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Abstract

Optimal Control of the Penicillin G Fed-Batch Fermentation : An Analysis
of the Model of Heijnen et al.

Summary

This paper presents the application of Optimal Control theory in determining the op-
timal feed rate profile for the penicillin G fed-batch fermentation, using a mathematical
model based on balancing methods. As this model does not fulfil all requisites for standard
Optimal Control, we propose a sequence of new models—that converges to the original one
in a smooth way—to which the standard techniques are applicable, and develop an efficient
computational algorithm. The unusual optimization of some initial conditions is included.
We state then the conjecture that allows to obtain the Optimal Control for the original
model. Mathematical and microbial insight leads to the conmstruction of a suboptimal
heuristic strategy—which we show to be a limiting case of the optimal scheme—that can
serve as a basis for the development of more practical and reliable control schemes.

Key Words Optimal Control, Non-linear systems, Penicillin Fed~Batch Fermen-
tation, Biotechnological Modeling




1 Introduction

Nowadays penicillin G is an almost common antibiotic; nevertheless the fermentation tech-
nology and the mathematical description of the production process are still a subject
of interest. Compared with conventional chemical industries, the fermentation industry
is quite reluctant {o use advanced control and optimization methods. Some plausible
reasons are the lack of adequate dynamic models suitable for control purposes, the lack of
on-line sensors for substrates, biomass and products, the communication problem between
microbiologists, biochemists and control engineers by lack of a common language,. ..

In recent years there has been a growing interest in the modeling of penicillin fermen-
tation processes. There are at least two unstructured fed-batch models available in the
literature that pretend to describe the penicillin G fermentation in a more or less correct
way : the model of Heijnen, Roels and Stouthamer! and the one of Bajpai and Reufi?. In
optimizing the substrate feed rate a lot of work has been done on the second model®~6.
Starting from their structural differences, we shall give a detailed comparison of these
models from the control engineering viewpoint in another paper’,

In this paper we present for the first time the application of Optimal Control theory
to the model of Heijnen et al.l, in verifying the authors’ statement that the glucose feed
scheme s of crucial importance in oblaining high penicillin yields. As this model does not
fulfil all requisites for standard Optimal Control, we propose a sequence of new models—
that converges to the original one in a smooth way—-to which the standard techniques are
applicable.

The paper is organized as follows : Section 2 presents the original model of Heijnen
et al. and the modifications to make it suitable for standard Optimal Control, with the
statement of the complete optimization problem. We also formulate the basic conjecture of
this paper. Section 3 describes the optimal feed rate profile that maximizes the final amount
of product. In Section 4 we derive a suboptimal strategy based on the mathematical and
microbial knowledge, that is found to be a useful alternative for the optimal open—loop feed
rate profile and opens perspectives for more reliable model-independent control schentes.
Some conclusions are formulated in Section 5. Some theoretical results are presented in
the Appendices.

2 The model of Heijnen, Roels and Stouthamer and
the necessary modifications for Optimal Control

Let us first introduce some notations to be used throughout this paper :

¢ : time (hr)

S + amount of substrate in broth (mol) (Glucose)
X : amount of cell mass in broth {mol DM)

P : amount of product in broth (mol) (Penicillin)
G : total broth weight (kg)




: input substrate feed rate (mol/hr)

u
C, =y /G substrate concentration in broth (mol/kg)

Cy 2 x /G cell mass concentration in broth (mol DM/kg)

Cy : 2 P/G product concentration in broth (mol/kg)

sr : feed substrate concentration (mol/kg)

a * total amount of substrate available for fermentation (mol)
o : specific substrate consumption rate (mol/mol DM hr)

I : specific growth rate (hr~!)

fherit : critical specific growth rate (hr=1)

B : Dabes constant (hr=1)

™ : specific production rate {mol/mol DM hr)

Te : net rate of COy conversion {mol/hr)

Tn : net rate of nitrogen source conversion (mol/hr)

To : nef rate of oxygen conversion (mol/hr)

Tsu : net rate of sulphate source conversion {(mol/hr)

@ a.mazx : maximum specific sugar uptake rate (mol/mol DM hr)
Qp,maz : maximum specific penicillin synthesis rate (mol/mol DM hr)
K, i Michaelis constant for sugar uptake (mol/kg)

Mg : maintenance constant (mol/mol DM hr)

ky, : penicillin hydrolysis or degradation constant (hr~!)

Yijs : cell mass on substrate yield (mol DM/mol)

ol : product on substrate yield (mol/mol)

2.1 The original model of Heijnen et al.

Heijnen et al.' used the following steps in the construction of a simple unstructured model
for a fermentation process with product formation {e. g. penicillin G) : definition of re-
levant compounds in the penicillin fermentation, formulation of clemental balances and
the enthalpy balance —one of the most interesting features of this approach-—, formulation
of mass-balances and the weight—balance, selection of the kinetic equations—in this case
based on a literature survey—. Their research resulted in the {ollowing continuous—time
model which they believe to be of great possible help in the optimization of the process :

s ,

—E = —gX +u (1)
dX .

T ¥
ap .

G _ 1 00008G — 0.044r,

dt sp

+ 0.068», + 0.392r,, + 0.032r, + 0.687 X (4}




In the last equation, terms with a positive sign are due to the input of respectively
glucose, nitrogen source, sulphate source, oxygen and precursor. Terms with a negative
sign represent respectively evaporation and carbon dioxide production. For more details

see Reference 1. _
The specific substrate consumption rate is given by a Monod-type® relationship :

C,s
o= Qs,marm ’ (5)

Hydrolysis of penicillin to penicilloic acid is modeled by a first-order reaction. The spe-
cific production rate is assumed to be growth—coupled, and is modeled by a Blackman-type®
relationship—note that the original Blackman—kinetics specified g as a function of C,— :

_ ﬂ-/#‘crii for S Perit
1'('(,Ua) - Qp,ma:r{ 1 for Jis > Herit (6)

As a consequence of balancing, the specific growth rate is then defined by :
p=Yops(o —m, — 11'/1/;,/3) (7)

which represents an endogenous metabolism.

Table 1 shows the parameters and initial conditions—denoted with a subscript “z”—we
have used in all simulations. The expressions {or the rates »., r,, r, and r,, can be found
back in Reference 1.

parameters

Q,,maz | 0.0245 | Q,,maz | 3.3 10

K, 0.0056 || zcir 0.01

Yo/s 3.67 ky, 0.002

Yoss 0.46 sF 1/0.36

M, 0.0034

tnitial conditions

Xo 4000 So to be specified
Pg) 0 Gg 98020 + S@/S]T‘
to 0 o 205500

Table 1 Parameters and initial conditions used in simulations

2.2 Statement of the optimization problem

Let us now turn our atfention to the structure of f. Equation (5) tells us that o is a
function of C, only. Substitution of equations (5) and (6) in equation (7) delivers an
implicit relationship between g and C,, the solution for x of which could be used in
equation (6). We conclude that the three specific rates o, g and 7 are functions of C, only.
Figure 1 shows the result of these manipulations. As 7 has a discontinuity in the derivative
with respect to p for p = porir, it is quite clear that m as a function of €, exhibits a corner
at the corresponding value of €y, say C| ...




Figure 1a The specific rates o and i as functions of C,
Figure 1b The specific rate w as a function of C,

Remark that in the right-hand side of equation (4) all terms except the first one—
representing the input of glucose—have negligible influence on the dynamics and final

value of the most interesting variable P £ P(ts). All simulations were carried out using
the routines DOZEBF and DO2FEHF from the NAG-Library on a VAX-VMS machine. For
instance, for Sy = 5500 mol and a constant input « = 1000 mol/hr during 200 hours, one
obtains P; = 3001.12 mol using the complete equation for G, and a value which is only
0.03% smaller when using only the first term. N
This can be seen as follows. As the specific rate w is a function of C, only, the time
evolution of P can be calculated from equation (3), if we have a differential equation for

a, :
i, _1ds_c.de
i Gdt Cd (8)

For m out of saturation, typical orders of magnitude are : C, = O(107?), x = 0O(107%),
7 = 0(107*). Using the exact expressions for the specific rates v, r,, 7, and r,, {Reference
1} in the right-hand side of equation (4), it can be seen that under these conditions, the
second most important contribution comes from the term representing evaporation. So the

above equation can be written as follows :

dC, Csu
= —oC, + {1 — —)—= + 0.0008C, + Lo.t.
a - ol g Tho (®)
With u in the order of magnitude of 1000 mol/hr, it is clear that the term 0.0008C, has a
negligible influence on the dynamics of C,.
So in optimizing the glucose feeding policy, we neglect all these terms to simplify the
analytical development and our model reduces to :

ds -

E = —‘O'JX +’IL (10)
dx i

e 1 X (11}
dP

— = "X kP (12)
G 1 ”
dt n 3;;‘u ( )

Another advantage is that we can take care of an isoperimetric constraint on the input
without introducing an exira equation, as we shall see further on.
An obvious choice for a state space vector is given by :

Faal S
oz jal| X

X = e || P (14)
Ly G




and with the definition of :

h - —0X by 1
| ]2 pX | b2 1 0
=157 aX kP b=l | =] o (15)
f‘l 0 b4 ]-/SF
we obtain the following state space model linear in the control u :
%;:— = f(x) + bu (16)

Remark that, due to equation (7) :
f2 = E/a(—fi - m.sX - (f3 + kiap)/lfp/s) (17)

Numerical values for the initial conditions are mentioned in Table 1. 2,5 and 3, are
given, 210 and 249 are related by :

z40 = G. + 210/5F (18)

where G, denotes the given initial weight without substrate.

The optimization problem we consider in this paper is to determine for the given set of
differential equations (10)—(13) the optimal feed rate profile that minimizes the performance
index :

A
J{u) = g(x(t))) = —P(ty) (19)
i. e. maximizes the final amount of product, subject to the following constraints :
oty =0, t; = free
e all variables have to be kept positive, 1. e. for all ¢ in [0,4/] :

w;(t) >0, forz=1,...,4 u(t) > 0 (20)

e the initial amount of substrate =,y is free; the initial conditions @, and z,4 are
only constrained by equation (18). In other words, some initial conditions can be
manipulated to minimize the performance measure, so (19) should be replaced by :

J = J(u,%0) = g(x(ty)) = —za(t) (21)

¢ the total amount of feed is fixed, i. e. :
¢
zro+ [ u(t) dt = a (22)

g

Notice that the last isopertmetric constraint on the input is equivalent to a physical
constraint of the form — due to differential equation (13) — :

Ty = G(tf) = Gf, GJ’ fixed (23)




2.3 A modified model and the basic conjecture

As mentioned above, some partial derivatives 8f;/0z; are not continuous. So we cannot
apply standard Optimal Control theory—see e. g. Reference 9. To circumvent this problem,
we shall replace the piecewise-smooth Blackman-kinetics () by a family of completely
smooth curves that converge as a function of one parameter to the original kinetics.
Consider the following relationship between g and w, the Dabes—kinetics® with A and
B parameters—note that the original Dabes—kinetics specified C, as a function of y— :

Br
= Am 4 24
# Qp,maa: — ( )
or, in another way :
AW? - (QPJ““??A + B + ,'l’)ﬂ— + Qp,ma:cf—" =0 (25)

Solving this quadratic equation for m and taking the negative sign—as for p == 0 we
want 7 = 0 as in the Blackman—kinetics—leads to :

(Qp,ma:rA + B + ,(L) - \/(Qp,maz:A + B -+ 1”')2 - 4AQp,murp’
w(p) = 94 (26)

We now eliminate one parameter, say A, by solving :

dr Q
- _ 0 — rnaxr 2 7
dp‘ (P’ ) HEerit ( )

which imposes that the derivative of 7 for g = 0 must be equal to the value given in
equation (6). The solution is :

Heorit — B
A=r— 28
Qp,mﬂ:c ( )
and thus we obtain :
(I—L + ﬂ'crt'l) - (IL + ﬂcrit)z - 4(ﬂcri! - B)ﬁ
"T(Ju') = Qp,max \/ (29)

2(”’@1’( - B)

which is the desired family of smooth curves, where B is the only parameter that must le
between 0 < B < frerisr.

Let us consider now the boundaries for the parameter B. For B — g, A tends to 0,
and the above equation becomes undetermined. However, solving the original Dabes-ki-
netics (24) for 7 with A = 0 delivers the following Monod-type law :

'H’
T = mar~ 30
(#) Qp‘ ,—LCI‘I‘! + ]J, ( )

which is of course also a completely smooth relationship.



On the other hand, as B — 0 we obtain readily :

ﬂr + ﬂ'crl! V (F’ I'LC“! 2 Q Jynazx
d ( 4 Herit— | Mo ey |) (31)

ziu'crlt 21'1'crlt

Ti'(pl.) = Qp,mu:c

which is in fact another form of the Blackman law (6).

So we can refine the boundaries for B to 0 < B < py. We conclude thai we have
constructed a one-dimensional family of curves—and thus a family of models—that are
completely smooth within the glven boundaries of the parameter H, thus assuring the
continuity of 8f;/8=; for all i and j. Moreover, as B > 0, we come arb:tramly close to the
original model. In Figure 2 we show some members of this family for different values of B.

Figure 2 Dabes—kinetics w(p) for some values of parameter B

Obviously, we can determine the optimal control u(B,t) for every B within the given
boundaries, using standard optimal control theory. For the original model—corresponding
to B = 0-—we shall have to calculate the optimal control in another way, The following
conjecture indicates how we can do that.

Conjecture 1 Suppose that we have a convergent sequence of models M(p) — p denotes
a set of paramelers — i. e. :

limp . p, M(p) 2 M,

Suppose that for every model M(p), with p # po, we can determine the optimal conirol
u(p,t) that minimizes some cost index J(u) with standard optimal control theory.
Then the sequence of oplimal controls u(p,t) is convergent, i. e. :

. A
Limy_pau(p,t) = up(t)
Moreover, this limit ug(t) is the optimal control for model My minimizing J (u).

This conjecture seems somewhat trivial if we can obtain the optimal control for the limit
model in a direct way. However, it provides a useful methodology in calculating optimal
controls for models to which standard techniques are not applicable.

As we shall see further on, setting B = 107! in equation (29) is a very accurate ap-
proximation in simulating the original Blackman-kinetics (6). The results of a simulation
with a constant feed rate profile are shown in Figure 3. With S, = 5500 mol and ¢ =200
hr, u(t) = 1000 mol/hr according to constraint (22). The final amount of penicillin s
P(t;) = 3001.1 mol.

Figure 3 Constant glucose feed rate and corresponding cell, glucose, product, i1 and 7
profiles




Some comments are in order here. As Heijnen et al. remarked, the simulation results for
S(t), X(t) and P(t) are obviously in agreement with the classification of the penicillin fer-
mentation in the group of product formation processes of the non-growth-associated type.
In agreement with the experimentally observed behaviour, the penicillin fermentation pro-
cess behaves as a biphasic process : a growth-phase (tropophase) of rapid cell growth and
almost no production, followed by a production-phase (idiophase) with almost no growth.
However, Heijnen et al. obtained this separation in their model on the assumption of a
direct coupling between specific production rate and specific growth rate—equation (6)!
The p and 7 profiles in Figure 3 illustrate some of these ideas. Heijnen ef al. conclude
that the biphasic behaviour of the penicillin fermentation does not necessarily mean that
penicillin is of the non-growth-associated type, as with their model they can describe most
of the phenomena observed in practice. It may be clear that this discussion belongs to the
field of microbiologists and biochemists. However, from the mathematical point of view,
the commonly observed separation between growth and production phase is a quite useful
feature in optimizing the process.

3 Optimal Control of the modified model

In this section, we derive the optimal control u(B,¢) for the given optimization problem.
The methodology developed below can be used for every B in 0 < B < p,. However, as
indicated in the previous section, we are especially interested in the optimal control for B
approximating zero. The uncommon optimization of some initial conditions of the state

shall be included.
3.1 Statement of the control problem
The Hamiltonian H for this problem is given by
H = AT(f(x) + bu) 2 ¢ + Yu (32)

where A is the 4 x 1 vector of adjoint variables. The superscript “T” denotes the transpose
of a vector. The scalar functions ¢ and 3 are given by :

d=Mfi+ X efa+Asfs P =A+ Ai/fsp (33)
The adjoint vector A satisfies the following system of differential equations :

dx  on 9"

P T M (3
or .
/\‘l ~8f|/8:n1 -“afz/a:ﬂl —8f3/6$| 0 /\;
AZ . o """I-L —T O /\'2
);3 - 0 0 kh U A;j (35)
,\‘1 —8f|/32}4 —6f2/8371 —3_]‘&/63“ 0 A;|



Note that in order to compute 8f;/8z, and 8f;/8z4, i = 2,3, we need O/, and Opu/8zy,
which can be calculated by substituting equation (29) in equation (7) and taking the
implicit derivatives with respect to z; and z,.

Together with the state equations (16), we obtain a system of 2 X n first order differen-
tial equations—where n denotes the dimension of the state vector x—which requires the
specification of 2 X n boundary conditions.

These can be specified as follows :

e z24 and 23 are given

210 and 24 are interrelated by equation (18)

e 2, is given due to equation (23)

e X\ t=1,...,3 are given by — with g specified in (21) —:

0
Aig = 55%('51) . (36)
which gives :
A1 g 0
Aoy | = 0 . (37}
Az, s -1

Tt should be clear that we need still another boundary condition, as ;4 and z44 arc
not given explicitly. It can be shown {see Appendix 1) that the missing condition is given
by :

1!)(0) = /\1’0 + }\4_0/81? =) (38)

We call a control u(t) admissible if it satisfies all the constraints of the problem. All con-
ditions being necessary conditions, we can only obtain eztremal solutions (x*,A*,4") which
must be checked for optimality. An extremal control u*(t) follows from the minimization
of the Hamiltonian H over all admissible control functions :

min  H(x",A",u) = H(x",A",u") (39)
all admiss u
which is Pontryagin’s Minimum Principle'® for this case.
Remark that the Optimal Control approach gives rise to a two point boundary value
problem (TPBVP).
Since the state equations (16) and the cost index (21) are time-invariant, the Hamilto-

nian H remains constant along an optimal trajectory. As the final time £y is free, we know
that H = 0.



3.2 Optimal Control with bounded input and fixed initial state

As a first step in the solution, we shall solve the given problem subject to an additional
constraint on the input, and with the complete initial state being given. So suppose g is
given, say 210 = 0. As a consequence we have with (18) z40 = G, and condition (38) is
redundant. We also suppose that the control input u(t) is bounded, i. e. :

0 < u(t) < Unasz (46)

where U 15 given.
Because the Hamiltonian H is linear in the control u, we know by Pontryagin’s Mini-
mum Principle’® that our problem has become a Bang-Singular-Bang problem, i. e. :

Umar if 1)b <0
w(t) = { Uging HP =0 & It S by (41)
0 if¢ >0

On any singular interval [t;,¢:44] the function 4 remains zero, so the Minimum Principle
fails to provide the optimal solution. In that case, the singular control can be determined
as follows. As 1 = 0 for all ¢ in [¢;,8;41], all of its derivatives with respect to ¢ must vanish
on the same interval, i. e. :

% =0, i=1,2,..., for all ¢in [t;,ti41] (42)

S we differentiate the function 1 repeatedly until « appears explicitly. We obtain succes-
sively :

E‘% ~ ATh = n-,\Tg—ib 22Tq =0 (43)

%:de+AT%§k: —ATgfdeng(Hbu):O (44)

The last equation can be solved for %,y

AT((8F/8x)d — (8d/8x)f
sing(£) = . i’l‘(gd/ai)b/ g (45)

Note that in this case the denominator of the above expression is indeed different from
zero. For obvious reasons, we call this problem a singular problem of order 2. We wish to
emphasize that this quite compact expression represents a lot of analytic calculations on
the right-hand side of equation (16), as the partial derivatives of first and second order
with respect to all state variables are needed!

Note that both the numerator and the denominator are linear in the costate A. We
now show that on a singular interval, the optimal control is a nonlinear feedback law of
the state-variables only. In order to do so, it is sufficient to find three linear homogencous

10



equations in the costate-variables, so that any threc of them could be solved in terms of
the fourth one. These equations are :

Pp=ATb=0 (46)
% =A'd=0 (47)

as on the singular interval ¥ and di/dt are zero by definition. The third equation follows
then from the condition H = 0 for all ¢&:

p=21f=0 (48) -

For this particular model, it can be seen that A has disappeared from w,ing, as f1 = 0. So
the first equation can be omitted, and the last two could be solved as follows :

(4 EV(h)=-(5)~ (49)

05 0
,B,———blaxl-{*hgam‘l,%ﬁl,...,s (50)

The conclusion is that the introduction of an upper limit on u(t) and the specification

where

of the complete initial state reduce the optimization problem to the determination of the
optimal sequence and the corresponding switching times. Once this problem has been
solved, we shall tackle the original problem by letting U e — 00.

3.3 Computational algorithm

Our analysis is based on the work of Lim et al.*, bui we shall develop an algorithm without
the need for any costate variable at all. The determination of the optimal sequence of fed-
and batch-phases can be simplified a lot by thinking of the fermentation as a biphasic pro-
cess, as many experiments have shown : the process starts with the growth-phase, to pro-
duce as much as possible biomass X, and continues with the production—phase, to produce
product P as much as possible. The optimal switching time between these phases—given
the total amount of input available for the fermentation— is obviously dictated by a trade
off between the gain in product P by increasing the biomass X, and the gain in P by
oplimizing the specific production rate . This can be seen readily from equation (12). In
other words, during the first phase we shall pay attention to the specific growth rate p,
while during the production we shall focus on =. Observe that this reasoning is more or
less independent of the specific expressions for and .

We shall derive now the optimal control sequence in a more or less heuristic way, based
on microbial insight. Some more mathematical evidence for the following line of reasoning
shall be given later on. In the most general case of low initial values for S and X, it is clear
that on ¢ = £, the control must take on its maximum value © == U,uz, a5 f¢ is monotonously

11



increasing with C,. At some instant ¢ = ¢, the control is set equal to its minimum value
u = 0: this allows the substrate concentration C, to reach its lower optimal value to start the
production at ¢ = ¢,. The basic idea behind this is the following. During the production
phase, we may expect w to be in the neighbourhood of its maximum value @pmaz. As
we focus on production and not on growth, it follows from equation (6)-—or equivalently
equation (29) with B near to 0—that s shall have to decrease to the neighbourhood of
ft = porit. Obviously this can only be done by decreasing C,. Whatever the optimal
concentration C, during production is—we shall see in Appendix 2 that in general it is
time-varying—, we may expect that the quite specific C,(t)-profile cannot be achieved by
a simple Bang-Bang control. So at time ¢ = &, the singular control u,, must take over.
As the final time #; is free, we must look for another stopping condition. We remark that
the total amount of input is fixed to a—equation (22), so the singular control is stopped
when the terminal constraint z,; = G (23) is met, say at time { = {3. Remark that
we have taken for granted that the upper bound Upng. is never violated during singular
control. As there may be still some substrate in the fermentor, the fermentation continues
in batch—-mode—u = 0—until dP/dt becomes 0, i. . until the net penicillin formation rate
becomes 0.

Let us first formulate some remarks. It should be noted that the time £, has a clear
physical interpretation : Upar X £y represents the amount of feed consumed in the growth—
phase. Secondly, remember that the singular control is a nonlinear feedback law of the state
variables only, so it is not necessary to guess any costate variable at £ = £,. The conclusion is
that the introduction of mathematical and microbial insights into this particular problem
has transformed the TPBV P which is difficult to solve in general, into a simple two-
dimensional optimization problem of switching times £; and £,.

We now summarize the above developments in a straightforward computational algo-
rithm :

e Make a guess of £, or equivalently, determine the amount of substrate reserved to
the growth—phase.

¢ Make a guess of {;. As we prove in Appendix 2, a good starting value is the time ¢
for which C,(t) maximizes w/o. Note that this value of C; can be calculated a priori.
When B = 0, this is equivalent to the time ¢ for which gt = popy (see Appendix 2).

o Integrate the state equations using the above determined control sequence and store
the value of the cost index J(u) (21).

o For the same guess of ¢, refine the value of {, by considering {200 = Laote & OF, with
&t as small as required. Save the time ¢, for which J(u) reaches its minimum.

e Restart the procedure with a new guess of ¢; in order to minimize J{u). For the
problem at hand, a linear search method for {; has been chosen.

12



3.4 Optimal Control with unbounded input and some initial
states free

Let us now return to the original problem, i. e. no upper bound on the input u(t), and ¢
and thus .,y undetermined. We show that in the above reasonings some minor modifica-
tions shall suffice. As a matter of fact, the upper limit Uypaz on the input—representing an
upper bourd on the feeding pumps—can be removed by installing more or larger pumps
to deliver the requested influent flow rate.

Consider again the above control sequence. The only place where the upper limit Upa.
is active is in the time interval {tg,t;]. Suppose now that the value of U, becomes larger.
As a consequence, the value of ¢ shall decrease. In the limit, when Upqax — o0, £ — 0,
and the control during growth becomes a Dirac impulse on t = 0% with an inlensity equal
to the amount of substrate reserved to the growth. This Dirac impulse in the origin can
be replaced by an equivalent set of nitial conditions with the same effects on future time
histories of all states. In other words, omitting the upper bound on the input leads to
the injection of all substrate reserved to growth at the beginning of the fermentation, the
growth phase becoming a batch-phase. Of course this is the way to achieve the maximum
amount of biomass X with a given amount of substrate, as Cy and thus p take their highest
possible values for all £ during growth. The equivalent set of initial conditions for this case

15

x, o which shall be optimized
34‘0 = G)k + 33[,0/3[?

In the above computational algorithm, the only modification is to replace the time ¢,
by the equivalent initial condition 1. Note that these two variables have indeed the same
physical interpretation mentioned earlier!

3.5 A related problem

We have now solved the given optimization problem as a limiting case of a Bang-Singular-
Bang problem. Let us now Jook to a third related problem that can be solved with the same
computational scheme. As we shall see in the simulations further on, the unconstrained
optimization can give rise to a quite high initial value 2, and thus C,p. In practice, this
may lead to a lot of undesired effects, e. g. a solubility problem, an inhibition problem,
unproductive side-reactions,...thus suggesting the need for an upper limit on C,, say
C'y maz- The best we can do in that case is to start the fermentation with C,q = Csmaz, OI
in other words :

8 FCS‘"!(IIGk

131,0 el WSF—O (51)
)]
B = g (52)

During the growth-phase we then apply a control—a Zulauff '' process—that keeps C, on
its maximum value C, s, thus assuring the highest possible value of p. This control is
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derived as follows. We must have :

dc, _ d(S/G) _
i - d (53)

With equations (10) and (13) we obtain :

spoX

u _
growlh
§p Cs,ma:l:

which is the desired control in closed-loop form. This control is terminated at time t = ¢,
which has exactly the same meaning as mentioned above. We conclude that a state in-
equality constraint of the form

(54)

C,(t) = g%% < Csrmar (55)

introduces no additional complication in the developed numerical scheme.

3.6 Mathematical justification of the proposed algorithm

Before giving some simulation results, let us pay some more attention to the mathematical
justification of the derived control schemes. As an example, we shall treat the original
problem—no constraints on u or Cj.

We know that along an extremal {rajectory the Hamiltonian H = 0 for all £, Since—as
indicated by the developed control scheme—the product ¥(¢)u(t) = 0 for all £, we also
have ¢(t) = 0 for all £. At the terminal time ¢;, we obtain with (33) and (37):

filts) =0 (56)
or in other words: P
o =0 (57)

a result we have already derived from physical arguments.

An extremal trajectory is completely defined by the couple (S'Q,E-z)‘“‘”the superscript
“~? denotes values obtained with our algorithm. The unknown times {3 and £; result then
from a simulation. In fact we must verify, for such a trajectory to be an extremal one, that
all necessary conditions are fulfilled. As we already mentioned, we did not make any use
of the costate vector A(t) in the computational algorithm.

Therefore, the following conditions must be satisfied by the trajectory generated by

(S0,4):
e at t = ty, the costate A(t;) must satisfy the boundary conditions {37).

o the Hamiltonian H must be equal to zero along the whole trajectory, or in other

words:
¢ = 0 forallt
¥ = 0 on the singular interval
i > 0 for all ¢ where u{t) =0
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Let us describe now how to verify these conditions efficiently. Suppose for some Sy we
have found the corresponding ¢, with the above algorithm.

o As a simulation result we obtain £ and &; together with x(£;), x(£3) and x(i;).

o At t = £, the control switches from u(fy) = w,ing to u(fF) = 0. This causes a jump
in X(t3), but all states and costates remain continuous. Therefore, we can approach
{3 from the left and calculate all costates from the singular conditions.

- the third equation of the costate-system (35) together with the third terminal
condition (37) delivers: _
Aa(t) = —eknlt=ts) (58)

s0 Aa(fs) is known.

- Ai(£3) and Ay(£3) follow then from (49), Ay(£a) follows from (46).

o Integrate the state-equations (16) together with the costate-equations (35) using
(58) from &3 to £; with u(t) = 0. Verify if ¢(f) = 0 and (¢} > 0. Verify also the

terminal conditions (37) on the costate.

e Along the singular interval [£s,£3] we calculated the complete costate out of ¢ = 0
and ¥ = 0, so H = 0 by definition. We obtain the costate on £ = f5 in the same way
as on £ = 53.

e Integrate the state-equations (16) together with the costate-equations (35) using
(58) backwards in time from 3 to £y = 0 with u(t) = 0. Verify if ¢(t) = 0 and
P(t) > 0. Verify also all conditions on ¢ = ¢,.

Note that the above conditions could be seen as a test on the accuracy of £, for a given S,.
It should be clear that the number of extremal solutions is in fact infinite : one for every
S, considered fixed.

We shall now consider the question whether an extremal trajectory is opttmal. Sup-
pose—as we shall demonstrate further on—there exists a unique, optimal couple (Sg, ;).
Consider then S, in the neighbourhood of Sj as a fized initial state. Then we know that
condition (38) is redundant as the complete initial state x(¢y) is known. If we determine
the corresponding £, with the above algorithm, then the resulting trajectories (}"C,i,ﬂ)
shall satisfy all necessary conditions, in particular—as a test on the accuracy of f,—the
Hamiltonian H must vanish along the solution. The conclusion is that for 5’0 fized in the
neighbourhood of S, the extremal control #(t) obviously is the unique, oplimal control,
as there are no degrees of freedom except ¢!

Of course, we have tacitly assumed that the previously determined control sequence
Batch-Stngular-Balch is the optimal one. This is correct, because :

e the last phase must be a batch-phase, as we have shown above.



¢ there is only one singular interval [£3,¢3}, which cannot be left unless the isoperimetric
constraint (22) on u is met. In other words, the singular control is not interrupted
by e. g. a batch-phase. This can be explained as follows. Suppose the hydrolysis
ki = 0. Then it is not difficult to prove that the singular control keeps C, on a
constant value, e. g. for B = 0 C, = C, i corresponding to p.i—see Appendix
2. Any batch-phase shall move the state away from the singular hyperplane, and it
may even cause dP/dt to become negative. To bring the state back to the optimal
production conditions Cy; = C, i, 1. €. to the singular hyperplane, it shall take a
certain amount of control energy which is then lost for the production itself, thus
resulting in a higher value of the cost J(u). For hydrolysis kj positive, Appendix 2
tells us that C, is not constant during singular control. However, it is clear that the
above line of reasoning shall still hold, noting that a batch—-phase always generates a
decrease in C,.

o it is in fact possible that for some .‘;'0, the switching time £, is equal to 0. In other
words the initial state lies on the singular surface, and the production may start
immediately. Obviously, this shall be detected correctly by the proposed algorithm,
as it is only a special case of the derived conirol sequence.

Keeping in mind that the number of extremal solutions is infinite, how can we detect
the optimal solution for the problem with a free Sy 7 We propose two methods to determine
the optimal S; and then the optimal control. As a first method, one could make use of the
necessary condition {38). The optimal S; obviously is the one for which this condition is
satisfied. However this approach has some drawbacks :

- the costate A(t) must be calculated for every guess of Sy and ¢;. This can be done
with the method we described above, but it implies a lot of additional computational
work.

- extensive simulations have shown that the calculation of the costate on ¢ = ¢, poses
some numerical difficulties. As a matter of fact, the proposed condition seems to be
a bad criterion to detect the optimal solution.

Therefore, in the last step of our algorithm, we simply look at the cost indez J{(u)
itself. Simulation has shown (see Section 3.4) that the relation J(u) versus Sy looks like a
quadratic function, so that its optimum could be detected by e. g. a simple linear search
method for Sy, Another consequence of this quadratic behaviour is that we are able to find
a global optimum for this problem!

3.7 Simulation results

Remember that the aim of this paper is to verify the statement of Heijnen et al. that
the glucose feed sirategy is of crucial imporlance in obtaining high penicillin yields, This
statement was based on the following set of controls : a constant input, a linearly increasing
input and a linearly decreasing input. The initial state was fixed, the final time and the
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total amount of substrate were fixed too. The next table summarizes the results we have

obtained using the NAG-routine DO2EHF.

Operational conditions

So | 5500 1 Py {0

X, 14000 | G | 100000
ty 1200 | « 205500
Control u(t) Py
u(t) = 1000 3001.
u(t) = 500 + 5¢ 5883.
u(t) = 1500 — 5¢ 89.
Table 2 Simulation results with the controls of Heijnen et al.

Although Heijnen et al. did not consider other feeding strategies, the above results
indicate that the present model allows for the optimization of the glucose feed rate scheme
with respect to the final amount of product Py.

Let us present now some results obtained with our algorithm. We shall focus on
B = 10! as an approximation of the original Blackman model, and on the other extreme
B = 107% where m{p} becomes a Monod-law.

In Figure 4, we have visualized the actions taken by the described optimization algo-
rithm for B = 107!, For every Sy, we determine the optimal £,. As a consequence, we
obtain the corresponding values for P(t;) and {;. Clearly, the optimal couple (S5,3) is
the one which maximizes P(f;). Observe the quadratic behaviour of P(f;) as a function
of Sy, so we have indeed a unique oplimal solution for this problem.

Figure 4 Ezxtremal values for P(tf), t, and t; as functions of Sy for B = 107!

Note that there exists a lower limit S,,in on the possible values for Sy, corresponding to
¢, = 0. In that case, the complete state lies on the singular hyperplane, so singular control
starts immediately.

The results for Sy near to its maximum value o are presented in the following table:

Sg ty t3 t] P]

200000 | 68.064 | 69.373 | 69.440 | 2962.88
205000 | 68.384 | 68.501 | 68.568 | 2795.38
205500 { 68.482 | 68.482 | 68.482 | 2778.63

Table 3 Eztremal values for Sy near o for B = 107*!

We note that the last row corresponds to a complete batch—fermentation : t; = £y = {,.
For every t, u(t) = 0. Remark also that even for these large values of Sy, the condition
dP/dt = 0 is never met before t = ty, so we can indeed apply our algorithm {o the whole
possible range {Smin, @] for Sg. As a consequence, the initial guess for Sy may be far from
the optimal one. Some numerical values for the optimal control are:
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Go [ 99100 | ¢, | 22.321
So | 3000 | &5 | 349.987
X, | 4000 | ¢, | 350.101
P |0 P, | 8319.461

Table 4 Optimal Control results for B = 107"

Figure 5 Optimal glucose feed rate and corresponding cell, glucose, product, ® and p
profiles for B = 107

Figure 5 shows the corresponding time profiles. Let us draw the following remarks. First
of all, we note that the initial amount S, is rather low, resulting in a small batch—phase of
99.39 hrs. In fact the singular interval takes most of total fermentation time. The termina-
ting batch—phase is negligible small. From the profiles for X(t) and P(t) we conclude that,
although the optimal control algorithm is based on the conjecture of a biphasic process,
this biphasic behaviour has disappeared almost completely, compared with e. g. the results
for the constant strategy of Figure 3. Principally this is due to the structure of the specific
production rate 7, which makes it possible to produce at the highest specific production
rate for ft > flerit, in other words the production is assumed to be growth-associated.

Remark that on the singular arc, the control seems to maintain g at the lowest possible
value—i. €. pepip—which still guarantees the maximum value for w. In fact we know that
during singular control C,(t)—and thus p(t) and w(t)—are time-varying as ks # 0—sce
Appendix 2. However, ky, is so small that the resulting variations in C,—and thus in g
and T—are in fact negligible so that they cannot be detected on this plot. The preceding
batch—phase is used to bring g to its optimal value for production. It is important to sce
that the optimal control keeps m on ils highest value for all ¢ < ¢5. This shall be the basis
{or the construction of suboptimal profiles in the next section.

In order to evaluate the performance of the Optimal Control u*(t), we need some
reference. As we do not penalize the total fermentation time ¢; in the cost J{u), a good
choice might be a constant control with ¢f = ty, t; denoting the optimal fermentation time.
As for convenience, we take Sy == 0 mol. Then we define a gain <y as follows :

J(u") = J(Wrep )i =t
J(uref)!!zl}

For B = 107!, a constant control during 350.101 hrs with Sy = 0 produces 1981.283 mol
penicillin. So for the Optimal Control u*(t) we obtain a gain of 319.9 %! Remark the
enormous increase in the final amount Py, which may suggest some questions concerning
the validity of the model of Heijnen et al. As up to now the penicillin—fermentation has been
recognized through all experiments as art intrinsically biphasic process, it scems somewhat
unlikely that the obtained control put into practice would result in a quasi monophasic
fermentation, producing such a high gain. We conclude that the obtained results suggest
some possible shortcomings in the model we have used in this work. A deeper study of
this model in comparison with the model of Bajpai and Reuf? is the subject of another
paper’.

(") £ 100 x % (59)
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We now give the analogous results for the other extreme B = 1072, in order to
demonstrate that the developed algorithm can be applied to every model with B between
0 < B < firit- Figure 6 shows the evolution of {5, and thus P(t;) and ¢y, as functions of
S,. Remark that the optimal couple (Sg,¢;) corresponds to ¢; = 0, in other words the op-
timal initial state lies on the singular hyperplane itself. As a consequence, the separation
between growth- and production-phase has disappeared completely. This is also illustrated
by the time profiles of Figure 7.

Figure 6 Estremal values for P(ty), t» and t; as functions of So for B = 1072

Note that in this case the lower limit Sp;, is equal to the optimal value 5. The
following table shows the results for So near to its maximum value « :

Sg ta tq t_( Pf

200000 | 67.833 | 69.114 | 69.184 | 2505.80
205000 | 68.152 | 68.267 | 68.335 | 2442.59
205500 | 68.252 | 68.252 | 68.252 | 2436.26

Table 5 Eztremal values for Sq near o for B = 1072

Note again that the condition dP/d¢ = 0 is never met before t = t5, so we can indeed
apply our algorithm to the whole possible range [Symin, @] for Sp.
Some numerical values for the optimal control are:

Go | 98137.36 [ & |0

S. | 326 ts | 277.205
Xo | 4000 t, | 277.320
P |0 P; | 4564.455

Table 6 Optimal Control results for B = 1072

Figure 7 Optimal glucose feed rate and corresponding cell, glucose, product, = and p
profiles for B = 1072

Remark that on the singular arc, the variations of 7 and g and thus of C, with respect
to time are more pronounced, although ky has not been changed. We conclude that the
model structure itself plays also an important role in the amplitude of these variations.

A constant strategy during 277.320 hrs with Sy = 0 mol produces 1978.425 mol peni-
cillin, so the gain for this case is v = 130.7 %.

As mentioned above, we could repeat these calculations for every B within the given
boundaries. The result for the optimal production Py is shown in Figure 8, as an illustration
of the basic conjecture of Section 2. From this plot we conclude that the sequence of optimal
controls u{B,t) is indeed convergent. Note also that for B < 107° the cost has almost
reached its limit value.

Figure 8 Optimal production Py as a function of B
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4 A heuristic control strategy

4.1 Derivation of suboptimal profiles

In this section, we propose a heuristic control based on mathematical and microbial know-
ledges. Some of the ideas are reported elsewhere®!?, We shall show that under certain
conditions this control coincides with the optimal one.

As there is no need for partial derivatives, the original model can be handled directly
without any difficulties. So let us begin with B = 0. Later on, we shall evaluate the results
for Bin 0 < B < perie.

The construction of a suboptimal profile is based principally on the concept of a biphasic
fermentation. For the control during growth, we refer to the previous section : all substrate
consumed for growth is added all at once at £ = 0 in order to obtain the highest possible
value of pi. Remark that for the given specific production rate (6) this results in maximizing
7 also. During production, we focus on the specific rate m. Equation (6) indicates that the
lowest value of g which still guarantees the maximum value of 7 is jt = prir. Note that
this is equivalent to C, = C, crit, 50 the control during production is of the form:

X
S_Fo—____ (60)

Uproduction = Sp— 03
maintaining C, and thus g on their critical values. As a consequence, the conjunction point
t, of growth and production is simply dictated by the condition:

C.s = Os,cril or = Herit (61)

The control is stopped at ¢ = t; when all subsirate is used. As in the optimal case, the
concluding batch-phase is stopped whenever dP/dt = 0.

Observe that this suboptimal control sequence agrees very well with the optimal one :
the only change is the substitution of the singular control by the above control that keeps
C, and thus st constant. Note also that the complete suboptimal control is obtained in
closed—loop for a given So. As a result, the optimization problem is reduced fo the one-
dimensional optimization of Sp.

It should be clear from the previous section and Appendix 2 that for B =0 and k, =0
this heuristic control coincides with the optimal one.

For values of B in the interval 0 < B < p.q it is less clear how to determine a
heuristic control during production as the specific production rate = {29) has no corner
point anymore. However, we shall still keep C, and thus g constant using a control of the
form (60). '

The switching from growth to production could be determined as follows. As a first
guess, we can still switch on C, = Coerit and thus g = p.;. However, we know from
Appendix 2 and Figure 15 that this guess is only appropriate for B near 0. For B near
tterit, we shall simply optimize the switching time £,, so we obtain again a two-dimensional
oplimization of Sy and t,.
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Before giving some simulation results, let us first mention some advantages of these
suboptimal profiles. It is well-known that putting an optimal control into practice may be
hampered by a lot of problems. If the control law is not obtained in complete closed-loop
form—as is the case here—, it cannot compensate for unmodeled disturbances, parameter
variations, ...Further on, as Optimal Control is a very model-sensitive technique, a feed-
forward shall not generate the predicted results. As long as a sufficiently accurate model
for the penicillin fermentation is not available, the determined profiles can be used only to
obtain a greater qualitative insight in the process.

On the other hand, the suboptimal profiles we present here are the translation of a more
realistic control objective, namely setpoint control, for which even adaptive control algo-
rithms can be developed. As suggested by e.g. Dochain et al.'?, one could keep p constant
without the knowledge of an exact analytic expression for it, so the algorithm becomes
model-independent. Further on, there would be no need for a complete measurement of
the state, a problem which has not been solved completely up to now.

4.2 Simulation results

First we present some results for B = 107!, in other words for the original model. Figure
9 presents the time profiles for the different variables. Some numerical values are indicated
in the following table:

Go | 99100 || ¢, | 22.337
So {3000 | t; | 350.037
Xo | 4000 | t; | 350.151
Py |0 Py | 8319.239

Table 7 Suboptimal Control results for B = 1071

Figure 9 Suboptimal glucose feed rate and corresponding cell, glucose, product, = and p
profiles for B = 1071
Figure 10 Suboptimal and Optimal glucose feed rate for B = 107"

Figure 10 compares the suboptimal and optimal control profiles. We conclude that for
the original model, the suboptimal control results almost coincide with the optimal values,
thanks to the low value of k.

For B = 1072, i. e. w(p) Monod, the results are summarized in Table 8 and Figures 11
to 13. We have done the optimization with both feyicn = ferit a0d fawiten considered free.
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Bawitch = Fcrit

Go | 100540 £, | 29.573
So | 7000 t3 | 292.890
Xo | 4000 ¢y 1292.995
Flo Py | 4399.589
Hawilch free
Go | 98380 || ¢, | 12.225
S¢ | 1000 i3 | 304.665
Xo | 4000 | £, |304.792
F o Py | 4553.437

Table 8 Suboptimal Control results for B = 1072

Figure 11 Suboptimal glucose feed rate and corresponding cell, glucose, product, n and p
profiles for B = 10" and powitch = Porit

Figure 12 Suboptimal glucose feed rate and corresponding cell, glucose, product, = and p
profiles for B = 1072 and powiten free

Figure 13 Suboptimal and Optimal glucose feed rate for B = 1072

Note that—in contrast with the optimal profile—for both suboptimal profiles there is
still an initial batch—phase. For ft,uitch = ferit the final amount Py reaches 96.39 % of the
optimal value. For g,y considered free we obtain even 99.77 %! These results sufficiently
illustrate the value of the developed suboptimal profiles for the whole range of B.

Before formulating some conclusions we first give a final remark. Although the only
model reported in the literature is the one with B = 0, we still mentioned some simulation
results for other values of B. First of all, from the biochemical point of view a sharp corner
in © at g = i, is of course only a first approximation of real life fermentation conditions.
So a value for B different from zero seems more realistic. Secondly, these results make it
possible to illustrate the convergence of the controls to the desired one following the basic
conjecture of Section 2, see e.g. Figure 8. Finally, they confirm the use of the developed
algorithms for optimal and suboptimal control not only for the original model, but for a
whole class of fermentation processes.

5 Conclusions

As mentioned in the introduction, the principal purpose of this paper was to present a
methodology in order to determine Optimal Control profiles for a certain class of piecewise
smooth models that cannot be handled in a direct way. As an example, the mathematical
model for the penicillin G fermentation of Heijnen et al. has been studied. As this kind
of models is not limited to the biotechnological field itself, it is clear that this procedure
can be of great use in a lot of other scientific domains. Further, we were able to include
the optimization of some initial states by considering the given optimization problem as a
limiting case of a problem with bounded input and fixed initial state. We believe that this
work has given also a contribution to three other fields.
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First of all, we verified the statement by Heijnen et al. that the glucose feed scheme is of
crucial importance in obtaining high penicillin yields. In order to do so, we determined for
the first time the Optimal Control profile for a well-defined optimization problem using
their model. We have shown that the obtained control generated the global optimum
of the performance measure we have considered. Simulation results indicate a possible
gain of several hundreds percents compared with a constant control input with zero initial
substrate amount !

Secondly, on the field of model building, the obtained results indicated some possible
shortcomings in the model used, without carrying out any costly and time-consuming
experiments. The combination of the enormous gains in production and the vanishing
of the characteristic biphasic behaviour through optimization, made us conclude that the
present model might be less useful for advanced control purposes than suggested by Heijnen
et al. However, we were able to prove some theorems for a quite large class of kinetics,
characterizing the singular control.

Finally, we presented a heuristic control strategy based on mathematical and microbial
knowledge that proved to be a successful alternative for the optimal control, for the whole
family of models we considered in this paper. We derived the conditions for which this
heuristic strategy coincides with the optimal control. It was pointed out that the subop-
timal controls can be calculated using essentially the same algorithm as for the optimal
profiles. This heuristic methodology is in fact, the translation of a more realistic control ob-
jective, namely setpoint control. It opens perspectives for the development of more reliable
and even model-independent control schemes.
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A Appendix 1

In this appendiz we derive some boundary conditions if the initial stale is not given in an
explicil way.

Consider a continuous dynamic system described by:
x = f(x,u,t) (62)

Let J(u) be the cost index to be minimized:
ty
J(u) = g(x(t;), t7) + f, L(x, u,t)dt (63)
1]

Then J(u) denotes the augmented cost, i. e. the cost to which the system differential
equations have been adjoined using multiplier functions A(t):

T(w) 2 J(w) + [t“ AT ()(£(x, v, £) — %)dt (64)

Now consider the variation in J{u) due to admissible variations in the control vector
u(t) for fixed time t,—see Reference 14 :

§T(u) = AT (to)sx(to) + ... (65)

where only terms on { = {; are mentioned. For an extremum, §J must be zero for any
admissible §u(t). Remark that the range of admissible control variations éu(t) is not
influenced by any constraint on the initial state x(f;). As a consequence, all necessary
conditions on times ¢ > ty to make 8J(u) vanish, shall still hold independently of the
constraints on x{ty).

For a fized initial state x({y), we have 6x(ty) = 0 and the term disappears from 8J. For
a free initial state, there shall be an optimal value for x(¢,) such that §J = 0 for arbitrarily
small variations of x(£y) around this value. As a consequence, we must choose:

Mto) =0 (66)

Of course, for some initial state z;(y) unspecified, the others given, we must have the
corresponding A;(fy) = 0.
Suppose that on ¢ = £, the initial states are only determined by a set of constraints of

the form:
NLEED

h(x(ty)) =0 (67)

ha(x(to))
Clearly, & < n where n denotes the dimension of the state x. We suppose n to be

greater than 1, as for n = 1 the initial state is completely defined by the scalar equa-
tion A(z(ts)) = 0. Remark that for & = n the initial state is also completely determined by
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the given constraints. For k > n there are (k — n) redundant conditions. So we focus on
the case k < n, where we have to find (n — k) additional conditions on ¢ = fo. These are
derived as follows.

Introducing a kX 1 vector v of constant Lagrange-multipliers, we adjoin the constraints
to the augmented cost function—for simplicity we shall use the same notation J(u)—to
obtain:

T(u) = AT (te)x(to) + vTh(x(to)) + ... (68)
As before, we only concentrate on terms at t = ¢;. Then the first variation of the cost
becomes:

5T () = (\T(to) + yT—g-l}—z(tO))b”x(to) ... (69)

where Oh/8x denotes the & x n Jacobian matrix. Obviously, to make the term in §x(to)

disappear, we must choose:

Ato) + %T(to)u =0 (70)

These are n equations to determine the k Lagrange-multipliers »; and the (n—k) additional
boundary conditions.

As an example, consider the optimization problem given in the text. We have:

zo{to) = a0
z3(le) = 230

mq(to) = G,i + CL'l(tg)/SF
So the vector h for this case is—n =4 and &k = 3:

Ez(to) — &0

h(x(to)) 2 ( za(to) — 3.0 ) =0 (71)
) s — G.

z4(to) — z1(to

0 %1/5[:
00 it
0 1 v

A;(tg) + A‘;(to)/S{:‘ =0 (73)
which is the additional equation we are looking for. Remark thatl v, and v, and thus
A2(ty) and As(ty) remain undetermined, as @2(to) and zy{to) are given explicitly! vy is only
implicitly needed.

and we obtain:

A1(to) 0
Ao(to) | 1
Alte) | (0
Aa(to) 0

Or, in other words:
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B Appendix 2

This appendiz summarizes some properties of the stngular control of the problem handled
in the fext.

We consider a fermentation process described by the following equations :

dx
i f(x) 4+ bu (74)
where
1 S
T X
x= g o P (75)
Ty G
and
fl —oX bl 1
| f2 ]2 nX b | a 0
=15 17| »x-tp b=1 4 | =] o (76)
fa 0 by 1/sp
The cost index is given by :
A
J(u) = g(x(ts)) = —P(¢s) (77)

where the final time ¢, is free. For the complete set of constraints and an explanation of
all symbols used, we refer to the text.
The specific rates are specified as follows :

C.
o = Qs,murm (78)
For 0 < B < fterie we have :
‘.T(p,) _ Q ([Ja + [Lcrit) - \'/(.u' + .pu'crl'li)2 - 4(ﬂcrf:‘. - B)PL (79)
panar 2(#’”‘“ _ B)
which reduces for B = g to:
7

™ = Q wax 80
(#) f Herit + H ( )
B= Yr/s(g — My — W/YPIS) (81)

[t was shown in the text that within the given boundaries of parameter B, o, g and =
are continuous, smooth functions of C, = S/G. For B = 0 we oblain the model of Heijnen
et al.—with the simplified G-equation. We now prove the following theorem, which is a
generalization of a result obtained by Modak et al.'®,
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Theorem 1 Consider the given system (74) with performance indez (77). Suppose that o,
p and w are functions of the substrate concentration C, only, with continuous dertvatives
up lo second order. Suppose also that the maintenance coefficient m, s strictly positive.
Then during singular control, the substrate concentration remains constant if and only if
the hydrolysis ky, = 0. This constant value mazimizes the yield /0.

PROOF

In the following, a prime denotes derivation with respect to substrate concentration. The
Hamiltonian H is given by : ‘

H=¢+9pu=0 (82)
where
¢ = (=10 + Agp 4 Agm)@2 — Askpza (83)
and ’
P =2+ M/sp (84)
The adjoint equations can be written as follows :
A = (Ao’ — Appt - Ay a2y (85)
Ay = Ao — Aopp — Mg = —{(¢ + Ashknzs) /2y (86)
A3 = Asky, (87)
A= —(Ayo’ Aot — Mam')zy 2y 2] (88)

On the singular interval, we know that ¢ = 0, ¢ = 0 and P =0, or:

— AIG' + AQJLL + A;j'ﬂ' = /\3.’0},323/:1}2 (89)
/\1+/\4/3F:0 (9{])
1
(Ao’ — Qo' — M) (1 — —Zy =0 (91)
S Ly

The case /2y = Cs = sr can be excluded as C, is then unrealistic high during production.
So the last equation is equivalent to :

/\10', — /\2,&, - /\371" =10 ” (92)

Substituting these relations in the adjoint equations, one finds-—with C; a constant number:

/\| = G] (93)
5\2 = —khr\sm‘s/fﬂ'z = —/.\:5333/332 (94)
Ay = —eknlt-ts) (95)
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Remark that the differential equation for A has been solved with the boundary condition
Aa(ty) = —1 due to the given performance index. As we know from the optimal control
sequence that the product $(t)u(t) = 0 for all ¢, it follows from (82) that ¢ = 0 for all ¢,
so equation (94) holds for all ¢, with boundary condition Az(ts) = 0 due to (37).

For the complete costate to be constant on the singular interval, obviously it is necessary
and sufficient that the hydrolysis kx = 0.

We now evaluate d?/dt> = 0 on the singular interval. We obtain after some calcula-

{ions :
. Aa(n'zy — p'as)
= ky
03 4 ﬂlg(Ald” — Az}l‘” - Agﬂ'”) (97)
X Using
= —O’G+ SFG(SF—CJ) (98)

the second equality due to the system-equations (74). Let us first verify that the denomina-
tor in equation (97) is different from zero. We shall give a demonstration by contradiction.
So suppose that:

/\1(7" - /\2[1»” - }\37?” =0 (99)
Then together with equations (89) and (92) we obtain the homogeneous system :
—o p 7= kyzyfz, Al 0
- ! A =]0 (100)
_Jf! ‘u,” ﬂ_” As 0

We know there exists a nontrivial solution A(t) since at least As(t) # 0. So for assumption
(99) to be true, a necessary and sufficient condition is that the above system-matrix has
its determinant equal to zero. We have with (81) :

A —¢ W kh£3/¢2 —IU'/YI.‘/S — My = W/Y;:/s gpooT— khm.'}/a'-:?
A= | —d o %' = — ! [Yeps — ' [ Yss i '
g #u -y "'P'”/Y::/s _ ,n_u/ },p/s ,H'” -
(101)

Obviously, A has no zero rows or columns, nor any identical rows or columns. The only
possibility for def(A) to be zero is that both k;, and m, are zero, which is in contradiction
with m, > 0.

From equation (97) we conclude immediately that a necessary and sufficient condition
for O, to be constant on the singular interval is k;, = 0. Let us determine now that constant
Jevel. Solving the first two equations of {100) for Az/A; delivers:

Az _1r'0’ — {7 — kpaz/ag)o’

Ay po — po’ (102)

From k, = 0 it follows that Ay(£) and As(t) are constant for all ¢, so from boundary
conditions (37) we obtain:
A€} = Aolty) = O (103)
Aa(E) = Malty) (104)
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As a consequence, equation (102) reduces to:
7'o o' =0 (105)
or in other words the singular control extremizes the product yield:

d
dc, (}"

) =0 (106)

which completes the proof.

=

Let us first formulate some remarks. First of all, the specific rates o, g and 7 are
required to be smooth functions of C, in order to ensure the existence and continuity of at
least the first two derivatives with respect to C,, thus enabling the calculation of wging(t)
with equation (98). Note that the singular control is linear in the hydrolysis ky:

spo X T spGAs(n'ey — p'zs)
sp—C, "wylsp — o)Ay — Aop! — Agw")

uaing(t) = (107)
It follows from the above theorem that the condition kp = 0 is also necessary and sufficient
to obtain the complete optimal control for a given Sy as a closed-loop solution : clearly
the switching from batch to singular control is then dictated by the condition C, = 7,
C; denoting the value of C, for which w/e has its optimum. Remark also that there is,
for the kinetics o, g and = known in the literature for the penicillin fermentation, only
one extremal value for the yield «/a which is indeed a mazimum. At this point we could
generalize the above results to performance indices of the form:

J(u) = g(x(¢))) (108)

Again, the singular control keeps the substrate concentration at a constant level if and
only if ky, = 0, where that constant level must satisfly the relation:

Mt (p'e — pa') + Xty )(w'o — o'y =0 (109)

Let us now concentrate a bit more on the somewhat artificial condition m, > 0. In
particular, what happens if m, = 0 7 From the above proof we know that in fact only the
case where both m, and ky equal zero needs additional justification.

We have :

o(c.) = 4%, TC:)
2/ Yors

(110)

where two specific rates are to be given. It is not quite difficult to show now that the
dimension of the state can be reduced by one'®. Using the system-equations (74) the
above equation can be written as follows:

1
dX + !

wdt = dS + .
},.1:/.9 nfs

P (111)
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Integrating from ¢t = ¢, delivers:

1 1

5£(6(0) = G0) = 5(0) = S0+ g (X(O = Xo) + (PO = R) (112
With:
Go = G+ Sofsr Po=10 (113)
this leads to: )
PlE) = Yyplso(G(0) = G.) = S(8) - 7 -(X(0) = Xo) (114)

We conclude that we can drop the differential equation for P, P(t) being determined for
all ¢ by the above algebraic equation. Noting that the total amount of substrate is limited:

{
So+ [ udt = (115)
1

or, using the last state—equation:
sr(Gp— Gy =« (1186)
we obtain on ¢ = {;:
P(ty) = Yopula + Xof Yuss) = Yors( S(tg) + X(65)/ Yess) (117)

If we want to maximize the final amount of product P(t;), we conclude that this is equi-
valent to minimizing the following performance measure:

J(u) = S(ts) + X(ts)/ Yays (118)

Note that this is clearly in contradiction with the result of Duvivier and Sevely'®, who

claimed that the problem would become a minimal time problem!
For reasons of compatibility with the above notations, we shall denote the costate vector

A(2)
MQQ(AAQ) (119)
At

as.

with boundary conditions:

dg 1
Mtyg) = I 1/ Yz, (120)

The Hamiltonian H is given by equation (82), where the functions ¢ and ¢ reduce to :
(}5: ("A[O—+)\2[L)a}2 ’!.b :/\; +A4/5[? (121)
The adjoint equations become:

Al = (/\;0" — A‘zﬂr)mg/w.g (122)
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Ao = Mo — Agpe (123)
5\4 = —()\10’ - Agﬂ’)ﬂllfﬂg/wi (124)

On the singular interval, we obtain :

/\1+A4/8F =0 (125)
Ao —dp =10 (126)
AIUJ — /\2[1" =1 (127)

which again results in a constant costate-vector on the singular interval. We also have:

A(t) = Aalty) = (128)

Y:r/s

For the above system to have a non-trivial solution A(t}, it is necessary and sufficient that:

o —op =0 (129)
or, in other words:

D=0 (130)
or, using, balance (81):

o5y =0 (131)

which determines the constant vatue of €, during singular control. Note that d¢/dt” =0
leads to:

(Ao — xu")C, =0 (132)
Clearly, A ¢” — Ay’ cannot be zero, so we obtain indeed:
C,=0 (133)
resulting in
S[?JJY
singlt} = 134
w g( ) sp— Cs ( 3 )

The terminal time ¢; {or this case is obtained as follows. During the last batch—phase,
we have u = 0, so {rom (82) we obtain:

¢(ts) =0 (135)
Using boundary conditions (37) this results in: h
—o(ty) + plts)/ Yaps =0 (136)
or using balance (81):
m(t;) =0 (137)
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This is equivalent with:

P
— =0 (138)

as we might expect on physical grounds. Note that for specific production rate (79) this
means that:

C,(t;) =0 (139)

Again we can easily generalize these results to a more general performance measure
(108), wherein P(t;) has to be replaced by expression (117). Note that the specific expres-
sion for g(x(ts)) does not influence the constant level of C, during singular control, It only
determines the final time ¢; through condition (135).

We now summarize these results in a more general theorem.

Theorem 2 Consider the given system (74) with performance index J(u) = g(x(t))),
subject to the specified constraints and with { s free. Suppose that o, p and 7 are functions
of Cs only with continuous second derivatives.

Then during singular control the substrate concentration remains constant if and only if
the hydrolysis ky, = 0.

If m, > 0, the substrate concentration satisfies :

a g
5o, ) — 1o') 4 2L (w0 - wo') = 0
If m, = 0, the substrate concentration satisfies :
7o —mwo’' =0

and is independent of the specific form of g{x). In both cases, the Optimal Control is
obtained in closed—loop for a given S,.

For the model handled in the text, the specific rates are given by (78), (79) and (81). We
already know that these represent a sequence of completely smooth models, that converge
to the original piccewise smooth model as B — 0. For B = 0, standard optimal control
theory does not hold. However, the above theorems apply to every B in 0 < B < p,,.
Following the conjecture of Section 2, we know that the Optimal Control for B = 0 is the
limit for B — 0 of the sequence of Optimal Controls for B within 0 < B < ferit- We then
prove the following theorem :

Theorem 3 Consider the system (74) with performance index J(uw) = —P(t)), subject to
the specified constraints and with t; free. The piecewise smooth specific rates are given by
(8), (6) and (7). Then during singular control the substrate concentralion remains constant
if and only if the hydrolysis ky, = 0, and is determined by the equation:

H = Herit

This constant value nazimizes the yield w/o.
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PROOF

In the following, a prime denotes derivation with respect to substrate concentration.
Consider B in 0 < B < figri. In Section 2, we have shown that the specific rates (78), (79)
and (81) are functions of C, only. Following Theorem 1, we know that on the singular
interval ', remains constant if and only if &, = 0. C, satisfies :

w'o - o'm =0 (140)
We have:
e have dn dr dy "
dC, dpdC,
Noting that: p J
n do 1 dr
= — 42
i, ~ e, ~ 5,40 (142)

we obtain an equation in ', which can be written as follows:

7' = F(p, B)o' (143)
where
F(I_[, B) g QJ’IHIQI};}"’[I — (ﬂ o #Crl’i + 23)/R(IL7 B)]/[2(ﬂC!‘ll - B)] (144)
’ 1 -+ Qp,ma:r}';:/s[l - (ﬂ ™ Herit + 2B)/R(,€L, B)]/[z(lu’crll - B)Y;’/-‘!]
A
(i, B) 2 /(5 + prorit)? — Hpterie — B)pe (145)
We obtain, using (140) with o' # 0:
7 T
F(u, B =
(1) )(Ym o, Y,,/s) w (146)
Considering the limit for B — 0 on both sides of the above equation, we obtain:
Y;:/-i“ B — Eerit l _(” - #cra't)”"ji_ + My, + _@—(I—L + Herit — l o Perit [)] =
},r/s 2} pfatlerit
1f:t.‘/sQp,mc::r:
[I‘L -+ Herit™ I H— Herit ”“ H— Eerit ! +T——'—(I = Herit l _(Ju’ _ Ju'cra'!))}
21:}/3”«:“{
Solving for p obviously leads to:
= Herit (147)
Using equation {81), the substrate concentration during singular control is:
cri 1,:r: 3 s max YJ 3
Cs.sing % G.-u,::r:'t - I(s a t/ / b, QP‘ / ol (148)

Qs,mur - (y‘cril’/y;:/s + g 4‘ Q;r,mul‘/ },;st)

Figure 14 shows values of 7 /o as a function of C;, for different values of B. We conclude
that for B = 0, w/o takes on its maximum value for C, = C, ;i
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In Figure 15 we show the optimal switching values for p and the corresponding value C,
for different values of B, with &, = 0. Remark the convergence to g — previr, Cy — Cy erit
as B — 0,

Figure 14 «w/o as a function of C, for some values of B
Figure 15 Optimal switching values for p and C, as a function of B with &, = 0

Remark also that setting B = 107! in (79) is a very accurate approximation of the
original kinetics (6), as the last figures show,

In general, hydrolysis k;, # 0, so we do not know the switching time ¢, in closed—loop
form, i. e. as a function of state-variables only. However, the above theorems give a good
initial guess for ¢, if ky, is sufficiently small. They also indicate that during singular control,’
the substrate concentration shall vary in time. Of course for small k,, this time dependence
shall be small also, as is illustrated by the simulation results.
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Figure 13 Suboptimal and Optimal glucose feed rate for B = 102
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Figure 14 w/o as a funciion of C, for some values of B
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Figure 15 Optlimal switching values for o and C, as a Junction of B with k;, = 0




