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the OSVD of the matrix AB’BA’ to the eigenvdue decomposition of the 
matrices B’BA’A and A’AB’B. We shall ako prove a lemma that permits us to 
express the PSVD of the matrix pair A, B in terms of their OSVDs when 
AB’ = 0. In Section 2.2, we shall provide a variational characterization of the 
PSVD. 

2.1. A Conslructi~ Proof of the PSVD 

THEOREM 1 (The PSVD). Every pair of red mcrtrices A (m X n) and B 
(p x n) can be fiwtorited as 

A = Q&J’, 

B = u&J-‘. 

?A = r*-:: 
ln - r@# 

%= rb-:: 
P - 'b 

where S, is spume diagonal with positive e&men& and tl = dAB’). 

While some related eigenvalue problems were discussed in [13] and [16], 
the explicit fknulation of the PSVD is in Theomm 1 was given for the first 
time by Fernando and Hammarling in [8], who called it the IISVD.” 

0 81 also a constructive proof was provided. It is however based on a Senma &mma 1 
in [8D of which the proof is not correct. To give a counterexample to the proof, consider the pair 
A- ’ Q; gs&,.ps 



SINGULAR VALUE DECOMPOSITION 99 

Throughout the paper, we shall se the matrix Y defined as y = XBt 
[8], the factorization is present rent form, where a 
factorization of X is used. this may be preferable in analysing 
nu&uZ issues related to the , such an additional factorization is not 
relevant for our present purpose, which is the detailed exploration of 
structural and geometrical pairs of nonzero 
elements of S,,, and S, in 
their product the ~o&c~ si 
structural information th There are four 
possibilities: There are rl pairs of the form (6, &I with corresponding 
product singular value oi, i = 1, . . . . _ t”r. By convention, they are ordered so 
that niaq+r. There are r= - rr pairs (1,O) with corresponding product 
singular value 0. There are rb - f, pairs (0,l) with corresponding product 
singular value 0. There are n - t-a - rl, + t, pairs (O,O), which we shall call 
the trivial product singular value pairs, in analogy with the trivial quotient 
singular value pairs [4]. 

In the constructive proof of Theorem 1, we shall need the following four 
lemmas: 

LEMMA 1. kt the OSW of u matrix A be given CJS 

Then the set of sol&ms of the consistent matrix equation AX = B is charac- 
terized by X = V,,S$U~$ + V,,T, where T is an arbitrary matrix. 

The first term is nothing else than AtB, where At is the Moore-Penrose 
pseudoinverse of A. It is also the unique minimum Frobenius norm solution. 
RecaU that At is the Moore-Penrose inverse of A if it is the unique sohrtion 
T = A+ of 

ATA= A, (0 

TAT = T, (9 

(AT)‘= AT, (3) 

This pair of matrices satisfies the condition required by the lemma in [8] that AB” is diagonal. 
With the notation of [8], we have that i = 1, j = = 2, r = 5. ile the proof of the lemma 

tates that f - i-j , because for our examp 

ience, the proof of 
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