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ON THE STRUCTURE OF GENERALIZED SINGULAR VALUE AND
QR DECOMPOSITIONS*

BART DE MOORt

Abstract. This paper analyzes in detail the structure of generalizations of the singular value
decomposition and the QR decomposition for any number of matrices. The structure is completely
determined as a function of the ranks of the matrices or their products and concatenations.
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1. Introduction. In a previous paper [4], we introduced an infinite tree of gen-
eralizations of the ordinary singular value decomposition (OSVD) and we derived a
constructive proof of it. All decompositions in this tree are considered as generalized
singular value decompositions (GSVDs) and it was shown in [4] how all of them can
be labeled with a sequence of the letters P and Q, where P stands for product and
Q stands for quotient. In [5], we introduced a corresponding set of generalizations of
the QR decomposition, which could be denoted by appropriate enumerations of the
letters L (lower) and U (upper). It is the purpose of this paper to discuss in more
detail the structure of these generalizations. In particular, we shall derive formulas
for the dimensions of the blocks in the quasi-diagonal matrices of the GSVDs of [4]
(Theorem 1.1 of this paper), or the triangular matrices in the GQRDs (generalized
QR decompositions) of [5] (Theorem 1.2 of this paper), in terms of the ranks of the
matrices involved and concatenations and products of these matrices.

This paper is organized as follows. In the remainder of this section, we summarize
the main results on generalized SVDs and QRDs obtained in [4] and [5]. Since there
is a one-to-one correspondence between these two generalizations, we will concentrate
on the generalizations of the SVD, while the results will apply for the GQRDs as well.
In 2, we analyze in detail the structure of a GSVD that only consists of P-steps.
In 3, we analyze GSVDs that only contain Q-steps. In 4, we discuss the general
case where we exploit the obtained insights from 2 and 3. Instead of providing
rigorous proofs, we have chosen to indicate our methods of deriving these results with
illustrative examples.

Let us first state the main result of [4] in the following theorem.
THEOREM 1.1 (GSVDs for k matrices). Consider a set of k matrices with compat-

ible dimensions: A1 (no nl),A2 (n x n2),..., Ak-1 (nk-2 nk-1),Ak (nk-1 nk).
Then there exist

unitary matrices U (no no) and Vk (nk nk);
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matrices Dj, j 1, 2,..., (k 1) of the form

r_l --rj
2r

I 0 0 0 0
0 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 I 0 0
0 0 0

0 I 0

0 0 0 0

where the integers rj are the ranks of the matrices Aj, satis]ying

r rank(A) y. r.;
a matrix Sk of the form

Sk
nk-1 x nk

r_l rk
3

rk

rk

0
0
0
0
0

r 0
k- rk- rk

2 3 krk rk rk tk rk
0 0 0 0
0 0 0 0

S 0 0 0
0 0 0 0
0 S 0 0

0 0

0 0 0

The rk X rk matrices S are diagonal with positive diagonal elements.
Noia,x( ) dZ, 1, ,..., (k- ), h Z i

iZ X;* o iaZ X i.., oo aoi),
such that the given matrices can be factorized as

A1 UID1X1,
A2 Z1D2X1,
A3 Z2D3X1,

Ai Zi-lDiX-1,

Ak Zk- SkV;

Expressions for the integers rj are given below; they are ranks of certain matrices in
the constructive proof of this theorem [4].

Observe that the matrices Dj and Sk are generally not diagonal. Their only
nonzero blocks however are diagonal block matrices. Observe that we always take the
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last factor in every factorization as the inverse of a nonsingular matrix, which is only
a matter of convention. (Another convention would result in a modified definition
of the matrices Zi.) As to the name of a certain GSVD, we propose to adopt the
following convention.

DEFINITION 1 (Nomenclature for GSVDs). If k 1 in Theorem 1.1, then the
corresponding factorization of the matrix A will be called the OSVD. If for a matrix
pair Ai, Ai+, 1 <_ <_ k- 1 in Theorem 1.1, we have that Zi Xi then, the factor-
ization of the pair will be said to be of P-type. If, on the other hand, for a matrix
pair Ai, Ai+, 1 _< i _< k- 1 in Theorem 1.1, we have that Zi X-* the factorization
of the pair will be said to be of Q-type. The name of a GSVD of the matrices Ai,
i 1, 2,..., k > 1 as in Theorem 1.1, is then obtained by simply enumerating the
different factorization types.

We now give some examples.
Example 1. Consider two matrices A1 (no El) and A2 (n n2). Then, we have

the following two possible GSVDs.
P-type Q-type

A UDX UDX
A2 XS2V* X*S2V*

The P-type factorization corresponds to the PSVD (product singular value decompo-
sition) as in [9] (called HSVD there) and in [1] and [3], while the Q-type factorization
is nothing else than the QSVD (quotient singular value decomposition) in [8], [10],
and [11] (called generalized SVD there). A P-type factorization is precisely the kind
of transformation that occurs in the PSVD while a Q-type factorization occurs in the
QSVD.

Example 2. Let us write down the PQQP-SVD for five matrices:

A UDX,
A2 XD2X,

--* 1A3 X2 D3X
A4 X*D4X
A5 XSV*.

In [5], we derived the following generalization of the QR decomposition for a chain of
k matrices.

THEOREM 1.2 (Generalized QR decompositions for k matrices). Given k complex
matrices A (no El), A2 (n n2)_, ..., Ak (nk- nk). There always exist unitary
matrices Qo, Q, Qk such that Ti Q* AQ where is a lower triangular or’’ i--1

upper triangular matrix (both cases are always possible) with the following structure.
Lower triangular (which will be denoted by a superscript/):

2r ri r r+
ri-1 ,1 0 0 0

Ri, 0 0ri-1

0ri_ * * ,i

and R,j is a square nonsingular lower triangular matrix.
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Upper triangular (which will be denoted by a superscript u):

r+l i-1r r r
1 0 Ri,1 * *ri_l

r_12 0 0 R,2
where R,j

0 0 0 Ri,ri_

and R is a square nonsingular upper triangular matrix. The block dimensions r$,3

coincide with those of Theorem 1.1.
As to the nomenclature of these GQRDs, we propose the following definition.
DEFINITION 2 (Nomenclature for GQRD). The name of a GQRD of k matrices of

compatible dimensions is generated by enumerating the letters L (for lower) and U (for
upper), according to the lower or upper triangularity of the matrices Ti, i 1,..., k
in the decomposition of Theorem 1.2.

For k matrices, there are 2k different sequences with two letters. For instance, for
k 3, there are eight GQRDs (LLL, LLU, LUL, LLU, ULL, ULU, UUL, UUU).

The relation between the two generalizations, the GSVDs and the GQRDs, is the
following:

(i) A pair of identical letters, i.e., L-L or U-U that occurs in the factorization of
A, A+I corresponds to a P-type factorization of the pair;

(ii) A pair of alternating letters, i.e., L-U or U-L that occurs in the factorization
of Ai, Ai+l corresponds to a Q-type factorization of the pair.

As an example, for a PQP-SVD of four matrices, there are two possible corre-
sponding GQRDs, namely, an LLUL decomposition and an UULU decomposition. As
with the GSVD, we can also introduce the convention to use powers of (a sequence
of) letters. For instance, for a p3Q2-SVD (which is short for a PPPQQ-SVD), there
are two QR decompositions, namely, an LaUL-QR and an UaLU-QR.

2. Structure of a GSVD with only P-steps. The main purpose of this sec-
tion is to derive expressions for the block dimensions rq when all steps in the GSVD
are P-steps. These block dimensions will be expressed as a function of the ranks of
products of the form

rank(AA+l,..., Aj_IA),
which will be denoted by ri(i+l)...(j-1)j. This will be done in two steps. First, we
derive an implicit characterization of the block dimensions. This leads directly to an
explicit determination of these block dimensions.

LEMMA 2.1. The rank of the product of the matrices Di, Di+I, Dj that appears
in a Pk-I-SVD (or the rank of the product AA+I,... ,Aj in an Lk-QR or a Uk-QR)
is given by

2rank(DiDi+l... D) r()(i+)...() r + rj +-.. + r.
As the examples will reveal, the following theorem follows directly from this

lemma.
THEOREM 2.2. Consider a Pk-I-SVD of the matrices A, A2,..., Ak. Then, the

block dimensions r, p 1,..., k, q 1,...,p are given by

rj r(1)(2)...(j)

rj r(+l)...(j) r(-l)()...(),
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with r(i)...(j) ri if i j.
Let us analyze an example from which we will see the general result.
Example 3 (p3-SVD). Let us derive expressions for the block dimensions r, r, ra3, r44

of the matrix Sa in terms of rl, r2, r3, r(3)(4), r(2)(3)(4), r(1)(2)(3)(4). The matrices D1,
D2, D3, $4 have the following structure:

r nl -r
no r 0 0

r r22 n2 r2

r I 0 0
o o o

D2- r 0 I 0
n r r 0 0 0

I 0 0 0

0 I 0 0
D3---r 000 0

r33 0 0 I 0
n2 r2 r33 0 0 0 0

rr -r
ra2

r
n3 r3 r44

s o o o o
0 0 0 0 0
0 S 0 0 0
0 0 0 0 0
0 0 S 0 0
0 0 0 0 0
0 0 0 $44 0
0 0 0 0 0

From the structure and dimensions of these matrices, we see that (we only show block
dimensions that are relevant)

r -r
r2 -r3r

D3Sa r rr rrr r
n2 r2 r

s o o o o
0 0 0 0 0
0 0 0 0 0
0 St 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 $34 0 0
0 0 0 0 0
0 0 000/

D2D3S4

0
0
0

0
0

0

0000’
0 0 0 0
0 000
0000
S3t 000
0 000
0 000
0 000

D1D2D3Sa

r
0
0
0
0

000
000
000
000
000

0
0
0
0
0
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We see by inspection that

from which it follows that

r(1)(2)(a)(a) r,
r()()() r + r,

r(3)(4) r + ra2 + ra3,
r4 r + r + ra3 + raa,

r r(1)(2)(3)(4),

r42 r(2)(3)(4) r(1)(2)(3)(4),

ra r(a)()

raa ra r(a)().

The same expressions apply for the blocks in the corresponding U4- or La-QR.
Observe that in the product D3 and $4, only the diagonal blocks of $4 with

dimensions r, r, ra3 survive. In the product D203S4 only the blocks with dimensions

r and r survive, and in 010203S4 only the block with dimension ra survives. This
observation can easily be generalized to the following survival rule for a pure PSVD,
which is the essence of the proof of Lemma 2.1.

In a product of matrices Di, Di+l,..., Dj (or Sk) only the blocks with block
dimensions rJ, r,..., r. survive.

Once this observation has been established, a proof of Theorem 3.2 is straightfor-

3. A GSVD with only Q-steps. Let us now look closer at the structure of a
GSVD with only Q-steps. We will see that we can derive expressions for the block
dimensions rqp,p 1,... ,k, q 1,... ,p in two steps. First, we obtain an implicit
formula where the required block dimensions are unknowns in a set of linear equations.
In a second step, these are solved to obtain an expression for the block dimensions rpq
in terms of the ranks of the block matrices

Ai
Ai*+I
0

0 0 0 0 0

Ai+2 0 0 0 0

Ai*+3 Ai+4 0 0 0

A_ Aj_ 0
0 A_I A

Their rank is denoted by rili+ll...ij_llj.
We will proceed in the same way as in 2. Instead of proving our results rigorously,

we prefer to reveal the mechanisms by some clarifying examples. First, we obtain the
following implicit characterization.

LEMMA 3.1. Consider a Qk-_SVD of the matrices A1, A2,..., Ak. Then
if j i even

if j i odd
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As will be shown, this lemma leads to the following theorem.
THEOREM 3.2. Consider a Qk-I-SVD of the matrices At, A2,..., Ak. Then

r (--1)k+(rl...ik rl...ik_ r21...Ik + r21...Ik-1),
rk (--1)J+k+(r(j+)l...ik r(j+)l...ik_ r(j_)l...lk + r(j-)l...Ik-)

:for 2<_j<_k-2,
k-1

rk rk rk-2[k-llk -f- rk-2[k-1,

r rk_llk rk-1.

Observe that in all cases, no more than four ranks ril...Ij are involved. Also, the third
case may be recognized as Grassman’s dimension theorem, giving the dimension of
the intersection of the column spaces of the matrices

0

A_

Let us derive the result of Theorem 3.2 by an example.
Example 4 (QQ-SVD). A QQ-SVD of three matrices A1 (no x n), A2(nl n2),

and A3 (n2 n3) takes the form

AI UDX
A2 X* -1D2X2

A3 X* *

where

no r 0 0

r r n2 r2

r I 0 0

r r 0 0 0
D2 r 0 I 0

nl r r 0 0 0

Observe that

r r r n3 r3

r S 0 0 0

-d o o o o
s= o s o o- o o o o

o o s o
n3 r2 r33 0 0 0 0

0) 0 0)A A3 0 X-* Dt $3 0 V3*

A complete detailed analysis of the QQ-SVD (which is also called the restricted singular value
decomposition (RSVD)) together with numerous applications can be found in [2].
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The left and right factors are nonsingular. Hence, we can obtain expressions for all
dimensions involved by analyzing the block bidiagonal matrix

D1 0

rl r21
no rl

n2 r2 r

(I00
0 I 0
00 I
000
I 0 0
0 I 0

I 0 0
0 I 0

S 0 0 0
0 0 0 0
0 S 0 0
0 0 0 0
0 0 S3 0
0 0 0 0

where we have used the finest possible subdivision of matrices (i.e., a partitioning
based upon the block dimensions r, r, r33). All nonzero blocks are diagonal. Elements
not shown are zero. First, it is straightforward to see that r3 r +r +r. Next, we
concentrate on the submatrix D $3 ). In this matrix, the block columns with the
matrices S and S are linearly dependent on the previous ones. The block column
with $33 is linearly independent. Hence rank( Dt $3 r213 r2 + r33. Next, we will

relate the rank rll2 rank (D D2) to

D1 0 )rl1213 rank D $3

It can be seen that when the block column with S is appended to (Dt
rank will increase with

D2)t, the

1 0 1rx [rank (1 1 )-rank( 1 )] =r.
If the block column with $32 is appended to (Dt D2)t, the rank will not increase.
Finally, if the block column with $3 is appended, then the rank will increase with

r [rank( 0 1 rank(0)] r33. Hence

[ (1 0 )_rank( 1 )]r1[213 rl[2 A- r X rank
1 1 1

+ r32 x [rank(1 1) rank(l)]
+ r x [rank(0 1) rank(0)] rll2 + r + r.

We can now set up a set of linear equations as

0 0 1 r r2[3 r2
1 0 1 r33 rll213 rll2

which can be solved as

r32 1 0
r33 0 1

-1 r213 r2
0 rll213 -rl12

r11213 rl12 -b r2 r213
r3 q- rll2 rll213 )r213 r2
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The same expressions will appear in the ULU- or LUL-QR.
Example 5 (QT-SVD). The courageous reader may wish to verify that for k 7,

the following set of linear equations needs to be solved:

( r7

r617 -r6
r51617 -r516
r4151617 --r41516
r314151617 --r3141516

0 0 0 0 0 0 1
1 1 1 1 1 0 1
0 0 0 0 1 0 1
1 1 1 0 1 0 1
0 0 1 0 1 0 1

\i 0 1 0 1 0 1

rr
re
r76
r77 j

This set of equations can be solved as

( rr
r73re

r

fO 0 0 0 0 -1 1
0 0 0 0 1 0 -i
0 0 0 -1 0 1 0
0 0 1 0 -I 0 0
0 -i 0 1 0 0 0
1 0 -i 0 0 0 0

\0 1 0 0 0 0 O

( r7

r617 -r6

r4151617 --r41516
r314151617 --r3141516

\ r1121314151617 --r11213141516

The pattern of the inverse matrix now becomes clear. We have a triantidiagonal
matrix with a sequence of alternating 1 and -1, ending in a 1 in the top right-hand
corner. As a matter of fact, this observation constitutes the essence of a proof of
Theorem 3.2.

4. On the structure of a GSVD. For the analysis of the structure of a com-
pletely general GSVD, in which the letters P and Q can appear in any order, we need
a mixture of the two preceding notations for block bidiagonal matrices, the blocks of
which can be products of matrices, such as

AioAio+1 Ail-
(All.. ":i2-1)*

0

0 0 0

Ai2 A3-1 0 0
(A3 A,_I)* A4 A5_1 0

As, Aj

where 1 _< io < il < i2 < i3 < < il _< j _< k. Their rank will be denoted by

For instance, the rank of the matrix

A2A3 0 0 )A ADA6A7 0
0 (AsAg)* Ao

will be represented by r(2)(3)]4](5)(6)(7)1(8)(9)1(10).
In the following theorem, we derive an implicit expression of the block dimensions

rqp,p- 1,... ,k,q- 1,...,p of a GSVD of A,A2,...,Ak. We proceed in two steps.
The first part of the theorem is based on the survival rule described in Lemma 2.1,
and the second part is then an application of the pure Q-step SVD in Lemma 3.1.



356 BART DE MOOR

THEOREM 4.1 (On the structure of a GSVD or GQRD). The rank

r(io)(io+ )... (Q )[il... (i2-1)[... [Q ...j

can be expressed as follows:
i:1,2,... /+1.1. Calculate the + 1 integers sj,

2 rOsj -r +rj +...+
2 r)O+l ./oT2 rlsj +-,j +...+

^lT1 il-lT1 Q-1+2 r;+...+

2. Depending on even or odd there are two cases.
even:

odd:

r(io)...(il-)l(il )...(i2-1)l...l(Q )...j
1 3

r(io)...(il_l)l(il)...(i2_l)[...l(i_l)...(i_l -I- Sj -I- Sj +’’’-I" j

r(io)... (iI- ]-)l(il )... (i2 1)I’"l (Q).--J
2 4

r(io)...(il-1)[(il)...(i2-1)[...l(i_l)...(i-i -I- 8j -I- 8j +’’’-t- j

Again, we will not give an unreadable algebraic proof of this theorem, but instead
we illustrate it with an example.

Example 6 (QPPQ-SVD). A QPPQ-SVD of five matrices A1, A2, A3, A4, A5 can
be analyzed in terms of the ranks of the matrices

D1 O) ((D2D3Da) $5) ((D3Da) $5) (Di $5)(D2D3Da) $5

Let us first consider the first matrix

(D2D3D4) II
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

1 0 0 0 0
0 1 0 0 0

1 0 0 0 0
0 1 0 0 0

1 0 0 0
0 0 0 0
0 1 0
0 0 0

0 0
0 0

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 0 0

0 0 0
0 0 0



ON THE STRUCTURE OF GENERALIZED SVD AND QR 357

Elements not shown are represented by 0 while 1 represents a nonzero square diagonal
matrix. Obviously, r5 r 2 3 a 5 (r5+r5+r5)./r5 +r5+r+r. Also, r(2)(3)(4)15 r(2)(3)(4)

_
3 4 5

Using the notation of Theorem 4.1, we have s r / r and s r53 -t- r5
a -t- r55, so

that indeed r(2)(3)(a)15 r(2)3)(a) / s. Also,

r1,(2)(3)(a),5--r1,(2)(3)(a)+r [rank( 11 0)-rank(I)]11

+ r x [rank(1 1) rank(I)] + (r53 + r54 + r551.
With the notation of Theorem 4.1, we have for this case s r5, s r, s53
r53 +r5a +r55, so that indeed r1123415 r11234 --8--8. Up to now, we have three implicit
equations for the five unknowns r, r, r53, r5a, r55. The remaining two are found from
the matrix (D $5) as ral5 ra + r and from

((D3D4) $5)-
rg

-rg

1100
0 1 0

1 0 0
0 1 0

1 0 0
0 1 0

100000
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 00/

From this we find that

r3a15 r31a + (r + r + r53) x [rank(1 1) rank(l)] + r + r55 r31a + (r5a + r55)
With the notation of Theorem 4.1 we have s r +r + r53 and si r + r55, so that
indeed r(3)(a)15 r31a + s. From these equations we now find

1 1 1 1 1 r r5
0 0 1 1 1 r r23415 r234
1 0 1 1 1 r53 rl]23415 rl]234
0 0 0 0 1 r r415 ra
0 0 0 1 1 r55 r34]5 r34

which, upon solution, results in

r r1123415 r11234 r23415 T r234,

r52 r5 r1123415 -/’11234,
r53 r23415 -/’234 r3415 - r34,

r5
a

r3415 r34 r415 + r4,

r r415 r4.

5. Conclusions. In this paper, we have analyzed in detail the structure of some
recently introduced generalizations of the singular value and the QR decomposition.
The structure is completely determined in terms of the ranks of the involved matrices
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and other matrices that are formed from products and concatenations of these ma-
trices. Some more examples and details can be found in the technical report [6] and
the papers [2]-[5], and [7].
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