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1 Introduction

Inferring models from observations and measurements, and studying their properties, is one of
the central issues in all scientific disciplines. System identification deals with the problem
of building mathematical models of dynamical systems based on observed data from these
systems.

A system is an object in which variables of different kinds interact. These variables can
be divided in inputs, outputs, disturbances and states. Typically, inputs are those variables
that can be manipulated and affect the system as external stimuli. Qutputs are the direct
observations. The disturbances can be divided into those that are directly measurable and
those that are only observed through their influence on the output. Disturbances include mea-
surement noise, uncontrollable inputs, etc. The state of a system is the minimal information
that is needed to determine the output, once the inputs and disturbances are known.

Mathematical models are derived and applied for several reasons:

Simulation: Using mathematical models, one can analyse the behavior of a system via
simulations, when experiments on the real system are too dangerous (nuclear power
plants), too expensive (loss of production), too time consuming, too complicated or
simply impossible (ecological systems).

Prediction: In some situations, one is interested in predicting the future behavior of a sys-
tem, possibly under several different scenarios on the inputs and disturbance variables.

Optimal Filtering: A mathematical model can be used for obtaining information concern-
ing variables that are not directly accessible or observable. This includes estimation of
state variables via Luenberger or Kalman filtering.

Control Applications: Once a mathematical model of a system is available, one can de-
velop controllers that achieve prespecified control tasks. A simple approach to the
design of an automatic control system consists in combining a certain system identifi-
cation scheme with any control law (Figure 1). The principle of using the estimated
model as if it were the true system for the purpose of design, is called the certainty
equivalence principle.
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Figure 1: Certainty Equivalence Control Law

In this paper, a brief overview is given of conventional “black box identification” tech-
niques. In section 2, we discuss mathematical models in general terms and present models
that are suited for system identification. In section 3, the system identification experi-
ment set up is discussed. Input-output models (difference equations) are mostly used for
simple single input—single output systems. Section 4 deals with identifying such models.
These techniques equally well apply to more complex multivariable systems. but the required
parametrizations become hardly elegant and lead to numerically ill conditioned computations.
Therefore, one should then preferably make use of state space models instead of I/0-models.
In Section 5 the identification of state space models is surveyed, while finally in section 6
a few applications of these schemes on industrial plants are presented.

2 Mathematical Models.

Mathematical models may be phrased with varying degrees of mathematical formalism. A
rough classification can be obtained from the following list of qualifications:

lumped/distributed
discrete/continuous time
linear /non-linear
time-invariant / time-varying
In this survey, we shall employ only
lumped, discrete time, linear, time-invariant models.
The preference for this model class is dictated by several reasons:

The lumpedness arises from the fact that in most cases, the sensors only collect local
measurements that “sample” the system only in the immediate neighbourhood of the



Figure 2: Cross section of a feeder

sensor. As an example, consider the temperature measurement in a glass feeder by using
several sensors (Figure 2). The inputs correspond to heating and ventilation, while
the outputs are the temperatures at the very locations of the sensors. This system is
certainly a distributed parameter system, the mathematical model of which is in terms of
partial differential equations, when derived from physical laws. Yet, the several sensors
represent a spatial discretization of the system by a 3-dimensional grid of temperature
measurements. Hence the corresponding mathematical model hecomes lumped.

While for most physical systems it is most natural to work with a continuous time represen-
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tation (e.g. differential equations), the increasing use of digital computers, enforces the
use of discrete time models. Mathematically, it is possible to convert any continuous
time behavior into discrete time under fairly general conditions (while the reverse is not

necessarily true).

non-linear systems, we shall exploit the idea of local linearization in an operating
point. The behavior is considered to originate in a linear system, within an observation
window of finite length. Obviously, the quality and reliability of the derived model will
depend upon the relation between the length of the finite window, the number of ohser-
vations (the sampling rate) and the time constants that characterize the time-variance
within this finite window. The restriction to linearity is a self-imposed limitation to the
kind of mathematical operations and devices that will he used. Not only is the theory
of linear models well developed, the algebraic and numerical tools that are needed are
abundantly avalaible (and frequently reduce to the solution of a set of (overdetermined)
linear equations, or to (generalized) eigenvalue problems).

Since in most practical situations, the ohservation-window is of finite length and the num-

ber of observations is finite as well, the behavior of the system can be approximated
sufficiently well within this finite window by a time invariant system. Also, one can
develop adaptive strategies, that update the model from one time window to another
with only few additional computations.



3 System identification experiment set up

The construction of a model from data involves three basic steps:

1.
2.
3.

collecting useful data,
chosing a convenient model set,

computing the (best) model within the model set, possibly following a certain identifi-
cation criterion.

The Data

The acquisition of ‘good’ data, is not at all a trivial task. The following issues should be
kept in mind:

Determination of inputs and outputs: The appropriate choice of variables that will be

measured, may be determined by the ultimate goal of the model.

Choice of the input signals: In some cases, experiments on the real plant are impossible

and data should be obtained from normal operating records. In other cases, one can
freely chose the input sequences. In any case, for a reliable identification, the inputs
should satisfy necessary conditions. A formal description of this is in terms of the
concept of persistancy of excitation. The inputs should be sufficiently rich such that all
modes of the system are excited and observable in the output sequence. As a rule of
thumb, an input signal should at least contain n different sinusoids, in order to identify
an n-th order system.

Data sampling rate: Data sampling is inherent in computer based data acquisition sys-

tems. It is unavoidable that sampling as such leads to information losses and it is
important to select the sampling instances such that these losses are insignificant. Typ-
ically (and most effectively), sampling is carried out at equidistant sampling instants. In
principle, if sampling is performed at a sampling frequency f,, no information is ‘lost’
as far as frequency components are concerned below the so-called Nyquist frequency
fs/2. Hence, in order to avoid distortion (aliasing or frequency folding), one should ap-
ply analog anti-aliasing (pre-sampling ) filtering, in order to eliminate all high-frequency
components above the Nyquist frequency. Reversely, the sampling rate should be cho-
sen in principle twice the highest frequency of interest. However, in practical cases,
one often uses sampling rates that are 4 to 10 times higher than the minimal frequency
of interest. The redundancy that is introduced in this way, can be used for further
digital data preprocessing (see below). A detailed analysis and practical guidelines for
appropriate determination of the sampling rate, may be found in [1, p.29, p.71] [10,
p.385-386).

Data preprocessing: In a lot of a lications, it is necessary to ‘clean’ the measurement
P g Pp Y

data before any identification algorithm can be applied. Preprocessing includes the
elimination of occasional bursts and outliers, ‘peak shaving’, trend removal, estimation
of drift and offset, periodical interference, the analysis of disturbances, such as day-night
phenomena etc. .. Useful guidelines and algorithms can be found in (2].



Estimation of time delays: Time delays are common industrial processes. As an exam-
ple, consider the measurement of the tube wall thickness of a glass tube after shaping.
This can only be measured with suffucient accuracy if the tube itself is sufficiently
cooled. This introduces a considerable time delay. A delay of one sampling period high-
ers the system order with one, introducing an additional pole equal to zero. Therefore,
delays should be avoided and compensated as much as possible, by shifting the output
data accordingly. Delays can be estimated via a physical investigation of the origin of
the delays, via cross-correlation techniques or from inspection of the impulse responses.
Details can be found in [1, p.42].

The Model Set

A set of candidate models is obtained by specifying within which collection of models we
are going to look for a suitable one. This is no doubt the most important and, at the same
time, often the most difficult choice of any identification procedure. As much as possible, any
a priori available information on the system, should be reflected in the choice of a certain
model. If for instance, certain physical laws are known to hold true for the system, one could
impose a certain equation structure and identify the unknown physical parameters. In other
cases, standard linear models may be employed, without reference to the physical background
(black boz approach). In this paper, we shall briefly review two possible black box models,
viz. input-output models (section 4) and state space models (section 5), and show
how such models can be identified from input-output data.

The Identification Step

Having determined the set of models, one should determine within this set, the model
that is the ‘best’ approximation or provides the ‘best’ explanation of the observed data.
The assessment of model quality is typically based upon how the models perform when they
attempt to reproduce the measured data. Typically, it is desirable to have models that are
as simple as possible, yet that at the same time ezplain as much as possible of the observed
data, i.e. that minimize the misfit. These two requirements are in a certain sense conflicting:
Intuitively, it is obvious that a simple model will not be able to explain or simulate complex
behaviors while a complex model will explain a lot but will be difficult to identify or to use
appropriately. .

While the system identification procedure has the logical flow just described (collect data,
fix a model set, pick out the best model), it is possible that the model does not pass the
validation test, so that several steps in the identification procedure have to be revised. The
resulting system identification loop is depicted in Figure 3.

For this reason, good interactive software is an important tool for handling the interactive
character of the problem. The qualification ‘good’ implies the availibility of graphic possibili-
ties, the guarantee of numerical reliablitity and acceptable levels of computational speed and
memory requirements. As an example of such software packages, let us mention MATLARB
(11] and SIMNON (1], Matriz-X, Control C, among others, besides the more classical software
libraries like NAG, LINPACK and EISPACK.
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Figure 3: The system identification loop.
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Figure 4: single input-single output black hox.
4 Input-output Models

Preliminaries

The basic input-output description of a single input-single output linear system with an
additive disturbance (Figure 4) is:

yx = G(q)ux + H(q)ex
where the following notations are applied:

Yk is the output at time k, uy is the input, ey is a sequence of independent random variables
(white noise) with zero mean and (mostly Gaussian) probability density function f.(.).

q is the forward shift operator

QUi = Ugyy

q_1 U = Up_,



G(g) and H(q) represent the dynamic relation between respectively input and output, and

disturbance and output.

Glg) = > glk)g™*

H(g) = 14 ) h(k)g™*
k=1

The rationale behind this model is the following: The output sequence y; is being thought of as
to originate from the parallel connection of two systems: The first system models the causal,
dynamic dependence of the outputs on the observed or predetermined inputs. Everything
that can not be explained by this first system, is then contributed to the second system
(disturbance). It turns out that the disturbance model H(q)er, where H(q) is a linear filter,
and ey, is a white noise sequence, provides enough flexibility for most practical applications.

In the above description, a few parameters might be unknown and thus subject to identi-
fication. If we summarize these into an unknown parameter vector @, the system description

reads

Yk = G(q,0).u, + H(q,0).ex

The most obvious parametrization is in terms of rational functions

6la) = G0

big by ..+ bo,g ™™

A = 24

where the parameter vector then equals
9:[0.1 e On, bl bﬂb €1 ... Cp, d]

Several special cases may arise:

linear difference equation:
A(g)yk = B(q)ux
ARX (equation error) model structure:

A(qQ)yr = B(q)ur + e

14+a1g 4+ aq 2 +...+a,,q "

Lt dig™" +doq ™ +... +dnyg™™
L+eigm +eaq 2 4.0+ cp g

The additive white noise term acts as a direct error in the linear difference equation.
These models are called ARX, where AR refers to the autoregressive part A(q)yx, and
X refers to the eXogeneous input B(q)uy. Alternatively, the ARX description can be

written as -
1
(Q)uk PN

Y= A(q) A(q)




from which it follows that the white noise term is filtered through the the denominator
A(g). Although this might rarely correspond to reality, ARX models are frequently
used, as together with a quadratic identification criterion (see below), they give rise to
a set of linear equations that can readily be solved, whereas in the general case, more

complex numerical optimisation techniques are necessary.

ARMAX model structure: In order to allow for more flexibility in the description of the
disturbance term, the ARX model can be extended to an ARMAX model, where MA

refers to the moving average term C(q)ey
A(g)yx = B(q)ur + C(g)ex

output error model structure:

= igguk + C(q)ex

Box Jenkins model structure: This is the most general case,

w= 20, , o)

For most practical applications however, this structure is much too complex, and re-
quires too many computations when being identified.

The presented models can be generalized towards multivariable systems (systems with
several inputs and outputs). Instead of using rational functions, one should then employ ra-
tional matrices, i.e. matrices of which the elements are rational functions of the shift operator
g. While these models can be embedded in a generalizing approach [7] [10], they frequently
lead to numerically unstable computations because of the ill conditioning of certain canonical
parametrizations. When dealing with multivariable systems (as well as high-order monovari-
able systems), one should preferably make use of state space models (to be presented in
section 5).

Finally, let us mention that in general, data-aided model structure selection is a largely
underdeveloped research field for input-output models. The choice of an appropriate model
structure, as well as the determination of optimal polynomial degrees (n,, n, etc.), although
~crucial for a successful identification, is mostly a matter of trial and error (see [10] for details).

Identification of input-output models.

From the general description, one can formally compute the prediction error ¢,
€k = Hﬁl(Q: 9)[yk - G(‘Lg)ukl

For a given 1/0 data set wj,uy,...,uy and ¥;,ys,...,yn , and for each specific choice for
the parameter vector 6, one can compute a series of prediction errors e;(8),e5(8),..., ex(8).
The optimal choice for # in a way minimizes these prediction errors. In the sequel, we will



only discuss prediction error methods. Related correlation methods (like e.g. instrumental

variables methods) will not be discussed for the sake of brevity.
A mathematical description of the prediction error methods is a follows. First of all,

one can apply a linear filter L(g) to the previously computed prediction errors
el (6) = L(q)ex(6)

As will be demonstrated, this imposes a frequency weighting on the misfit.
Making use of a predifined norm

1

N
DIUCAT)
k=1

V(8) =
where [(.) is a scalar (positive) function, the optimal 8 is chosen to be the one that minimizes

this norm
Oopt = argg min V (6)

The most obvious choice for [(.) is a quadratic function

1
I(e) = =€®
()= 3
Prediction error methods can then elegantly be interpreted in the frequency domain. It
turns out that for this case the specified norm approximately equals

[U(w)l?

TH(em, g (e

ve)= o [* J16a(e) - 6,01

27 S
where

Go(q) is the (unknown) exact transfer from wu; to yi
G(g,0) and H(q,0) are the modelled transfers

U(w) is the spectrum of the input signal wu,

As H(e’“,8) corresponds to the modelled noise spectrum, a prediction error method
can thus be interpreted as an optimal “fitting” in the frequency domain of the mod-
elled transfer G(q, @) onto the exact transfer Go(g), with a frequency weighting that for
each frequency equals the signal-to—noise ratio for that frequency, modified by the pre-
filter L(q). Prediction error methods are therefore closely related to spectrum analysis

methods.

Many different prediction error methods can be devised, combining different choices for the
model set, the filter L(q), the criterion function /(.), and sometimes also the numerical tech-
nique, used to solve the optimization problem. In the sequel, the most common techniques,
viz. the Least Squares Method and the Mazimum Likelihood Method, will be discussed.



Least Squares method for ARX models :
A quadratic optimisation criterion l(e) = %ez applied to an ARX model set, gives rise
to a simple (overdetermined) set of linear equations, that can readily be solved (hence
the popularity of ARX models). ARX models can be written as

Ye = ~01Yk-1 = -o s T OngYkon, + bt Foovs BBty Fiek
The parameter vector § was defined as
0=[a;az...an, by by...0,)
If we also define the regression vector ¢j. as follows
B = [~Phat ove = Phome Vo=t » v o Whmrig )

one can easily prove that the identification problem reduces to solving (in a least squares
sense) an overdetermined set of linear equations

)1 Pi
=T e
YN PN
with an optimal solution
L N ..
ot = [y g::l A ; Pk Yk

The Least Squares method is extremely simple in a sense that the function that needs
to be optimized, has only one minimum, that can readily be computed, without making
use of numerical optimization techniques. A major drawback of course is its limited
applicability (only ARX model). Correlation methods (like e.g. instrumental variable
methods) in a way extend this approach to ARMAX models (see [10] for details)

Maximum Likelihood Methode :
So far, we did not make use of the probability density function f.(.). Alternatively,
the optimal choice for # can be defined as the one for which the available data u
and y, correspond to a “highest probability” for the sequence of prediction errors

81(6), 6’2(9), ey EN(Q) .
A mathematical description is as follows. Again, from the general I/O-description, one
can formally compute the sequence of prediction errors, for each specific choice for ¢

er = H'(q,0).[yx — G(q,0)us]

The combined probability for this sequence can be computed from the probability dis-
tribution function f.(.)

N
flex(8),e2(8), - .- en(8)) = ] felex(9))
k=1
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The optimal choice for ¢ then equals

N
Oopt = argg max H felex(8))

k=1

The maximum of this function also maximizes its logarithm

N
1
O = axg; max—]\*,log(n fe(ex(0))
k=1
1N
= log fe(ex(€
argy max N kZ::l( og fe(er( ))
1 N
in — [(ex(€
argy nunN kgl (ex(6)

i

which thus corresponds to a prediction error criterion, where

I(ex(6)) = —log fe(ex(6))
The Maximum Likelihood Method thus indeed belongs to the family of prediction er-
ror methods. Furthermore, if the distribution f.(.) is Gaussian, with zero mean and
covariance )\, one can prove that
2
by
If )\ is a known constant, this reduces to a quadratic criterion. For ARX models for
instance, one will then again compute the Least Squares Solution.

1 1
l{er,8) = log fe(er(B)) = const + §log A+ >

Finally, let us mention that the Maximum Likelihood Method is mostly used because
of its optimal asymptotic properties (N — oo, where IV is the number of observations).
A drawback stems form the use of f.(.) which is often unknown, whereas small changes
in f.(.) can introduce major changes in the identification results.

Recursive Identification.

In many cases, it is necessary or useful to have a model of the system available while the
system is in operation, typically when the system to be modelled is non-linear or time-varying.
In these applications, one will perform an on-line adjustment of the model each time a new
measurement becomes available. Such identification techniques are called recursive. They
exploit in the model adjustment, as much as possible the already obtained model and update
the new one by a minimal modification. As an example, a Recursive Least Squares Procedure
can be described as follows (see [10] [1] [7] for details).

with

6 = Or—1 + Li(yx — ¢1x0k-1)

L Py._1 5
k t
A+ o) Pro1ok
1 Pr_ 10104 Pr_
P = =—{(Pei- ‘,k,,lff;fp,i:,,’i_l
A A+ @ Pr-10k
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Figure 5: Adaptivity and forgetting factor

At each time instance k, the parameter vector 6 is updated by modifying the previous value.
The modification is determined by the gain Lj, which weights the amount by which the pre-
diction error yx — t,okék_l will affect the update. Py is the covariance matrix of the parameter
vector, that reflects the confidence in the parameter estimation, and can be determined re-
cursively from the previous estimation of the covariance matrix, taking into account a ‘new’
regression vector ¢, as given by the above formula. Finally, A is a forgetting factor, which
is chosen as 0 < A < 1. It represents an exponential weighting, by which older measurements
are discounted. If A is close to 1, the estimation will be noise insensitive, while if it is close
to 0, the estimation of parameters will adopt itself much faster to modifications of the sys-
tem. Hence, an appropriate choice of A will always be a matter of compromise between fast
adaptivity and noise insensitivity.

An example is given in Figure 5. The first figure represents the identification of two pa-
rameters (one constant and one time varying) with no forgetting. For the second figure, the

forgetting factor is A = 0.9.

5 State Space models

As already mentioned, I/O-models give rise to ill conditioned mathematical problems, when
applied to complex systems (multivariable or high order monovariable). In these cases, one
should preferably use state space models. In this section, both direct and indirect state

space identification methods are dealt with.

Preliminaries

A lumped linear time-invariant discrete time system can be represented by a state space

model of the form:

41 = Azg + Bug + wy
yw = Czp+ Dup + vy,

12



The first equation is referred to as the state equation while the second one is called the
output equation. uy is a vector with m components, that contains the m input observations
at time k. The vector yx contains the ! outputs. The vector z; contains the n states at
time k. The vectors v, and wy both represent disturbances. vy, is referred to as measurement
noise while wy is called the process noise. However, if one wants to take into account these
noise contributions, one pretty soon runs into unsolved mathematical problems Therefore, the
noise contributions are mostly left out at the outset, where it is assumed that their influence
is negligible. The state space identification schemes to be presented then in the first place
apply to the simplified (noise-free) model

Ter1 = Agzp + Buy
ye = Czp+ Duy
One can then prove that the identification schemes deliver consistent results under certain

assumptions regarding the noise contributions, so that again the best model is obtained (al-

though in a slightly different sense then before).
A state space model is not unique with respect to an observed input-output behavior.

Indeed, it is easily verified that an ‘equivalent’ state space model is obtained by inserting a
non-singular matrix 7' as follows:

Tzie: = (TAT ') Tz) + (TB)u
(CTﬁl )(T:Ck) + Duk

Yk
Alternatively (with z; = Tay)
zpy1 = A"z + By,
e = Czp+ D'uy
The matrices have been changed but the input-output pairs were not affected. This implies

that only for very specific choices of coordinate systems in the vector space of states, the
components of the state vectors have physical meaning.

The identification techniques to be described essentially exploit three basic techniques from

numerical linear algebra:

1. The solution of a set of linear equations
2. The eigenvalue decomposition

3. The singular value decomposition (SVD)

While the first two of them may be qualified as classical, the third one was introduced only
recently as a practical numerical tool by the development of an efficient algorithm ([6] and
the references therein). This important decomposition is introduced, and briefly analysed in
an appendix.

Indirect identification schemes differ from direct schemes in a sense that first an
impulse response (Markov parameters) is to be computed, whereafter the system matrices are
computed from the SVD of a block Hankel matrix constructed with these Markov parameters.
With direct methods on the other hand, the system matrices are computed directly from
the SVD of a block Hankel matrix constructed with input-output data.

13



Indirect State Space Identification techniques

An indirect identification scheme consists in two steps. First, an approximate impulse
response is computed. Next, the system matrices are identified making use of the computed
Markov parameters.

First step : Deconvolution .
The output of a linear system can be computed as a convolution of the input, with the
impulse response Ho, Hy, Hs,... (H; = CA'"'B, i > 0 is an | x m matrix, where m is
the number of inputs, [ is the number of outputs, whereas Hy = D.)

o0
vk = Hiwe
i=0

If we assume that H; < €, i > K, where € is a small number (for a stable system), the
convolution sum approximately equals
-
Y = Z Hiup_;

1=0

Therefore, if a set of I/0-data is available, the sequence of Markov parameters can
approximately be computed from an (overdetermined) set of linear equations (deconvo-

lution)
(1574 UK 1 waw wew  wew U0 Ho UK
UK +1 U T 4 | Hl YK+1
UK +2 UK 41 Uz . H2 et YK +2
UK 4i—1 UK 4i—2 =0 ser oo Ui HK YK 4i-1

(Note that the general deconvolution problem for unstable systems remained unsolved
so far.)

Second step : Realization .
Once a sequence of Markov parameters is known, the system matrices can be computed

as follows. Matrix D is known to be the first Markov parameter
D = Hy

In order to compute 4, B and C, a block Hankel matrix H, 4 is constructed (where the
block dimensions p and q are chosen to be larger than the systeem order n).

"Hy, Hy, Hs ... H, ]

Hz Hg H4 Hq+1

H3 H4 H5 Hq+2
Hpg=| H, Hi He ... Hys

L HP Hp+1 Hp+2 Hq+P—1 J

14



One can then prove that the rank of H,,, equals the system order n. If the
Markov parameters are inaccurate, due to noise on the data, this matrix will have full
rank. The system order can then be estimated from the singular value spectrum, that
reveals kind of an effective matrix rank (see appendix).

From H; = CA*"!B it then follows that
'

@
Hpg = | C42 |.[B AB A’B ... A"'B]

G
= T,.A,

where T, and A, are the observability and controlability matrices. Similarly, the shifted

2 *
matrix H o

i Hg H3 H4 e Hq+1 ]
Hj H, Hy cor Hgygo
. H, H5 H5 R Hq+3
HPsQ: H5 Hs H? Hq+4
| Hp1 Hpio Hpys ooo Hoyp |
satisfies
H;,q S T .

so that the system matrix A in principle can be computed from
7+ g At
A=T7.H,, A (%)

(where M ™ is the pseudo-inverse of M.)
One can now prove that I', and A, can be computed from the SVD H, , = uz.v®

I = UB/?

by = FMER

Finally, B and C equal the first block column and the first block row in A, and T,
respectively, whereas the system matrix A equals

4 =50 H, R

This algorithm is due to Zeiger and McEwen. A major drawback is the computa-
tional complexity, that for instance seems to rule out an elegant adaptive implemen-
tation. Furthermore, if the available I/O-data are noisy, it is not clear in which sense
this algorithm delivers the “best” model (if it does!). Direct methods seem to offer a
reasonable alternative in this respect.

Direct State Space Identification techniques

15



The direct identification approach for state space models will be based upon two basic
properties. The first property allows for an estimation of the system order, while the
second one shows how to obtain a state vector sequence. Once a state vector sequence
is known, the system matrices (and the disturbance vectors wy and vy ) follow from the

solution of a set of linear equations.

Let us consider the measurement vectors my that are constructed from input-output

pairs by simple concatenation:
U
My =
Yk

and construct two block Hankel matrices with these input-output pairs:

Me Mpy1 Mpyz Mhyz o0 oo Mpetj-1
M1 Mey2 Mey3 Mppa o0 e mk_l_j
H . Mpys Mpyz Mpeyrq Mpys oo oo Mt j4+1
1 =
Mp+3
Mhk4i—1 Moty $% B GEde ER (s ﬂ1k+1‘+j_2
Mhet:  Mhtitl Mk4it2 Me4ib3 00 o000 Mpggpj-1
Mptitl  TMeti+2 Mhyitb3 TMeiipq 00 oo Mptitj
I Mpetit2  TMe4id3 Mhegitd Mhtids o0 ooe TMpgitgil
Me+it3
Me42:—1 Met-2¢ . T mk+2i+j_2

(The block dimensions i and j are user determined and should be chosen ‘sufficiently
large’, see [3] for more detail.)

H, is called the past input-output block Hankel matriz while H, is the future input-
output block Hankel matriz. They are both submatrices of the ‘large’ input-output block

Hankel matriz H:
_ ([

The following theorem allows to estimate the order of the system from the singular
values of the input-output block Hankel matrices.

Theorem 1 Rank property
Under fairly general conclusions, it holds that:

rank(H,) = rank(H,) = mi+ n

and
rank(H) = 2mi+n

where n is the system order, m ts the number of inputs, and i is the number of block
rows in Hy and H,
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For a proof and a detailed analysis of the necessary conditions, the reader is referred to

3).

The next theorem demonstrates how an appropriate state vector sequence can be com-
puted from the past and future input-output block Hankel matrices.

Theorem 2 The state as the intersection of past and future.
Let the state vector sequence X’ be defined as

X = [Bhoti Thopit1 -+ Thpigj—1]
then, under certain conditions
spanrow(X) = spanpow(H1) N spanpow(Hz)

so that any basis for this intersection constitutes a valid state vector sequence X' with
the basis vectors as the consecutive row vectors.

Again the SVD of H allows for an elegant computation of the required intersection

H
B = H;J
= Uy.Sy.V§
_ [ om Ulz} [511 0] 7
Upy Up |"| 0 0| F
dim(Uy) = (mi+ ) x (2mi + n)
dim(Uq2) = (mi+ i) x (2li — n)
dim(Us;) (mz+ i) X (2mi + n)
dim(Us2) (mi 4+ li) x (2li — n)
dim(S$11) = (2mi+n) x (2mi+ n)

From
Ufz-H]_ = "‘Uztz-Hz
it follows that the row space of Uf,.H; equals the required intersection.

Once X = [Zp4i Thyit1 -+ Thtit;—1) is known, the system matrices can be identified
by solving an (overdetermined) set of linear equations:

Thtitl o+ Thyigi-1 | _ | A B Thii +ro Thiiti—2
Yk4i wvs  kaig=2 ¢ D Whas wov Whpdpsn

The above results constitute the heart of a two-step identification scheme. First a state
vector sequence is realized as the intersection of the row spaces of two block Hankel
matrices, constructed with I/0-data. Then the system matrices are obtained at once
from the least squares solution of a set of linear equations.
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This identification procedure is proven to be consistent if the number of columns in H
tends to infinity and if the input-output measurements are corrupted with additive white
measurement noise, or in other words, if the columns in H are subject to independently
and identically distributed errors with zero mean and common error covariance matrix
equal to the identity matrix, up to a factor of proportionality. Furthermore, elegant
adaptive implementations, based on SVD-updating, are conceivable (see [4] for details).

6 Model Validation and Examples

Model validation is concerned with the question whether the model is ‘good enough’
for its purpose. For instance, if the analysed system is known to he time-invariant and
approximatively linear, then one expects at least that the model will sufficiently well
predict the behavior when inputs are applied. Hence a validation criterion could be the
difference between the observed and the simulated output. Other measures could be
formulated in terms of frequency behavior (amplitude and the phase spectrum), etc.
See [10] 1] [7]) for details. In this section, we present two examples of identifications
of industrial plants, together with the corresponding validations.

A power plant .
Input-output measurements on a 120 MW power plant (Pont-Sur-Sambre, France)

were obtained under normal operating conditions (five inputs, three outputs). In-
puts and outputs are depicted in Figure 6. Inputs include gas flow, turbine valves
openings, super heater spray flow, gas dampers and air flow. The outputs are the
steam pressure, the main steam temperature and the reheat steam temperature.
Using direct state space identification techniques, 4 different models were derived
with an increasing complexity. It can be concluded from Figure 7 that the quality
of the model gets better as the complexity increases. The block dimensions used
were ¢ = 5,7 = 90.

A glass production installation .

A feeder is the final part of a process installation that is used for melting glass. Its
main task is to realize a homogeneous temperature distribution. See [2, p.193] for
an in depth discussion of the data acquisition and preprocessing procedures. Input
1 is the gas input of the first feeder, input 2 is a cooling air input while input 3 is the
gas input of the second feeder. Pseudo-random hinary sequences were applied as
inputs. The first 300 samples of these inputs are depicted in Figure 8. The outputs
of the process are the glass temperature at 6 different locations in a cross section
of the feeder. The block dimensions of the input-output block Hankel matrix used,
were 1 = 10, 7 = 300. The singular spectrum of the 2(m+1)i7 x j (=180 x 300) input
output block Hankel matrix is depicted in Figure 8. The singular values from the
(2mi + 1) = 61-th on are depicted in the right hand side of Figure 8. They allow
to determine an approximate order, which for this example was chosen to be 4.
Results of simulations based on the 300 used input-output vectors can be found in
Figure 9. In Figure 9, one also finds a prediction of the first and the 4-th output
from time step 800 to 1000. The prediction of output 1 was the worst, while that
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Figure 6: Inputs and outputs of a power plant
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Figure 7: Measured outputs (full line) and simulations (stars) for a (a) first order, (b) 4-th

order, (¢) 7-th order, (d) 9-th order approximation
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Figure 8: Three inputs of the feeder, singular spectra of the input-output block Hankel matrix.
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of output 4 was the best of all predictions. Obviosuly, the model is rather good
despite an offset in simulation of the first output. -

7 Conclusions

In this brief introduction to system identification, we have surveyed common black box
identification techniques. Different kinds of models were reviewed (input-output models,
state space models), and corresponding identification schemes were presented. Finally,
we have provided a few examples of identification applications in an industrial environ-

ment.

The authors are indebted to Jan Swevers, Lieven Vandenberghe and Joos Vandewalle
for many interesting discussions and stimulating suggestions, and for the preparation of
some of the figures.

References

[1] Astrom K., Wittenmark B. Computer Controlled Systems. Prentice-Hall, Engle-
wood Cliffs, N.J., 1984. .

(2] Backx T. Identification of an industrial process: A Markov Parameter Approach.
Doctoral Thesis, Technische Universiteit Eindhoven, November 1987.

[3] De Moor B. Mathematical Concepts and Techniques for Modelling of Static and Dy-
namic Systems. Doctoral Dissertation, Katholieke Universiteit Leuven, Electrical
Department, June 1988.

[4] Moonen M., De Moor B., Vandenberghe L., Vandewalle J. On- and off-line iden-
tification of linear state space models. International Journal of Control, January
1989.

[6] Eykhoff P. System Identification. Wiley, New York, 1974.

[6] Golub G., Van Loan C. Matriz Computations. North Oxford Academic Publ. Co.,
John Hopkins University Press, 1983.

[7] Goodwin G.C., Sin K.S. Adaptive filtering, prediction and control. Prentice-Hall
Information and System Sciences Series, (Ed.T. Kailath), Prentice Hall, Inc., En-
glewood Cliffs, New Jersey 07632, 1984,

[8] Kailath T. Linear Systems. Prentice-Hall, Englewood Cliffs, NJ, 1980.

[9] Kailath T. A view on three decades of linear filtering theory. IEEE Trans. on In-
formation Theory, vol.IT-20, pp.146-181, 1974.

[10] Ljung L. System Identification: Theory for the User. Prentice Hall Information
and System Sciences Series (Ed. T. Kailath), Prentice-Hall, Inc., Englewood Cliffs,
New Jersey 07632, 1987.

[11] Pro-Matlab, VAX/VMS version 2.1., VMS. December 1986, Mathworks Inc. MA,
USA. )

[12] Norton J.P. An introduction to identification. Academic Press, Harcourt Brace
Jovanovich Publishers, London, 1986.

22



—
g‘::--
=
=
TR,
=
=
o=
=
_:-:'3?“

o - r "f‘-f*’\ﬂifu\/fw”

:()0 520 840 860 880 900 220 910 960 950 1000

Figure 9: Simulation of the 6 outputs (measured=full line) and predicition of output 1 and 4
(measured=full line)

23



Appendix
The Singular Value Decomposition

the singular value decomposition (SVD) is a matrix factorization, where a p x ¢ matrix
X is factorized as the product of three matrices U/, 5, V, each of which has some

interesting features:

X =USV!
In this factorization:

S is a p X ¢ diagonal matrix, with the singular values on its main diagonal:

51 | . 0
0 82 0

T 0 sow cww  Bx
0 ... ... ... 0
0 ... ... ... 0

The singular values are ordered in non-decreasing order:
§1 >822 ...238. >0

The smallest non-zero singular value s, reveals the algebraic rank » of the matrix
X, equal to the number of linearly independent rows (columns) in the matrix X.
(Recall the a row (column) is linearly independent of all other rows (columns) if it
cannot be written as a linear combination of these other rows (columns)).

The matrix U is a p X p orthonormal matrix:
WUzg:Uw
Its columns u',7 = 1,...,p are called the left singular vectors.
The matrix V is a ¢ X ¢ orthonormal matrix:
VP =F, = FP
Its columns v*,i = 1,...,q are called the right singular vectors.
The so-called dyadic decomposition is merely an alternative formulation of this:
X = ul.sl(vl)t + ...+ u’"s,(vr)t

In this way, the matrix X of rank 7 is decomposed into 7 rank one matrices of decreasing
importance (as $; > s;41). An important optimality property (with respect to data
reduction applications) is the following. Denote by || X ||% the (squared) Frobenius norm
of a matrix, which is the sum of its elements squared, then the SVD provides the solution
to the following optimization problem:

min ¢ || X — X||f—;
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subject to the constraint that
rank{X) = k

If the dyadic decomposition of the matrix X is given as above, the solution is simply:

One of the most interesting properties of the singular values is their extreme insensitivity
to additive perturbations. This implies that, when the data in the matrix are noisy,
the singular values will still reveal the rank of the unperturbed matrix if of course the
signal-to-noise ratio is not too small. As an example, consider the following 50 x 5

matrix:
1 50 51 —-102 52

2 49 51 -102 53
X = 3 48 51 -—-102 54

50 1 51 -—-102 101
It is easy to verify that the third column is the sum of the first two columns, the 4-th
one is 2 times the 3-th one, the last one is the sum of the first and the third column.
Hence the algebraic rank of the matrix X is 2. Now random noise is added to this

matrix. Each element is corrupted by normally distributed zero mean random noise
with variance 1. The singular values of the exact and the perturbed matrix are:

exact | noisy
1| 1005.5 | 1004.7
2] 167.7| 167.7
3 0 6.57
4 0 6.23
5 0 5.51

Hence, from the ‘gap’ in the singular spectrum, one may still conclude that the perturbed
noisy version is close to a matrix of rank 2. Typical is the so-called noise threshold:
The smallest singular values correspond to the noise and are all of the same order of
magnitude.

More properties and algorithms can be found in [6].
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