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Abstract

Optimal Control of the Penicillin G Fed—-Batch Fermentation : An Analysis of a
New Unstructured Model

Summary

This paper presents the application of Optimal Control theory in determining the optimal
glurose feed rate profile for the penicillin G fed-batch fermentation, using a new unstructured
mathematical model based on balancing methods. This new model allows for a smooth transi-
tior between maintenance and endogenous metabolism, while all variables take on physically
acceptable values under all conditions,

It is illustrated that the resulting computational algorithm is independent of the exact
nature of the metabolism (maintenance or endogenous). In this scheme, the unusual opti-
mization of some free initial states is included. However, as shown by simulations, the nature
of the metabolism might be a key factor in concluding whether or not altering the substrate
feeding strategy has an important influence on the final amount of product.

Mathematical and microbial insight leads to the construction of a suboptimal heuristic
feeding strategy, with an excellent performance under all metabolic conditions. It can serve
as a basis for the development of more practical and reliable control schemes.

It is indicated that feeding strategy optimization studies can be a tool in the design of

real life experiments for model structure identification purposes.

Key Words Optimal Control, non-linear systems, biotechnological modeling, peni-

cillin fed-batch fermentation, maintenance and endogenous metabolism



1 Introduction

N oradays penicillin G is an almost common antibiotic produced on a large scale. A fed-baich
proess design in which the rate limiting substrate (glucose) is fed continuously during at
leasd a part of the total process time seems to be the preferred fermentation technology. The
op tmization of product formation during fermentation as a part of total process control has
gaired a renewed attention!.

N recent years there has been a growing interest in the biochemistry and modeling of
the penicillin biosynthesis. Nicolai et al.? reconsidered the biochemical fundamentals and the
condstency of two maodels that allow for the optimization of the final product amount with
respect to the substrate feeding rate : the model of Heijnen et al.® and the model of Bajpai and
Reui"®. Asaresult, a new hypothetical model has been constructed which incorporates recent
biochemical knowledge. Its most striking features are the guarantee for physically acceptable
valuss of all variables under all conditions, and a smooth transition between maintenance and
entdogenous metabolism as a function of the substrate concentration.

‘The principal purpose of this paper is to investigate the possible effect of model structure
differences only on feeding strategy optirmization results. The paper is organized as follows.
Section 2 summarizes the new unstructured mathematical model proposed by Nicolai et al.
In Section 3, we illustrate the use of Optimal Control theory in determining the optimal feed
rate profile that maximizes the final amount of product, for a given amount of substrate., In
Section 4, we derive a suboptimal strategy based on mathematical and microbial knowledge,
that is found to be a useful alternative for the optimal profile and opens perspectives for more

reliable model-independent control schemes. Some conclusions are formulated in Section 5.

2 The mathematical model of Nicolal et al.

2.1 Mathematical description of the new model

The usual structure of an unstructured mathematical model for penicillin fermentation pro-

cesses is given by the following set of mass balance equations :

ds

EZ = —-gX +s5pu (1)
dX

dP

— —_ £ - k

.7 X w P (3)




o = (4)
For an explanation of all symbols used, we refer to the Nomenclature at the end of this paper.

In studying the optimal glucose feed rate profile that maximizes the final product amount,
a lot of work has been done on both the model of Heijnen et al. and the model of Bajpai
and Reufi®~'¢, A detailed analysis of both models revealed some physical and biochemi-
cal shortcomings. Based on recent advances in the biochemical knowledge of the penicillin

biosynthesis, Nicolai et al.? have presented a new unstructured mathematical model. The

basic design requirements were :

o The general structure of the new model must be the same as used by both Heijnen et
al. and Bajpai and Reuf} (equations (1)-(4)). In particular, material balances have to
be satisfied.

e There must be a smooth fransition between mainienance and endogenous metabolism
as a function of C, : for C, approaching zero endogenous metabolism is required, for
high C, values maintenance metabolism must be modeled. Further, it must be possible
to adjust the endogenous fraction for a certain value of Cj, using as few as possible (in
order to avoid unnecessary complications in parameter estimation studies) additional

paramelers.

« The biochemical evidence presented in another paper? suggests that penicillin biosyn-
thesis might be subjected to glucose repression. Although the exact mechanism (e.g.
repression or inhibilion} is not known yet, glucose inhibition kinelics as proposed by

Haldane!! and also used by Bajpai and Reufl was chosen.

o The specific substrate to biomass conversion rate ( Contois—or Monod-kinetics'') is not

fixed a priori, as both are acceptable from the biochemical point of view.

e The new model must be consistent as to allow physically acceptable values for all vari-

ables involved, under different fermentation conditions.

¢ The right hand side of the resulting state equations must have continuous derivalives
up lo second order with respect to all state variables, in order to make the application

of standard optimal control theory possible.



These requirements have been incorporated into the model equations (1)-(4), using the

following specific rates :

® o= Cs 5
- m KP-E- Cs + C}/K" ( )
M = Haubstr — Ya:/s(fm(cs)ms + fp(C.!)W/Yp/s) (6)

and where ftyq is the specific substrate to biomass conversion rate, either modeled by

Contois— or Monod—kinetics :

C, . C,
Houbstr = BC o (Contois) or Haubstr = M (Monod) (7)

The functions fm(C,) and f,(Cs), a measure for the endogenous fraction of respectively

maintenance requirements and production, are chosen as follows :

fm(cs) = EXP(—C.S/E!“) fP(CS) = exp(_c«ilEP) (8)

As a result of balancing, the specific glucose uptake rate is given by :

g = F'/Yr/s +m, + W/Yp/a (9)
= ,Ufsub.str/Yz:/.s + ms(l - fm(cs)) + 7"(1 - fp(cs))/Yp/s (10)

In Figure 1, the endogenous fraction f(C,) versus C, is shown for some values of the
parameter E. A physical interpretation can be assigned to the parameters E,, and E, as
follows : they represent the glucose concentration at which the respective endogenous fraction
is equal Lo 36.8 percent.

Figure 1 Behaviour of exp(—C,/E) as a function of C, for different values of E

o Special Case 1 : (B, = Ep) — 0

For very low values of E;, the endogenous fraction approximates zero for ail values of O, > 0

as in the original Bajpai and Reufl model. The specific rates reduce to :

B = Haubstr

il

a Psuba(r/Y.r/s +m, + Tr/YP/-‘-'

which represents a maintenance metabolism. However, for Cy = 0, fm = fp = 1. In other
words, the metabolism becomes completely endogenous, thus preventing C, from becoming

negative.



o Special Case 2 : (Em = B} — +00

On the contrary, using very high values for E,;, the endogenous fraction approximates 100

percent for every value of C,. The specific rates reduce to:

12 Haubsir — Y—I/a(ms + Tr/Ypfs)

o = f-‘subalr/},r/a
which represents an endogenous metabolism as used by Heijnen et al.
s Additional Special Cases

Combining Special Cases 1 and 2, two additional special cases can be constructed : a first
one with E,, —» 0 and E, — +00, a second with E,, — +oo and E, — 0. For instance, in

the second case the specific rates reduce to :

E = Psubstr—Yr/sms

o

Psubslr/y:r/s + Tr/},p/,g

This models a process where production only occurs at the expense of substrate, while main-

tenance requirements of the mould are fulfilled by endogenous respiration.
¢ A more general case : 0 < Ep, < 400, 0 < E, < +00

For intermediate values of E,, and E,, there is a smooth transition between maintenance and
endogenous metabolism as a function of C,. Note that the ability to choose different values
for E,, and E, makes it possible to simulate different endogenous fractions of respectively
maintenance requirements and production.

Remark that functions f;{C,) of the following form :

Cy
MG =1- =& (11)

also meet all model design requirements mentioned above. Recently, Beeftink et al i%t
proposed a model for a simple microbial growth process without product formation, with a
transition-function between maintenance and endogenous metabolism of this form (K; was
set equal to the Monod saturation constant of the specific substrate to biomass conversion
rate). However, this Monod-type transition—function does not approach zero as fast as the
exponential function which was used here (with K; set equal to E;). Further, there is in fact

no reason for fixing K; a priori, so the number of additional parameters is the same. Finally,



it is more difficult to handle a Monod-type transition-function analytically, in particular in

taking partial derivatives as is required for Optimal Control (see Section 3).

2.2 Some simulation results

All computations were done on a VAX-VMS system, using the NAG-routines DOZEHF and
DO2EBF for stiff systems integration, and the MATRIX y-routine MAXLIKE for parameter
estimation. For all simulations mentioned in this paper, we have made the following assump-
tions. We always set E,, equal {o E, ({urther on simply denoted with E), as there is no a
priori reason for not doing so. For puuper Contots-kinetics has been chosen, to make the
comparison with the original Bajpai and ReuBl model possible. The nominal parameter sel
(due to Bajpai and Reuf$?) and the initial conditions are summarized in Table 1. The total
amount of substrate available for fermentation is equal to a = 1500 g. A set of 120 reference
data for §, X and P has been generated, using the original Bajpai and Reul} model with a
zero initial amount of substrate and a constant feed rate strategy during 120 hrs.

Table 1 Parameters and initial condilions used in simulations

We have tried to fit the model to these reference data in four cases : (1) B = 1. 10™° g/L
(simulating a maintenance metabolism) (2) F = 4.5622 1073 g/L (simulal;irng a mixed main-
tenance-endogenous metabolism with an endogenous fraction of 50 percent at C, = \/K,K;,
which maximizes 1) (3) £ = 1. g/L (simulating a mixed maintenance-endogenous metabo-
lism) (4) E = 1. 102 g/L (simulating an endogenous metabolism).

The value of =, is adjusted—since its value seems not very reliable’—so as to minimize
the Euclidian distance to the reference data. Some numerical values are summarized in Table
2. The corresponding time profiles have been plotted in Figure 2. Of course, the results
for the maintenance model coincide with the reference data, as C; never becomes negative
for this particular feeding strategy. For 1. 107% < E < 1. g/L, the fit is almost exact. For
the endogenous model, the fit of X and P is still very good, although the §-profiles differ
somewhat in the growth phase.

We believe that this is a very important result, as it indicates that it is virtually impos-
sible to make a distinction between different kinds of metabolic behaviour, using data from
fermentations with this particular feeding strategy. However, it shall be illustrated further on
that the metabolic assumptions might be very important for feeding strategy optimization.

Table 2 Estimation of m, and corresponding final state (t; = 120 hrs), for some values of E



Figure 2 Subsirate, biomass and penicillin profiles during constant feed rate fed-batch fermentation

as predicted by the new model — 5, =0 g

2.3 Statement of the optimization problem

An obvious choice for a state space vector is given by (the superscript «T» denotes the

transpose of a vector)
T A T
x=(2 20 25 24) (5 X P V) (12)

and with the definition of :

T A T
f = (fi b ts fi) E(~0X pX 72X - kP 0) (13)
T T
b o= (& b b 5 ) =(sr 00 1) (14)
we obtain the following state space model linear in the control u :
% = f(x) + bu (15)

Numerical values for the initial conditions are mentioned in Table 1. z,4 and z3, are

given, =, ¢ and x4 are related by (V. denotes the given initial volume without substrate)} :
240 = Vet z10/5F {16)

Note that glucose is added as a solution with concentration sy
The optimization problem we consider in this paper is to determine for the given set of
differential equations (1)-(4) the optimal feed rate profile that minimizes the performance

index :
I(w) = g(x(t)) £ - P(t)) (17)
i. e, maximizes the final amount of product, subject to the following constraints :
o £y =0, t; = free

¢ all variables have to be kept positive, i. e. for all ¢ in [0, ¢/} :

z;(1) >0, fori=1,...,4 u(t) > 0 (18)



e the initial amount of substrate is free; the initial conditions #,p and z,¢ are only
constrained by equation {16). In other words, some initial conditions can be manipulated

to minimize the performance measure, so (17) should be replaced by :
J = J(u,x0) = —~zalty) (19)
» the total amount of feed is fixed, i. e, :

t
Z1,0 + Spf U(t) dt = o (20)

ty
Notice that the last isoperimetric constraint on the input is equivalent to a physical con-

straint of the form—due to differential equation (4)—:

Ty = V(tj) = V;, V! fixed (21)

-3 Optimal Control on the new model

3.1 Statement of the two point boundary value problem
The Hamiltonian H for this problem is given by (A is the vector of adjoint variables):
H = AT(£(x) + bu) £ ¢ + pu (22)

d=MhA+rfatMfs =spA + Ay (23)
The adjoint vector X satisfies the following system of differential equations :
dx  oH 9T
el = A 24
dt 0x ax (24)
Together with the state equations (15), we obtain a system of 2 x n first order differential

equations—where n denotes the dimension of the state vector x, here n = 4—which needs of

course 2 X n boundary conditions.

These can be specified as follows :

- 9 and z3¢ are given

- 21y and 2,0 are interrelated by equation (16)
- ¢4y is given due to equation (21)

- Aigyt=1,...,3 are given by :

T I CWIP WIS R T I ) (@)



It should be clear that we need still another boundary condition, as z,,0 and 244 are not

given explicitly. It can be shown that the missing condition is given by®
1,b(0) = SF/\U_) + A.l'{) =0 (26)

An eztremal control u*(t} follows from the minimization of the Hamiltonian H over all
admisstble control functions :

min H{x*, A", u) = H(x*, A", uv* 27
all admiss u (", X7 w) ( ) (27)

which is Pontryagin’s Minimum Principle!? for this case,
Since the state equations (15) and the cost index (19) are time-invariant, H remains

constant along an optimal trajectory. As the final time ¢; is free, we know that H = 0.

3.2 Computational algorithm

Optimal Control with bounded input and fized initial state

As a first step in the solution, we will solve the given problem subject to an additional
constraint on the input (0 < u(t) < Upmar, Umaz given), and with the complete initial state
being given (say z;0 = 0, s0 249 = V., and condition (26) is superfluous).

As the Hamiltonian H is linear in the controi %, we know by Pontryagin’s Minimum

Principle!! that our problem has become a Bang-Singular-Bang problem, i. e. :

Unaz 9 <0
U(t) = { uging fP=0 & <t <t (28)
4] ifY >0

On any singular interval [¢;, t;11), the singular control is obtained by repeatedly differen-

tiating the function ¥ until v appears explicitly. We obtain successively :

b _srp _ _,r0f A
=T = AT b 20Ta =0 (29)
@ _sry, w0, x0f,  7dd
=ATd + A = —X d+ A f+ bu) =
ar AT A" axd TA axfbu)=0 (30)

The last equation can be solved for u,n,:

(1) = AT((8f/0x)d — (9d/x)f)
Hoingl/ = NT(9d/dx)b

(31)



Remark that in this case the denominator of the above expression is indeed different from
zero. Obviously, this problem is a singular problem of order 2.

Note that both the numerator and the denominator are linear in the costate A. On any
singular interval, the optimal control is a nonlinear feedback law of the state-variables only,

as there are three linear homogeneous equations in the costafe-variables :

w=Ab=0 %z,\"d:o p=2TE=0 (32)

We conclude that the TPBVP has been reduced to the determination of the optimal sequence
and the corresponding switching times. The solution to this problem starts from the following

model-independent conjecture (based on reported fermentation data} :

Conjecture 1 The feed rate profile must be determined so that during the growth phase the
cells grow as fast as possible, while during the production phase the cells are forced to produce

the desired product as much as possible.

The resulting straightforward algorithm can be seen as a modification of the one proposed
by Lim et al.'!® However, simulations have indicated that our scheme is numerically more
reliable, as it does not use any costate variable at all. For the most general case of low initial

values for § and X, it can be summarized as follows :

¢ Make a guess of {;, or equivalently, determine the amount of substrate reserved to the

growth-phase. Integrate the state equations (15} fromt = 0 to ¢t = t; with u(t) = Unax-

¢ Make a guess of ¢, Integrate the state equations from ¢ = ¢; to L = ¢ with u(t) = 0.
This completes the growth-phase,

s Integrate the state equations using the above determined singular control (31) until

condition (21) is met at £ = 3.

o Complete the integration with u(t) = 0 until dP/df becomes 0 at ¢ = ¢; {as H(ty) =
#(t;) = — fa(t;) = 0), and store the value of the cost index J{u,xy) {19). This completes

the production-phase.

e For the same guess of {;, refine the value of ¢; by considering v new = a0 £ 0L, with

6t as small as required. Save the time ¢, for which J{u,xy) reaches its minimum.

o Restart the procedure with a new guess of {| in order to minimize J(u,xy). For the

problem at hand, a linear search method for ¢, has been chosen.



A detailed mathematical justification for this algorithm has been given in an other paper®.
Optimal Control with unbounded input and some initial siates free

In Reference 8, it is shown how to solve the original problem considering the limit
Umar — 00. As a consequence, ¢; — 0. It was concluded there that omitting the upper bound
on the input leads to the injection of all substrate reserved to growth at the beginning of
the fermentation, the growth-phase becoming a batch-phase (u(t) = 0). So in the above
computational algorithm, the only modification is to replace the time ¢y by the equivalent

initial condition 2y .

3.3 Simulation results

Simulation results will be given after the introduction of some more heuristic strategies, in

order to make the comparison between the performance of different strategies more easy.

4 A heuristic control strategy

4.1 Derivation of suboptimal profiles

In this section, we propose a heuristic control based on mathematical and microbial know-
ledge. The construction of a suboptimal profile is based principally on the concept of a
biphasic fermentation (see Conjecture 1). Some of the ideas concerning heuristic C,~control
are reported elsewhere®7.

For the control during growth, we refer to the previous section : the substrate consumed
for growth is added all at once at ¢ = 0 in order to obtain the highest possible value of u for
all ¢ during growth (equation (6)).

During production, we focus on the specific rate . Equation (5) indicates that = reaches
its maximum at C, 2 Cycrit = \/-m. The maximum value is Typar = T /(1 + 24/ K,/ K).
So during production, we shall keep C, at C,erit- The control needed can be obtained from
the differential equations (1) and (4) :

aoX
8 - Cs

(33)

Uproduction =

As a consequence, the conjunction point t; of growth and production is simply dictated
by the condition C, = Ccrit- The control is stopped at t = t3 when all substrate is used. As

in the optimal case, the concluding batch-phase is stopped when dP/dt = 0.

10



Note that the complete suboptimal control (called heuristic C, ~comtrol) is obtained in
closed-loop for a given Sp. As a result, the optimization problem is reduced to the one-
dimensional oplimization of Sy.

A further refinement of this strategy exists in optimizing the switching time {;. In other
words, during production C, is kept constant, but not necessarily at Cy = Cycrit. As in the
case of Optimal Control, a two-dimensional optimization of 8o and ty is obtained.

Remark that for pupey modeled with Monod-kinetics, the control {(33) also keeps u con-
stant during production. An equivalent heuristic —conirol for Contois-kinetics follows from

the condition dp/dt = 0 :

YK C(Copt + Cr0)[(KoCs + Cu)? + F(Eum, Ep)o X[V

roduction — 34

where
F(Em, Ep) 2 exp(=Cs/Em)msYy s/ Em + exp(~C,/E )&(ﬂ’f_ dr (35
my Lp) = €Xp s m sl zfs m exp s P Yp/s Ep dc’ )

Before giving some simulation results, some advantages of these suboptimal profiles are
mentioned. It is well-known that putting an optimal control into practice may be hampered
by a lot of problems. If the control law is not obtained in complete closed-loop form—as
is the case here—, it cannot compensate for unmodeled disturbances, parameter variations,
...Further on, as Optimal Control is a very model-sensitive technique, a feed—forward shall
not generate the predicted results. As long as a sufficiently accurate model for the penicillin
fermentation is not available, the determined profiles can be used only to obtain a greater
qualitative insight in the process.

On the other hand, the suboptimal profiles we present here are the transiation of a more
realistic control objective, namely setpoint control, for which even adaptive control algorithms
can be developed. As suggested by e.g. Dochain et al.'% one could keep p constant without
the knowledge of an exact analytic expression for it, so the algorithm becomes really model-
independent. Further on, there would not be a need for a complete measurement of the state,

a problem which has not been solved completely up to now.

4.2 Simulation results

Some numerical results and corresponding time profiles obtained with the above algorithms

are summarized in Table 3 and Figures 3 to 5. As for the heuristic controls in these Figures,

i1



the value of C, repectively u on the switching time ¢, has been optimized. In order to compare

the performance of the different feeding policies, we have introduced a gain @, defined as :

G g 100 x J(u 1xU) — J(ure_ﬁxl},re‘f) % (36)
J(uref:x(),ref)

where the superscript “*” denotes the optimal or heuristic strategy, and the subscript “ref”
denotes a reference strategy : a consiant strategy with zero initial substrate amount, in the
same time as the optimal strategy.

Table 3 Numerical results for optimal and heuristic coniral, for some values of E

Figure 3 Subsirale, biomass, penicillin, p, ® and u profiles for heuristic and eptimal conirel
Ep=E,=1.10"°

Figure 4 Subsirate, biomass, penicillin, p, m and u profiles for heuristic and opiimal control

E,, = E, = 4.5622 1073

Figure b Substrale, biomass, penicillin, i, ® and u profiles for heuristic and oplimal control

Em = B, = 1. 10112

From these we can make the following conclusions :

- there is 2 maximum in realizible gain, as a function of the endogenous fraction

- the performances of the heuristic strategies are excellent, independent of the metabolic as-
sumptions '

- for the maintenance model, the control profiles u(t) almost coincide; for mixed and endoge-
nous metabolism, the differences in u{t} become significant, although the differences in final
amount of product remain small

- for the mixed and endogenous models, the rapid decay of C, during production (in other
words the negative value of p) is somewhat unexpected. However, there might be some indi-
cations that penicillin production does not necessarily stop at < 02. A detailed analysis of

the parameters of an endogenous metabolism is the subject of an ongoing study.

5 Conclusions

We believe that the assumptions about the fundamental nature of metabolism might have a
great influence on feeding strategy optimization results of the penicillin G fed-batch fermen-
tation, based on mathematical modeling.

In order to test the importance of the metabolic nature of the mould, a new unstructured

mathematical model proposed by Nicolai et al. has been used. The optimal control for

12




a well-defined optimization problem has been derived, resulting in a numerically reliable,
straightforward computational algorithm, that is independent of the metabolism involved.
It has been shown that an endogenous metabolism allows for a greater gain in final product
amount than a maintenance metabolism, as compared with the outcome of a constant feeding
strategy with zero initial substrate amount.

We presented also a heuristic control strategy based on mathematical and microbial in-
sight, that proved to be a successful alternative for the optimal control, for both maintenance
and endogenous metabolism. It was illustrated that these suboptimal controls can be calcu-
lated using essentially the same algorithm as for the optimal profiles. This heuristic method-
ology is in fact the translation of a more realistic control objective, namely setpoint control.
It can serve as a basis for the development of more practical and reliable control schemes.

It is suggested that feeding strategy optimization studies can be a valuable tool in the de-

sign of real life experiments for structure identification purposes of biotechnological processes.

13



Nomenclature

¢ : time (hr)

S : amount of substrate in broth (g) {(glucose)

X : amount of cell mass in broth (g DM) {biomass)

P : amount of product in broth (g) (penicillin)

Vv : fermentor volume (L)

u : input substrate feed rate {L/hr)

Cs = §/V substrate concentration in broth {(g/L}

Cy = X/V cell mass concentration in broth (g/L)

Cp = P/V product concentration in broth (g/L)

sp : substrate concentration in feed stream {g/L)

Ewn : parameter related to the endogenous fraction of maintenance (g/L)

E, : parameter related to the endogenous fraction of production (g/L)

K, : Contois saturation constant for substrate limitation of biomass production (g/g DM)
K, : Monod saturation constant for substrate limitation of biomass production (g/L)
K, : saturation constant for substrate limitation of product formation (g/L)
K; : substrate inhibition constant for product formation (g/L)

m, : maintenance constant (g/g DM hr)

ky, : penicillin hydrolysis or degradation constant (hr™!)

Yiss : cell mass on substrate yield (g DM/g)

Yo/s : product on substrate yield (g/g)

G : gain due to substrate feeding rate optimization (%)

a : total amount of glucose available for fermentation (g)

o : specific substrate consumption rate (g/g DM hr)

7 : specific growth rate (hr~')

Hsubatr : specific substrate to biomass conversion rate (hr™')

He : maximum specific growth rate for Contois kinetics (hr™!)

Har : maximum specific growth rate for Monod kinetics (hr=')}

™ : specific production rate (g/g DM hr)

Tm : specific production constant {g/g DM hr)

14
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paramelers

e | 0.11 K, | 0.006
T | 0.004 || &y 0.01
K, [0.0001 § K; |01
Y | 0.47 Yy, | 1.2
m, | 0.029 sp 500

initial conditions
Xy | 105 Sy to be specified
P, |0 Vo |7+ Sofsr

o 0 a 1500

Table 1 Parameters and initial conditions used in simulations

E (g/L) Tm (8/g DM hr) | S(ts) (g) | X(ts) (8) | P(ts) (g)
1.107° 4.0000 1073 4.9761 1072 | 330.28 59.651
4.5622 1073 || 4.0750 1073 9.0286 1072 | 330.28 59.683
1. 5.0634 1072 3.6834 107! | 330.42 59,277
1. 10+12 5.2861 1073 3.8212 10! | 330.97 60.822

Table 2 Estimation of m,, and corresponding final state (t; = 120 hrs), for some values

of E
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E (g/L) | 1.107% | 4.5622 1073 | 1, 1. 10%12
Optimal Control

So (g) | 528 880 1409 | 1411

t2 (hr) | 28.271 | 32.749 37.016 | 42.106
ty (hr} 132.033 | 125.200 117.602 § 122,493
P (g) 63.846 | 70,652 87.448 | 89.709
G (%) 3.961 16.822 49.064 | 45.909
Heuristic C,—Control Ci(ta) = VK K;
So(g) | 533 940 1401 | 1404

ty (hr) 28.355 : 33.338 36.969 | 42.059
¢y (hr) | 131.323 | 124.427 116.906 | 121,974
Py (g) 63.597 | 68.436 87.164 | 89.430
G (%) | 3555 |13.160 48.580 | 45.455
Heuristic C,-Conirol C,(ty) optimized

So (g) | 551 1124 1417 | 1418

t; {hr) 28.644 | 34.926 37.075 | 42,165
t; (hr) 131.372 | 122.2h2 117.250 { 122.189
Py (g) | 63.724 | 69.263 87.258 | 89.511
G (%) || 3762 |14.527 48.740 | 45.587
Heuristic u—Control i(t2) optimized

So (g) | 551 1113 1406 | 1407

ty (hr) 28.644 | 34.838 36.990 | 42.069
ty (hr) 131.321 | 122.727 117.511 |} 122.445
P;(g) | 63.736 | 69.439 87.428 | 89.686
G (%) | 3782 |14.817 49.030 | 45.870

Table 3 Numerical resulls for optimal and heuristic conlrol, for some values of E
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Figure 2 Substrate, biomass and penicillin profiles during constant feed rate fed-batch fer-

mentation as predicted by the new model — S5, =0 g
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