,

31

| X5e)

(44)

ab’

Here, X, is r,, X(r =1, =1, +7}), Xgo 74 X(rp— 1), Yy 7, X (5, —
ry), and Yy, 1,y X(r,, — 1, — 1, + 1))

This leads to the following refinement of the structure of the matrices §,
and Sp in (30) and (31) (recall that, for the time being, there is no common
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null space):

p- "[si? o 0 o)
° -l o0 I 0 ol (45)

m-r,\ 0 0 0 o)

Ty To= 1y Papy = Fp =Tty Ty =Ty

{ 1 70 _ o ~\

D.= "[Si? o 0 0|
n-n] 0 0 0 1} (46)

p-r | O 0 0 0/

eguations:

fysd o 0 ] -
{ve |(Ra 2)=|_ , (4/)
\*3/ \Y frperg )
(x\ . _[ 0o o
{ ye U T22) = al (49)
\*2) \ érg=ry V|

subject to the orthogonality constraints

[ e\ P \
' K3l I( Y, ‘22} = |l { !r—r,-rl,-i-rl % (19}
\x%) \o o ]

stibsection.

3.3. A Solution to the Set of Nonlinear Matrix Equations

In this subsection, we present a solution of the set of nonlinear matrix
equations (47)-(49). For a constructive derivation, the interested reader is
referred to the appendix. In order to simplify our expressions below, we shall
first introduce some new notation.
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Recall the expressions (33)-(36) for X;,X,.Y,,Y;. Define the new
matrices

j(-l = Valsa—l‘Plsl/‘q' (50)
Xy =VarSai' Py, (51)
71 =ViuSin' 018172, (52)
?3 = Vi1Sin' Qe (53)

Then we have the following praperties:

Lemma 7 (Properties of X, X,,Y,,Y,).

(@) The matrices X,,X,,Y,,Y, are 1-2-3-inverses of the matrices
1 X3, Y\, Y;. They are all of full column rank.
(b) They satisfy the following properties:

XiX,=1,, (54)
XXy =1, (55)
Y\Y,=1,, (56)
YiY,=1, _,. (57)

(¢c) There are also the orthogonality relations

X{X,=0, (58)
XX, =0, (59)
Y{Y, =0, (60)

Y:;?l = (). (61)
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Because each of the matrices involved is of full column rank, these
relations express the fact that the corresponding column spaces are comple-
mentary, e.g., the columns of X, generate the kernel of X|.

Proof. Use the OSVDs (26), (27), and (28) to show that X, is a solution
T=2X, to X{TX!=X{, TX{T =T, (X{T) = X{T, which are the defining
relations for a 1-2-3-inverse. The same argument applies for X},Y;,Y;. From
the OSVDs (26)-(28), the properties (54)-(57) follow immediately. The
orthogonality relations (58)-(61) follow from the OSVD (28).

We shall now show how a PSVD can be constructed from the OSVDs

TueoreM 2 (An explicit construction of the PSVD). Assume that A and
B do not have a common null space, and let their OSVDs be

Sal 0 Vall
A=(U, Ua2)( 0 0)(‘,, )’
a2

sbl 0 vbtl
B=(U, U, .
(U ,2)( . 0)(%

Define a weighted canonical correlation OSVD as

S, O t
SalVa‘lVblsbl = (Pl Pz)( 01 0) ( g: ) s
2

and e caonical correlation OSVD as

S; 0 ¢
ViVis = (P, m(; O)(g)
4

Furthermore, consider the 1-2-3-inverses as in (50)-(53). Then a PSVD of A
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and B is given by

A
{ c1/2 n A nl !
!a,' 0 0 Ul Xt
A=(Unlh Uyt U02,= 0 S 0 0| Xt
lo o o of|°®
| X32
fyle
fsl/2 n n n |
l 1 v v v I Y‘
n_lU o F7 M T\ ~ . ~ - 21
B=(Un@ UpQ: Upji 0 o0 0 I, 1{,,
AQA
o o0 o J|*®
R
where 1he submatrices of X and Y are given by
X,=V,8,P,5; "2,
A2= albalr2’
- -1/2
X351 =V},00,8; /%,
- [ - am =l 1
=Y +V ! (YIVY V!V YW
S22 T 83T Vpehe| A1 Ty f1 T3 T R2s)

=V _pg-1/2

“22 *aZ2* 3¥3 >
=V S O

*3 "HIVHIX 2

119

(62)

o~

The matrix Wy is (r, — r,)X(r), — r,), while W, is (r, — r ) X(r, — r,). Both
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are arbitrary except for the constraint
Wi+ W =YY (Y{Y,) (XiX,) XiX,. (64)

Proof. The only fact to be proved is that the matrices X and Y satisfy
X'Y=1, , which is straightforward by exploiting the properties of Lemma 7
and (64). @

A detailed derivation of the expressions for the submatrices of X and Y
can be found in the appendix.

3.4. Nonuniqueness Properties of the PSVD

In case A and B do have a common null space, it is straightforward to
combine the result of Theorem 2 with the result of Section 3.2.1.

A PSVD of any matrix pair A, B is given by

[ x¢ )
s2 0 0 o0 o)]X:
A=(Uy Uy, Ugji o L., ¢ 60 X5 1.  (65)
0 0 ¢ 0 of|xy
\ X4 )
R
s2 0 0 o0 o)|Ya
B=(Usi Ugp Ug}l 0 0 0 I,_, o]ly,| (66)
0 00 o0 o0jfY
ROy

The matrices Uy;, Uyg, Uy3, Ug,, Ugy, Up; can be identified from (63), and the
expressions for the submatrices of X and Y are given in Theorem 3. The
matrices X, and Y, are such that

A
(3 )x4 = (‘;)x, =0, X,=I,_, . (67)
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The question of nonuniqueness can now be analysed as follows: In:

nsert
nonsingular square matrices R, T, W, Z into the above PSVD (66) as
A=0 WD iyt (L0
i3 UpaW i d &, {09)
R—71 7% Dtyt £ 00N
D=Ugdigt ¥, {03}

asas

with appropriate partmonmg of the matrices W,T, Z, R corresponding to the
block structure of S, and S;. This will correspond to another vaiid PSVD if
the following conditions are satisfied: The matrix U,W is orthonormal; hence
W shouid be orthonormal. The matrix UzZ is orthonormal; hence Z should

be orthonormal. WD, T* = D, and ZDgzR’ = Dy, and finally

Let us analyse these requirements i
and (35) it follows t]lat X, an d are chnha“ unique [i.e. apart from

i LAP PN £y =222 2 < ------_—.- b St
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where Ty, =W, [see Equation (41)] and R,, =W, [see Equation (42)] are
arbitrary but orthonormal. Similarly, the matrices W and Z have the follow-
ing structure:

ry Tg=7y m-—r,
we {1, o 0
Tramn | 0 Ty 0 (71)
m-r, \ O 0 Wi,
Ty T, — Ty P—rp
™ llr. O O \‘
Z= ’
- | 0 Ry 0 (72)
p—=ry 0 0 Z33

where W,; and Z,; are arbitrary but orthonormal. From the condition (70),
it is straightforward to show that T3, T,,, T3, R}s, R}3, Ry3 must all be zero
and that T;; and Ty are nonsingular. Hence

(1 0 0 o0
0 T22 T23 T24

0
0
0
0 0 0 T, O
Tss

T=|0 0 Ty Ty , (73)
0 0 0 0 J
and from R =T"" it follows that
(1 0 0 0 o)
0 Ty 0 0 0
R=|0 = T TsT3' 3 0 01} (19
0 —To(Ts— T3, T5'To) T —Ti'TLTw Ty O
0 0 0 0 TH)
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The conclusion is summarized in the following:

Tueorem 3 (On the nonuniqueness of the PSVD).

given by

A=(Uy Uy

B=(Us Up

then the following is also a PSVD:

A= { Ual Ua2T"22
HARN )
Xt 0 I
0 0

B=(Us UsgTy
S’z 0
Xt 0o 0
0 0

5172

Uss)l o
0

5172

Uss)| o
0
UA3W33)
f

0 0 0
0O 0 0
0O 0 O
\

Usszas)
f

0 0 O
0 I O
0 ¢ 0,

[ x: |
N t
0 o ojf%Xe
I 0 0 of|lXal
0 0 0 0/|xt
| X )
[ ...\
¥y
¢
0 0 o o)
0 0 I 0flYs|
0o 0 0o offy
Y )
X|
Ts X5
T3 X5+ T3 X4,
Ty X5+ T3, X5, + T4, X5
Ts X 1
Y! 1

foYs, + RisYgs + R3,Y;
faYss + R Y3
RyY;

-1t
Tss Yy /

123

Ifa PSVD of A, Bis

(75)

(76)
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The blocks T,; are arbitrary except for Ty, and T,,, which should be
orthonormal, and Tay and Ty, which should be nonsingular. The blocks R,;
are determined by (70) and are given in (74). The matrices Wy, and Z 4, are
arbitrary orthonormal.

To conclude this section, observe that we have characterized the
nonuniqueness of the PSVD on a double level: In Theorem 2, we have
derived an explicit construction of the PSVD from four OSVDs that could be
obtained from the matrices A and B. With the observation of Section 3.2.1
about a common null space, it then became clear that the matrices X and Y
are partitioned into five submatrices. Even here there is already some
nonuniqueness parametrized by the matrices W and W, which are arbitrary
apart from the constraint (64). In Theorem 3, it is shown that, once a PSVD
is known with the corresponding partitioning into five submatrices for X and
Y, all other PSVDs for the matrix pair can be obtained by inserting some
matrices W, Z, T, and R. The matrices W and Z have a block diagonal
structure as in (71) and (72). The matrices T and R have the block triangular
structure of (73) and (74). This block triangular structure will be important in
the geometrical interpretation of the submatrices of X and Y in Section 4. It
is an interesting exercise to show that the matrices XT and YR, where T and
R have the required block structure from Theorem 3, solve the set of
nonlinear equations (47)-(49). Hence, Theorem 3 also gives all solutions to
this set of equations, whereas Theorem 2 only described one particular
solution.

4. GEOMETRICAL INTERPRETATION OF THE STRUCTURE

In this section, we shall relate the structure of the contragredient
transformation, as derived in the previous section, to the geometry of
subspaces related to A and B.

Let r, =rank A, r, = rank B, and the OSVD of A and B be as in (26)
and (27). Let r,,, be defined as

Tob = rank(‘; )

Then it is well known that r,, =r,+ r, —dim[ R(A")N R(B')). Let r, be
defined as in (28), where r,=rank(S,V'V,,S;) = rank(V'V,,), where the
second equality follows from the nonsingularity of S,, and S;;. From the
definition of angles between subspaces, as e.g. in [2], it follows imiiediately

ab
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that r, is the number of canonical angles different from 90° between the
row spaces of A and B:

s
-,
-
e

Hence r,=0 only of the row spaces of A and B are orthogonal, as was the
case in Lemma 3. Assume that r,, of these canonical angles are zero while
the r_, =r,—c,, others are not. Obviously,

i D7 At ~ Df Dt

- = \ 11
'cl ulllllll\n ’l |ll\u ’j-

Hence r,,=r,+r,—r,; and r_, >r,+r, —r,. This is nothing else than
the inequality (43), which was derived from a structural requirement, whereas
the derivation here is based on a geometrical argument.

Because r, is the number of nonzero canonical angles different from 90°
between the row spaces of A and B, it is also the number of nonzero

canonical angles different from 90° between the ranges of V,,,V,,. Hence

fertuy

— — . - —- __anfn t \ PR
Teag =0 | =T TN T~ T, T, T FUST(VaoVpa) < 1j.

Now consider the partitioning of X and Y as derived in Section 3, which is
repeated here for convenience:

n rg—r Tah—Ta—Tp+t1) rp—r n—rgy,

V o > »
N == {Xl x«-) qu X'm XA )
\ E 3 s Ja Tl = ’
i fa— T fah—fa—rptry n=r; R=rgh
~ __ LY 4 w7 ar «r )
={h Iz Ig9 3 )

With an obvious partitioning of the orthonormal matrices U, and Uy as in
Theorem 3, it is straightforward to derive the following generdlized dyadic
decomposition:

A= ",,_lsg/zxf + UAzX;_’ (78)
B= -’Bisg/2yit + -733-35 (79)

which can be written out as a sum of rank one terms.
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From the fact that X'Y =YX =1, it follows that
A, Yy Yp Y3 Y)=(UySY2 U, 0 0 0), (80)
B(X, X, X5 Xz X,)=(UsSI* 0 0 U 0). (81)

From these, the following geometrical characterizations can be derived.
R(A") is generated by the columns of X, and X,. Hence, the row space of
the matrix A can be split into two subspaces; R(X,) forms a subspace of
R(A"), which is orthogonal to R(B'). It can be verified that

rank X, =r, — r, = #{o(V{V,) =1}. (82)

R(X,) forms a subspace of the row space of A, which is not orthogonal to the
row space of B. Its dimension is r,, as follows also from (77):

= #{G(Va'lvbl) > 0]' (83)

N(B) is generated by the columns of X,, X3, X,. Hence, the null space of B
can be decomposed into three subspaces: R(X,) is a subspace of R(A').
R(X,,) is orthogonal to R(B'), hence a subspace of N(B), but is not
contained in R(A'). Hence

o= Ta— T+ 1 =#{0<a(V)V,2) <1}. (84)

R(X,) is the common null space of A and B. Obviously,
n—ry=#{o(VV,:)=1}. (85)
Also, it follows immediately that
X!X, =0, (86)
X:X,=0. (87)

R{B') is generated by the columns of Y, and ¥,. Hence, the row space of the
matrix B can be split into two subspaces: R(Y,) forms a subspace of R(B'),
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which is not orthogonal to R(A'). Its dimension is r,. R(Y,) forms a subspace
of R(B'), which is orthogonal to R{A?). It can be verified that

ank Y.

2228 = £} %
1] 1

~r. =#la(vV ViV, ) =
AT a2y

-—
o~
o0
o

is 0 rmogonal to lﬂA ) but not contained in K(B ) Hence

Tap = Ta— 1, + 1= #{0 <o (V) <1}. (89)
R(Y;) is orthogonal to R(A') and also a subspace of R(B'). R(Y,) is the
mmon null cnaces of 4 and B Henre
WwASSABIAENFES BACAEE "k’u‘vh’ ra el QANENE & A AV ABLG
Y{Y, =0, (90)
Yj Y;=0. (91)
Moreover,
R(X,) = R(Y,) (92)

It can be verified that these geometrical results are independent of the
nonuniqueness of the matrices X and Y as described in Theorem 4. The
reason for this independence is precisely the block triangular structure of the
matrices T (73) and R (74).

In order to appreciate this observation, compare the structure of the
matrix X with that of the matrix XT in Theorem 4. Take for instance the
matrix X;,. The matrix X,, undergoes an affine transformation of the form

X., —>_,..._....+__,_,...= It is easy to check from Y'X =1, that R(X,,T
31 31733 2°23 31
X.T,.) is orthogonal to R( B‘l Moreover, because T, is nonsingular, Xn._m
24237 (24 < 7 5 o > 31+ 33
+ X,T,, will never be contained in the row space of A because X;; isn't
el'l‘ er. n summary. all ctatemoniec for Y. romain true for X.___ e Y-‘-_.
A%ER B ABE JUAREZEER J, GRBAE JVALGVIIEVAARNYT AR 1\31 BN /EEARSLEE WE WEW AWUB d\dlld‘j A‘z ZJ
o coama annlioc far tha athor cithmatrinace nf and VY
A BV OAiiiC ayl.’ll\.«o AL LRI WREEUE JOURBFIBIGLIEELUYD Ui L% Qhiie =
5. CONCLUSIONS
_ FUNEE T SRy ¥ P Bl bl B Berzen]  smsemen abine ~f o
in WS paper, we nave lllVCbllgd tea e siruciurad Propeircies Gi Wil
PYN | fooerryYy £ oa . ___ ac . A -~ P
pm(m(‘t SInguia. value uecomposmon (EFSVYIiUy OI TWO mawiCes A ana o.
c e %  Rocea el B B _ge
i‘lrSt we nave aerlved a constructive Proor, wnicn €xpilois e Ciose 1 iation
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of the PSVD with the OSVD of AB’BA' and the eigenvalue decompositions
of AA'BB’ and BB'AA’. Next, we have provided a detailed analysis of the
structural and geometrical properties of the so-called contragredient transfor-
mation of the two symmetric matrices A’A and B'B, both of which are
nonnegative and/or positive definite. A complete characterization and de-
scription of the nonuniqueness was obtained. The geometry of the structure
was interpreted in terms of principal angles between subspaces.

Recently, some more elegant constructive proofs for the PSVD and other
generalizations (such as generalized QR decompositions) have been ob-
tained. They are reported in [6].

APPENDIX. A SOLUTION OF THE NONLINEAR
MATRIX EQUATIONS THAT DEFINE
THE CONTRAGREDIENT TRANSFORMATION

Observe that the linear equations (47)-(48) form an underdetermined
set. With the factorizations of X,, X,, Y,, and Y, in (33)-(36) one can apply
Lemma 1 to obtain the general solution to the underdetermined equations as

- _ 0 0 R —
(Xan X32)=Vblsbll(olsl 172 Qz)(o I,,_,,)+W'2(Z‘ Z2)’ (93)

. : 0 0
(Ym 1'22)=Vazsa_ll(P|si-l/z Pz)(l 0)+V02(Z’,‘ Zg)’ (94)
[Pt & |

where Z1,Z3,Z{,Z} are arbitrary matrices of appropriate dimensions. The
first term in (93) and (94) is a particular solution, while the second term is
the general solution to the homogeneous equations obtained from (47) and
(48). The determination of X,,, X,,, Y,,, and Y,, reduces to the determina-
tion of 7{,Z3,ZY,ZY in

X =Vie21, (95)
X3 =Y,,5,'Q; + V), Z3, (96)
7y =Va15a_|lP2 + Ve ZY, (97)

Yoo = V524 (98)
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subject to the conditions

X3)Yy =0, (99)
X3Y5 =0, (100)
X3Y5 =0, (163,
VAT R (102)

Observe that this is a set of nonlinear equations in the unknown matrices
VANV ANVA N AL
142, 4y, L.

Determination of X3, and Y,,. Canonical Correlation
Substituting the expressions for X;, (95) and Y,, (98) into the last
constraint (102) results in

( Zf)rvbfzvaz Zi=1 (103)

r—r,—rp+ry’

Since both V,, and V), are orthonormal matrices, the OSVD of the product
V,Vj,2 corresponds to a canonical correlation analysis between the kernels of
d‘.c matrices A and B. It can be shown that the number of nonzero singular
values of V,V,, must be equal to r,, — r, —r, + r|, because the number of
nonzero smgular values of V!V, is equal to r,. Hence, Z] and Z§ can be

determined from the OSVD of V,V,,:

wane 3 (G o
3

where S, is an (r,, — r,— r, + r)X(r,, — r,— 7, + 7, nonsinguiar diago-
nal matrix and the matrices of left and right singular vectors are partitioned
accordingly. One possible solution for X,, and Y,, follows immediately from
this OSVD as

X3 =V},20355 1z, (105)

Yoo =V,5 F3S5 '/ (106)
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Observe that this is not the most general solution to (95)-(102), but only a
specific one.

The Determination of X3, and Y,, 7 7

Having determined expressions for X;; (105) and Y,, (106) from a
canonical correlation analysis between the kernels of A and B, the orthogo-
nality conditions (99)-(102) permit us to derive two other equations for X,
and Y,,.

First observe that from (26) and (27), and from (104), it follows that

QWi Via  ViaQ4) =0 (107)
PVA(Va ViePi) =0 (108)
From Equations (105) and (100) it follows that
XuYa =85"2QVi Y, =0, (109)
while from (106) a::1 (101) it follows that
y;fzxaz =85 /7l I;Va‘i“"i =0 (110)

4 2 e\

The combination of equauons {107) together with {109) permits us to
conclude via Lemma 1 that there must exist matrices Z§, Z4, of appropriate
size, such that

Yo, =VinZ3 +V,,0,Z]. (111)
Similarly, it follows from (108) and (110) that

X30=V,25+V,,P,Z]. (112)

Hence, there are two equations for X,,, namely (96) and (112), and two
equations for Y,;, (97) and (111). These are now repeated for convenience:

f o, o= =1 Y
}Zl Vais i “Z+V02"Zl (113)
=Y FY Ay £ 7Y £114Y
Yhi“e3 T Vh2X 444 (R4%)
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and
X3 = Vblsb_llQ;‘! + V2 Z; ( 115)

=V, 23 +V,,P,Z}. (116)

From these four equations, we shall eliminate all unknown matrices in
four steps:

Step 1: Elimination of Z{ and Zj. Recall the OSVD of V'V, (104).
Premultiplication of the expressions for Y,, (113)-(114) with V!, results in

Z{ =V, Z3, (117)
and with Q'V)}, results in
Z§=QVyVurSar' Py (118)
Upon substitution in (113) and (114), this gives
Yy =VaSa)' Py + VioViaVi Z3 (119)
=V} Z§ +V,,0,04V,3V,1 S0 ' Py (120)

If these expressions are premultiplied with V|, we get a set of linear
equations for Z4:

(1, = ViVaoVioVi1 ) Z8 = ViV, S ' P

Observe that the first factor on the left hand side can be rewritten as

I o ‘/l:lva2Va‘2‘,!1] = Vb‘l( I - Va2Va‘2 )Vhl
= VoValVaVir-
Hence, the equation for Z§ reads
ViVaViVi 28 = ViV, S5 ' Py (121)
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Step 2: Elimination of Z3 and Z;. In a similar manner, one can derive
the following set of linear equations for Z3:

V th V. 123 I)lsI:llQ2 . ( 122)

Step 3: A general solution for Z; and Z§. Rewrite Equation (121) for
Z3, using the OSVD of S, V.V,,S,, = P,S,0" (28), as

al” al
Sin' QiS1P{S;° P S\Q155'ZE = S, @15, PiS,, ' P;.

Using the 1-2-3-inverses, defined in Lemma 7, this can be rewritten more
compactly as

The following observations are crucial:

1. The matrix (X!X,) is square nonsingular.

2. The columns of the matrix Y; are complementary to and orthogonal to
the columns of the matrix ¥, [Equation (60)].

3. Recall the relation Y{Y, = I, [Equation (56)]

It follows from Lemma 1 that the general solution for V,,,ZY is given by
—— =l —
VnZ§=Y(X{X,) X{X;+Y,W, (124)

where W; is an arbitrary (r, — r,)X(r, — r,) matrix. The first term is a
particular solution, while the second term is the general solution to the
homogeneous equation. In a completely similar way, one obtains the general
solution for V,,Z3 from (122) as

—— =l
VaZi=X(Y{Y,) Y/Y;+ X W, (125)

where W; is an arbitrary (r, — r,)X(r, — r,) matrix. However, as will now
be shown, the matrices Wy and W, are not independent of each other,
because of the orthogonality condition X5,Y,; =0 (100). For this we shall
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need the following properties: Using (54)—(61), it is straightforward to show
from (124) and (125) that

X;‘.’,,,Z =W, (126)
i{V,,,Zg = Ws. (127)

Also, from multiplying (124) with (125) and using the orthogonality condi-
tions (58)-(61), it follows that

(Z3) Vi zy=TT(TT) 7 (Ri%) RR,,

Step 4: The remaining orthogonality condition. So far, we have obtained
a general expression for V,,Z} (125) and V,,ZY (124). The expressions for
X5, (115)—(116) and Y,, (113)-(114) can be rewritten as

Xy =V,Z3+ (Va2p4)(P4‘Va'2)?3 (129)
= Y3+ VViiz(Vau Z3) (130)
Yo =V, 25 +( %2@4)(03‘/1:2)}—(2 (131)
= Xz + VooVaa (Vi 23) - (132)

The expressions for V,,Z3 and V,;Z¥ contain two arbitrary matrices W5 and
W,. However, it will now be derived how the only remaining orthogonality
requirement,

X3¥p =0,
induces a constraint between Wy and W;. To do so, we shall substitute the

expressions for X,, and Y,, into the orthogonality condition. Equation
(129) X Equation (131) results in

(Z3)'VAVinZ4 +(23) 'VA(Vie0)(04Vie ) X,

+?é(VazP4)(Pé",x’z)%,aZ§=0- (133)
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Equation (130) X Equation (131) results in

YiViZ§ +( 23) VA(V5204) (Q4Vi2) X, = 0. (134)
Equation (129) X Equation (132) results in

(23) VA X, + Y3(Voo P) (PiVi2)Vin 28 = 0. (135)
Equations (134) and (135) permit us to simplify Equation (133) as

( Z-‘;)‘V;!V!zlzg - ?QVMZE( —( Zg)'va‘lfz =0. (136)
Now use Equations (126) and (127) to get

(23) ViV 28 =W + W, (137)

al

It follows then from Equation (128) that

-1 -1

Wi+ W, = TiT(TT,) T (RX,) TR, (138)

This is the constraint between Wy and W, that ensures the orthogonality
between X,, and Y,,.

Observe that the sum W/ + W, is the product of the least squares
solutions to

>
=

i
<

2>

==
]
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