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Abstract

In this paper, we provide a state-of-the-art survey of a recently discovered set
of generalizations of the Ordinary Singular Value Decomposition, which contains all
existing generalizations for 2 matrices (such as the Product SVD and the Quotient
SVD} and for 3 matrices (such as the Restricted SVD), as special cases. We present
the main Theorem and a discussion on some structural and geometrical proper-
ties of all Generalized Singular Value Decompositions (GSVD). A proposal for a
standardized nomenclature is made as well. We conclude this paper with a survey
of possible applications of these GSVDs, including a literature survey and a nice
classification of numerical stochastic realization algorithms.
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1. Introduction

The ordinary singular value decomposition (OSVD) has become an important tool in the
analysis and numerical solution of numerous problems (see e.g. [13] [17] for properties
and applications.) Not only does it allow for an elegant problem formulation, but at
the same time it provides geometrical and algebraic insight together with an immediate
numerically robust implementation {17]. In {20, p.78], credit for the first proofs of the
OSVD is given to Beltrami [2], Jordan [19], Sylvester [28] and Autonne [1]. Recently,
several generalizations to the OSVD have been proposed and their properties analysed.
The best known example is the Generalized SVD for two matrices, as introduced in [32]
and refined in [24], which we propose to rename as the Quotient SVD (QSVD) [7]. A
specific reason for this name is the relation of this matrix factorization to the SVD of the
’quotient’ of two matrices while the main motivation is of course the fact that there are
several other similar generalizations. For instance, a Product induced SVD, also for two
madtrices, was proposed in {15}, where it was called the TISVD. It was a formalization of
ideas in [18]. We shall refer to it as the PSVD (see {7]). In [33], another generalization,
this time for three matrices, was proposed. In [8] we have called it the Restricted SVD
(RSVD) and analysed its properties in detail.

In {7} we have proposed a standardized nomenclature for all kinds of singular value de-
compositions. Besides the OSVD, PSVD, QSVD and RSVD, we have also included
there the so-called Structured Singular Value which occurs in robust control theory and a
(possibly) corresponding decomposition [14] (SSVD), the Takagi Singular Value Decom-
position which applies for symmetric complex matrices (TSVD) [29] and the Unordered
Singular Value Decomposition (USVD) [3] {10] which is useful when analysing analytic
properties of the singular values and vectors of parametrized matrices.

This paper is organised as follows:

- In section 2, we present the main Theorem and explain in more detail its structure
and some properties.

- Some additional structural and geometrical properties are summarized in section 3.

- In section 4, we discuss the potential numerical advantages of the GSVDs with some
small examples. We also give a literature survey of possible applications.

2. A tree of generalizations of the OSVD

Theorem 1

Generalized Singular Value Decompositions for & matrices.

Consider a set of k matrices with compatible dimensions: A| (ny X ny), 43 (ny X ng),...,
Apoy (g2 X mp—y), Ag (s X ng). Then there exist

e Unitary matrices Uy (ng X ng) and Vi (ng X ny)
o Matrices D;,j = 1,2,...,(k— 1) of the form



y_1 X1y
1‘11- 1‘? 1';-3 1‘; nj —Tj
! (1 o o0 0 0 \
i, -7} 0 0 0 0 0
77 0o I 0 0 ]
v — 1] 0 o 0 0 0
r3 o o I 0 0 (1)
. 0 0 0
v 0 ... 1 0
‘n,j_l—'l‘j_i—’l";- \ﬁ 0 0 0 }
where
To = 0
i
r; = Zr} = rank(A;) (2)
=1
e A matrix S of the form
Sk =
g1 X Ak
A A A T Y
) [Sk 0 0 0 0 \
Tho— Tk 0 0 0 0 0
T3 0 S o0 0 0
i T 0 0 0 0 0
L 6 o0 S 0 0 3)
0 0 0
¥ 0 sk 0
S A o o )
where
k -
7y = Y 7h = rank(Ax) (4)

i=1

and the r§ x7} matrices S} are diagonal with positive diagonal elements. Expressions
for the integers 'rj- are given in section 3. They are ranks of certain matrices in the
constructive proof of this Theorem [11].

¢ Nonsingular matrices X; (n; X n;) and Z;, j = 1,2,...,(k — 1) where Z; is either
Z; = X;" or either Z; = X; (i.e. both choices are always possible)

such that the given matrices can be factorized as

Al = U1 Dle_t
Ag = Zl D2X2_l
A;} - ZzDgXa_l



A = Zi DX
Ay = LSV

Observe that the matrices D; in (1) and Si in (3) are in general not diagonal. Their
only non-zero blocks however are diagonal block matrices. We propose to label them as
quasi-diagonal matrices. The matrices D;,5 =1,...,k — 1 are quasi-diagonal, their only
nonzero blocks being identity matrices. The matrix Sy is quasi-diagonal and its nonzero
blocks are diagonal matrices with positive diagonal elements. Observe that we always
take the last factor in every factorization as the inverse of a nonsingular matrix, which is
only a matter of convention (Another convention would result in a modified definition of
the matrices Z;). As to the name of a certain GSVD, we propose to adopt the following
convention:

Definition 1

The nomenclature for GSVDs

If k = 1 in Theorem I, then the corresponding factorization of the matriz A; will be called

the ordinary singular value decomposition.

If for a matriz pair A;, A;j1,1 <1<k~ 1 i Theorem 1, we have that
Zi = X;

then, the factorization of the pair will be said to be of P-type.

If on the other hand, for a matriz pair A;, Aiy1,1 <1 < k-1 in Theorem 1, we have that
Z; = X,-_*

the factorization of the pair will be said to be of QQ-type.
The name of a GSVD of the matrices A;, i = 1,2,...k > 1 as in Theorem 1, is then
obtained by simply enumerating the different factorization types.

Let us give some examples,

Example 1:
Consider two matrices A (ngxn;) and A, (ny Xng). Then, we have two possible GSVDs:
| P-type Q-type
A, | Uy D X! U;D; X;!
Ay | XS,V X8,V

The P-type factorization corresponds to the PSVD as in [15] (called IISVD there) and
[7}, while the @-type factorization is nothing else than the QSVD in [17] [24] [32] (called
generalized SVD there). This justifies the choice of names for the factorization of pairs:
A P-type factorization is precisely the kind of transformation that occurs in the PSVD
while a §)-type factorization occurs in the QSVD.,

Example 2
The RSVD for three matrices (A4, A,, A3) as introduced and analysed in [8] [33] has the



form:

A = U S X!

A2 - XI—*SQX.;l

Ay = X778V
where 8y, 52,55 are certain quasi-diagonal matrices. It can be verified that this RSVD
can be rearranged into a QQ-SVD that is conform with the structure of Theorem 1.

Example 3
Let us write down the PQQP-SVD for 5 matrices:
A, = UDy X7t
A, = XiDX;!
Ay = X;*DyX5!
Ay = X7 DX
As = XSV

We also introduce the following notation, using powers, which symbolize a certain repe-
tition of a letter or of a sequence of letters:

¢ P3Q2-SVD = PPPQQ-SVD
e (PQ)’Q3(PPQ)?-SVD = PQPQQQQPPQPPQ-SVD

Despite the fact that there are 9k-1 different sequences of letters P and Q at level & >
1, not all of these sequences correspond to different GSVDs, The reason for this is
that for instance the QP-SVD of (4!, A%, A%) can be obtained from the PQ-SVD of
((A%y, (A%, (A1)*). Similarly, the P2(QP)*-SVD of (Al,..., A%) is essentially the same
as the (PQ)°P2-SVD of ((A%),...,(A')*). The following table gives the number of

different factorizations for k matrices.

k even k odd
number of
different | 3(2' + 9k/2) | L(2k-1 4 o(k-1)/2
GSVDs

Finally, we'll spend some words on the proof of the main Theorem, a detailed exposition
of which can be found in [11]. It is based on two basic ideas: First, there is an induc-
tive argument which allows us to construct the GSVD of k matrices Aj,...,A; from a
corresponding one for k — 1 matrices Ay,..., Ay A key result here is a certain block
factorization lemma for partitioned matrices. Next, the already obtained GSVD of the
k — 1 matrices Ai,...,Ax_1 has to be modified according to a certain algorithm, which
we have called the ripple-through-phenomenon in [11]. For all details of the constructive
proof, the interested reader is referred to [11].



3. Rank properties

It is possible to express the block dimensions of the quasi-diagonal matrices Dj,j =
1,...,k—1 and Sg of Theorem 1, in terms of the ranks of the matrices 4,,..., Aj and
concatenations and products thereof as was shown in [12].

Let’s first consider the case of a GSVD that consists only of P — type factorizations.
Denote the rank of the product of the matrices A;, A1, ..., A; with 2 < 7 by

Ti(i+1)..(i-1)7 = rank(AiAip1 ... Aj 1 Ay)

Theorem 2
On the structure of the PX-1.SVD .
Consider a PX-1.SVD of the matrices Ay, Ay,..., Ax. Then, the block dimensions ]
that appear in Theorem 1 are given by:
= TR@-0) (5)
TiO= Ti).() ~ T-100-0) (6)
with r; =7 if 1 = 7.
Next, consider the case of a GSVD that only consists of § — type factorizations. Denote
the rank of the block bidiagonal matrix

[ A 0 0 ... 0 0 0)
Az, Ay 0 00 0 0
0 Ay Aigg ... 0 0 0
o o 0 ()
0 . P . A;_s AJ"“‘? 0
\ 0 . o 0 AT, Ay

by 7ijit1). 1140

Theorem 3

On the structure of the QX 1-SVD

Consider a Q¥~' — SVD of the matrices Ay, Az, ..., Ar. Then

o If7—1 even

il li

(A L) e ] ®
o Ifj—1odd

il f

= Pyl lj-1 T (Tj-+1 -+ ?';-}‘3 +...+ 7’:;'_2 -+ 7“_“:) (9)

For the general case, we shall need a mixture of the two preceding notations for block
bidiagonal matrices, the blocks of which can be products of matrices, such as:



A|0A30+1 AI[ 1 0 0 e 0

(oo A1) Ay Aigy 0 e 0
0 (A,'a - .A,'4_1)* A A 0
0 ces coo A LA

where 1 <ig < iy <ip<ig<...<y <j<k Their rank will be denoted by

'r(l'o)...(t'l—l)ifl...(fg—])[...fl’g...{j)
For instance, the rank of the matrix

AxAz 0 0
Ay AgdgAr O
0 (AsAs))* Ao

will be represented by
T(2)(3)4IENEHTIB(9)I(10)

Theorem 4
On the structure of a GSVD
The rank 7(ig)(io+1)...{i =1l eliz=1kized €37 be expressed as follows:

. Calculate the following | 4 1 inlegers .9;, 1=1,2,...,0l+1:

1 _ 1 2 io
8; = 'r'j-I—'rj,-+...~}-rJ
2 _ ol io+2 it
8; = T; +TJ -+ ...+7'J
+1 _ it +1 iy 42 i

. Depending on | even or odd there are two cases:

! even:

Tigidp =iy bz =1 ipe.d
rn 1 3 141
= Pigendy w-lll‘l...I'Q—li...]l';_l...l‘;—J + SJ' + Sj + L + sj

[ odd:

o, "i‘i; ety —=1hofigend

I+1

_— - . - - - . 2 il
- Tlo...u—illl...lz#ll...‘![._l...lt-ﬂl + Sj + 3j +... + sj

Observe that Theorems 2 and 3 are special cases of Theorem 4.

(10)

(11)

While Theorem 2 provides a direct expression of the dimensions 1';, in terms of differ-
ences of ranks of products, Theorem 3 and 4 do so only implicitly. However, Theorem 3
and 4 can be used to set up a set of linear equations from which these block dimensions 7



of the main Theorem can then be derived. Let us illustrate this with a couple of examples.
Example 4:

Let us determine the block dimensions of the guasi-diagonal matrix Sy in a QPP-SVD

of the matrices A;, Ay, As, A4 using Theorem 2, 3 and 4. From Theorem 2 we find:

4 ,
Ty = T4 — T34

4
Ty = T34 — T34

From Theorem 4, we find:

8 = Ty

2 = 1t
and

ray@@E = 1+ 8
so that

T4 = PrE)E)E) T T
Finally, since 74 = v} + 72 + v} 4 7}, we find
rh =1y @)@ — PIEEN)

Observe that this last relation can be interpreted geometrically as the dimension of the

intersection between the row spaces of A; and A;A3A4:

ry = dim spanon(A1) + dim 3pan, o Az Az Ay)

—dz Al
T SPATirow Ay Az Ay

Example 5

Consider the determination of 7, 72,73, 71, % in a PQQQ-SVD of 5 matrices A, Ay, A3, Ay, As
with Theorem 4:



r} 85
Tyis i =71+ rE i+l
st =r}
Taj4ls 8y =15 +7E + 73
sg = ]
83 =1}
T2)344|5 sg =1t 41l
s: =1}
88 = rd
83 =1t
)@l | 85 =T
8t =l 47}
53 = p}
st =12}
These relations can be used to set up a set of equations for the unknowns rl, 2, v, 7i, v}
as:
11111 i 5
0 0001 Tg Tyls — T4
11101 Tg = | 7345 — Tap
0 01 01 ra Talslals — 2|3
0 1 101/ \n P @)l T}l
the solution of which is
5= Tajags = Tt r@@pl — T0)@)iks
TS = )@l — T)@0 — T2 + Pajals
ry = Pafsfafs — Tal3fs — Tajs + T4
Ty = T5— Tyjaps + Tap
’J”g = 7'4|5 — T4

4. Applications

Most of the problems for which the OSVD, PSVD, QSVD etc ...provide an answer,
can in principle be solved via a (generalized) eigenvalue problem. However, this always
requires the ewplicit calculation of products or quotients of matrices, which can give raise
to severe loss of numerical accuracy. Even if the eigenvalue algorithms would be numeri-
cally robust, it is in most cases the explicit formation of matrix products (which consists
essentially of inner products) that causes loss of numerical accuracy,
As an example, consider the computation of the P? — SVD of 4 matrices 4;, Ay, 44, A4
where
11
Al = ( i g 0 ) Ag == K 0
7 0 4



-1 1
Aw{“igO) mx(ue)

7 0 L
Assume that p® < ¢, < p, where €, is the machine precision. Let fI(.) represent the
effect of performing a calculation on a finite precision machine so that fI(1 + pu?) = 1.

Then, it is easy to illustrate that matrix multiplication on a finite precision machine is
not associative:

U fl{A1A2) fl(A34))] = (3 g)

JUAI FU(A A A)Ay] = (”‘2 ”2)

“2 'u2
FILACAr lAata)) Ag] = (200,

The first result has rank 0, the second result has rank 1 and the third result has rank 2!
The correct result would be:

_ [ e+ 2) 0
st = (D
and is of rank 2. Obviously, it is only a direct explicit factorization of every matrix sep-

arately that can preserve the fine numerical details that otherwise get irreversibly lost in
matrix products.

For another example, suppose we want to compute the QSVD of a pair of matrices:

11

€ € ‘u‘
where p? < ¢,, < g and € < ¢, < . The theoretically correct QSVD of this matrix pair
is:

A = UD X!

1 [
Vite 0 T Vit
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Now, in a lot of applications {6] [22] {26], one is interested in the extrema of the so-called
oriented signal-to-signal ratio of two vector sequences in the direction of a vector @, which
is defined as:

E.[A}, Ay) = (:BtAiAlw)/(:ntAgAtza:) (12)

It is easy to verify that the extremal values of this quotient for our example, are given by
the inverses of the diagonal elements of S,5%:

4(1 + €
maz(E,[A}, 4,]) = (?(:1:3;})
min(E (A}, As]) = %

If the vector sequence in the matrix A} is considered to be signal + noise, and the one
in Ay contains the noise (disturbances) then it can be verified that the 'signal energy’ [6]
in the direction z = [1 - 1]' is 1 while the noise energy is 2/+/2. On the other hand, if
we would first calculate explicitly the matrix products A4, and 4,A4! and optimize (12)
as a generalized eigenvalue problem of the matrix pair (414, A;A%), then, the exiremal
values of

' (fULA A )z (2! (Fl{A2A}))e)
are (2+¢€”)/2 and 0! In this case, the signal energy in the direction & = [1 1]* is 1 while
the noise energy is 0. This would lead to the conclusion that this direction is noiseless
while in fact, it is not!

The OSVD is so frequently used in signal processing and systems and control theory
that we shall not attempt here to give a complete survey of all its applications. The
interested reader may wish to consult [13] [17] in order to get a survey of applications
and algorithms. A system identification application is treated in [21]. It is the dynamic
counterpart of solving overdetermined sets of linear equations via total linear least squares
using the OSVD [17].

The use of the QSVD is advocated in signal processing applications where strong 'de-
sired’ signals have to be separated from weak ’disturbing’ signals. Typically, the frequency
domain spectra are overlapping which complicates the use of frequency domain filtering
techniques, The concept behind this separation technique is the oriented signal-to-signal
ratio which coincides with the concept of prewhitening if noise covariance matrices are
known [6]. Typical applications can be found in [4] [22] {26] [30]. In [22], 2 QSVD based
system identification algorithm is explored, which gives unbiased results as compared to
the OSVD version, when data are first treated prior to identification with some filter, as
often happens in practice.



Applications of the PSVD are mentioned in [16] [18], including the computation of the
Kalman decomposition of a linear system. Typically, the PSVD can be invoked whenever
so-called contragredient transformations are involved as is the case in open (observability
and controllability Lyapunov equations) and closed loop balancing (via the filter and con-
trol algebraic Riccati equation).
Applications of the RSVD (=QQ-SVD) are enumerated in [8]. A typical problem con-
cerns the minimization of the rank of the matrix A + BDC where A, B,C are given
matrices, over all possible matrices I, such that a unitarily invariant norm of D is min-
imal. The answer is given in terms of the QQ-SVD of the matrix triplet (B, A,C).
Relationships with the shorted operalor, generalized Schur complemenenis, generalized
Gauss-Markov esttmalion problems and a generalization of total linear least squares are
also pointed out in [8] (see also [31]). Ii’s interesting to note that our QQ-SVD can be
used to calculate the minimal rank matrix in a matrix ball, which is the solution set of a
completion problem (5].
In [34], it is shown how the PP-SVD can increase the numerical robustness of the solution
of matrix approximation problems of the form
min
rank(X) =r

where A, B, C are given rectangulaf and possibly rank deficient matrices and X is to be

IA(B — X)C[

found. The closeness of the approximation is measured by the semi-matrix norm with
row weighting matrix A and column weighting matrix C'. In [34] not only consistency
conditions are derived for the problem but it is also shown how a subspace can be found
using the PP-SVD so that the semi-norm becomes a matrix norm.

Finally, let us conclude this section by pointing out the connection between GSVDs and
the stochastic realization problem, which is the following:

Given output signals g,k = 1,..., N or covariance sequences A; = E(yxy;,;) generated
by a stationary stochastic differential system of equations of the form:
try = Azg -+ wg

e = Cup+y
where A ¢ R, C € R™" and wy, vy are {possibly mutually correlated) white noise
sequences. Find n, 4,C and the covariance matrices @ = E(wyw}), S = E(wvf), R =
E(v;vi) from the data y, {dala driven) or the output covariances Ay (covariance driven).

Algorithms to solve this realization problem are typically based on the observation that
rank[EB(Y,Y")] = n, where Y, and Y_ are li x j (j >> {i) block Hankel matrices with
future and past output signals. In [25], a classification was made of all existing stochastic
realization schemes via the so-called RV-coeflicient optimization problem. This problem
consists essentially of finding linear combinations of the future as LY, and of the past
MY_ and then maximizing the correlation between these two vector sequences subject to
some consiraints on L and M. In [27], we will describe in detail how all these optimization
problems can be solved in terms of certain GSVDs while here we will only reproduce a
summary. Mathematically, the problem can be formulated as a constrained optimization
problem:



maz j, a | LY Y M5

” Data driven “ Constraints [ Algorithm H
- Symmetric LY YL =A, QPQ-SVD of
- Multivariate | M'Y.Y!M = A, | Y], Y, V!, Y_
Association L'L=1 P-SVD of
and Similarity || M'M =T Y,, ¥}

Backward
'YY{L=A, QP-SVD of
- Asymetric MM=1 Y, Y, Y!
- Predictability || Forward
L'L =1 PQ-SVD
MY Y'M=A,|Y, Y. Y.

In some applications like astronomy, often only covariance information is available. Define
here the covariance matrices R. = B(Y_Y!) , R, = E(Y,Y}) , H = E(Y,Y!). Then
the optimization problem becomes

mar p A ”LiHM“F

subject to
| Covariance driven ” Constraints l Algorithm |

L'R,L = A, QQ-SVD of

Symmetric M'R_M=A,|R,,H R
L'L=1 0-SVD of
MM =1 H
Backward
LR, L =A, Q-SVD of

Asymmetric MM=1 R, H
Forward
LL=1 Q-SVD of
MR.M=A,|R. ,H

5. Conclusions

In this paper, we have given a state-of-the-art survey of recently discovered generalizations
of the ordinary singular value decomposition. While we have already revealed much of the
structure and interesting properties of this infinite tree of GSVDs, much work remains to
be done. We are convinced that this tree of generalized singular value decompositions will
open new and exciting fields of research with respect to numerical algorithms, geometrical
interpretations and applications. For instance, the uniqueness issues, the relation to
generalized eigenvalue problems, genericity and sensitivity analysis and numerical and
implementational aspects definitely deserve more attention as well as a continuous concern
to demonstrate the usefulness in applications of practical interest, We have implement a



straightforward algorithmic procedure in MATLAB, which allows to calculate any GSVD
of any number of matrices of compatible dimensions. It basically follows the constructive
proof of {11]. On the other hand, recently developed updating techniques for the OSVD,
PSVD and QSVD [23] might prove useful when implementing algorithms for GSVDs.
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