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The Singular Value Decomposition and Long and
Short Spaces of Noisy Matrices

Bart De Moor, Member, IEEE

Abstract—Using geometrical, algebraic, and statistical argu-
ments, it is clarified why and when the singular value decom-
position is successful in so-called subspace methods. First we
introduce the concepts of long and short spaces. We discuss a
fundamental asymmetry in the consistency properties of the es-
timates: The model, which is associated with the short space,
can be estimated consistently but the estimates of the original
data, which follow from the long space, are always inconsis-
tent. We find an expression for the asymptotic bias in terms of
canonical angles, which can be estimated from the data. This
allows us to describe all equivalent reconstructions of the orig-
inal signals as a matrix ball, the center of which is the minimum
variance estimate. Remarkably, the canonical angles also ap-
pear in the optimal weighting that is used in weighted subspace
fitting approaches. The results are illustrated with a numerical
simulation. Examples that are discussed include total linear
least squares, the direction-of-arrival estimation algorithm ES-
PRIT, a biomedical signal processing application to separate
the fetal ECG from that of the mother, and the identification
of linear state space models from noisy input-output data.

I. INTRODUCTION

N important area in model-based signal processing

involves so-called inverse problems, the solution of
which is very much related to the field of system identi-
fication. In many of these applications, the singular value
decomposition (SVD) plays a key role:

Theorem 1: Every real m X n matrix A can be fac-
torized as A = ULV  where UU' =1, = U'U, VV' = I,
= V'Vand L is real m X n with its only nonzero elements
on the diagonal. These elements are called the singular
values and ordered as o, = 0, = -+ = g, > 0. The
columns of U and V are the left, respectively, right sin-
gular vectors of A.

More details, including algorithms, on the SVD can be
found in [13]. Basically, there are three frequently cited
features that seem to justify the success of the SVD in so-
called subspace methods: 1) The information on the un-
derlying model (or data generating mechanism) is com-
pletely contained in certain subspaces of the data matrix,
which can be determined from the SVD. 2) The complex-
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ity of the model is given by the (approximate) rank of the
data matrix, which can be estimated from the singular val-
ues. 3) Since in most applications, the data are corrupted
by additive noise, it is expected that the SVD has a certain
noise filtering effect (taking into account the relative in-
sensitivity of the SVD with respect to perturbations).

In most applications, the SVD is brought in after the
analysis of an algorithm has been completed, just as a
numerical tool that permits to avoid the explicit formation
of covariance matrices (of the type 4'A). In this work,
however, we will use algebraic, geometrical, and statis-
tical arguments in order to show and illustrate the real
power of the SVD. While mathematically, the properties
of the SVD are well understood, we present here a new
and original geometric framework that facilitates the en-
gineering interpretation of the SVD in the context of
model based signal processing.

The main results of this paper are the following: In Sec-
tions II-A and B, we give a detailed derivation of the al-
gebraic and geometric conditions that allow to derive the
exact model from the SVD of a data matrix. Using a mul-
tivariate version of the classical Pythagorean lemma for
triangles, it is shown that the original, exact signals can-
not be recovered when the exact data are modified by ad-
ditive perturbations. We think that this asymmetry in the
consistency of the estimates of the model and the signals
is a new insight which is often overlooked. We also in-
troduce the notions of long and short spaces of noisy ma-
trices. The short space can be consistently estimated from
the SVD of the data matrix under certain conditions, while
this is not the case for the long space. In Section II-C, we
characterize the inconsistency of the singular values of the
data matrix. In Sections II-D and E, we will derive some
extensions that will allow us to take into account possibly
available a priori information about the noise covariance
matrix. In Section III, we derive a minimum variance es- -
timate of the original data and provide a geometrical inter-
pretation. It is shown that when the geometrical assump-
tions of Section II are satisfied, the minimum variance
estimate can be computed from the SVD of the data ma-
trix. In Section IV, we show that the minimum variance
signal estimate is the center of a matrix ball of equivalent
signal reconstructions. This set of matrices represents the
uncertainty in the estimation of the original signals, which
originates in the inconsistency of the cstimate of the long

space. In Section V, we show that statistically, under
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some generic assumptions, the geometric conditions de-
scribed in Section II are satisfied asymptotically. The
noise variance can be estimated from the singular values.
We also obtain an explicit characterization of the uncer-
tainty on the estimated signals in the long space via esti-
mates of the canonical angles. In Section V-C, we give
another geometrical-statistical interpretation of the sin-
gular values of the minimum variance estimate of the
original signals. It turns out that they coincide with the
optimal weighting matrix in weighted subspace fitting
methods. In Section VI, we give a numerical example il-
lustrating the main points of the previous sections. A brief
summary of applications is given in Section VII: total lin-
ear least squares, the direction-of-arrival algorithm ES-
PRIT, biomedical signal processing with the separation
of the fetal ECG and the maternal ECG, and finally, a
subspace algorithm for the identification of linear state
space models from noisy input-output data.

We have chosen to work out in detail the exact geo-
metrical and algebraic theory as opposed to a more statis-
tically oriented approach (which is, however, possible).
We assume that the necessary assumptions are exactly
satisfied and not just in a statistical sense, which makes
our derivation easier and allows us to present a clear geo-
metrical picture. Moreover, a finite sample statistical
analysis is very complicated, if not impossible. Therefore
we confine ourselves to a demonstration that statistically,
the geometrical assumptions hold asymptotically, as the
number of measurements goes to infinity.

II. SuBsPACE METHODS AND THE SVD

In this section, we first formulate the main problem that
can be solved with subspace methods. Next we use the
SVD to derive some sufficient assumptions for the tech-
niques to be successful. Finally, we give some geomet-
rical insight in the results.

A. Linear Subspace Methods and Long and Short
Spaces

In many applications, one observes or constructs a ma-
trix M of measurements, where M € R? *9. Here, q is the
number of measurement channels and p is the number of
measurements over these channels. Typically, p is much
larger than g. One of the basic assumptions is that the
observed data are generated by two unknown matrices: an
exact data matrix E and additive perturbations N so that

M=E+N. (¢))
The matrix N contains the noise, which can have several
causes (model uncertainty, measurement inaccuracies,
etc.). Typically rank (N) = ¢ and also rank (M) = q. For
the moment, however, we make no statistical assumptions
on N but simply treat it algebraically as a matrix. In ap-
plications that are essentially based upon linearity, the
matrix E, which contains the exact noise-free data, will
be rank deficient:

rank (E) = r < q. )
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The number ¢ — r is the number of linearly independent
linear relations between the columns of the matrix E. Let
V, € R?”? be an orthogonal matrix (i.e., V.V, = I, =
V, V') which is partitioned as

r q-r
Ve=Va Vo) 3)

so that the row space of E coincides with the column space
of V,;': R(E") = R(V,;) and the columns of V,, generate
an orthogonal’ basis for the null space of E:

EV,z = 0 (4)
The matrix V, could be obtained directly from the SVD

of E as
; , ) (sel 0) < ’el> (

where U, e R?*", S,, € R"*". Recall that E € R” *? with
p >> q. In this case, we will call the column space of E,
its long space while the row space is its short space. The
mnemonic trick is to look at the ‘‘size’’ of the vectors.
The vectors of the long space are ‘‘longer’’ (they have
more components) than those of the short space. The main
reason for introducing these names is the fact that in some
applications, it is common to represent the standard model
with matrices M = E + N that have much more columns
than rows. The long space is in this case the row space
while the short space is the column space.

We are now going to discuss the following question:
What assumptions are needed so that we can recover from
the SVD of the matrix M, the rank r of the matrix E, and
the subspaces R(V,,) and R(V,;)? Can we also recover the
column space R(E)?

The general answer for the rank r and the subspaces
R(V.;) and R(V,,) is yes, under certain conditions. For
the column space R(E) the answer is no. In other words,
Under certain assumptions, the short space of the exact
matrix E can be estimated consistently, while the long
space cannot be recovered from the SVD of M, not even
asymptotically.

In the remainder of this section, we investigate the
problem from the algebraic and geometrical point of view.
In Section V, it is shown how the conditions can be sat-
isfied statistically (at least asymptotically as p — o).

B. Algebraic and Geometric Assumptions

For the time being, we assume that the rank r of £ and
its SVD as in (5) are known. Using the matrices V,; and
V.., we can write M as

M=E+N=E+NV¢1V:| +NV¢2V:2
= (EV,; + NV, )V + NV ) Vo,
'R(-) denotes the range (column space) of the matrix between brackets.

2We use the word *‘orthogonal’’ for rectangular matrices V,, that satisfy
the property Vi, V,, = I
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Let the matrices between brackets have SVD's: EV,, +
NV,, = P,S5,Q) and NV,, = P, S,Q;. Then we can write
M as

M= PSQ\V: + P,5,0:Ve

5, 0\ /Qiv.
= (P, Pz)( ' >< ) ,'>.
0 SZ QZ €2
This is an SVD of M if P, P, = 0. But R(P)) = R(E +
N)V.,) and R(P,) = R(NV,y) so that
PP, =0 e VL (ET + N)YNV, = 0. N

This condition is necessary for (6) to be an SVD of M.
We can strengthen it somehow by splitting it up into two
conditions:

(6)

E'N

=90 ¢))

and
©

Why do we select conditions (8) and (9) and not other
ones that would also be special cases of (7), for instance,
E'N = ol and N'N = I;? The reason is simple: We will
show below that in many engineering applications, there
are precisely conditions (8) and (9) that occur. While @)
is perfectly general, conditions (8) and (9) represent the
““generic’” situation as will be demonstrated below.

Hence, we have shown that we can find from the SVD
of M, the subspaces generated by V., and V,,, which are
the row space and null space of E, when the following
sufficient conditions are satisfied:

1) The exact data should be “‘orthogonal’’ to the noise
in the sense that E'N = 0.

2) The matrices V,, and V,,; must be orthogonal to each
other in the inner product generated by the matrix N'N:

' N'NV,, = 0. This is, for instance, the case when N'N
is a scalar multiple of the identity matrix, which will be
treated in Section II-C. If N'N is not a scalar multiple of
the identity, one cannot recover the subspaces V,, and V,,
from the SVD of M alone. If, however, N'N is known up
to within a scalar, one can obtain similar results as ex-
plained in Section II-D.

3) The smallest singular value of §; must be larger than
the largest singular value of S,. Otherwise we cannot sep-
arate the subspace generated by V,, from the one gener-
ated by V,,. This can be seen from (6). The ratio 0,/0, 4,
could serve as a measure of the (signal + noise)-to-noise
ratio.

The success of SVD-based subspace methods critically
depends on these three assumptions, which in practice,
however, are never satisfied exactly (except maybe for
condition 3). A nice feature of the SVD, however, is its
robustness with respect to (mild) violations of these con-
ditions. If, for instance, |E’ N|| is small (where |-l is any
unitarily invariant norm), the SVD of M will still deliver
good approximations to R(V.;)) and R(V,;). The smaller
IE'N|| gets, the better will be the approximations.

:1N’NV¢2 = 0.
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C. The SVD of M in Terms of the SVYD of E

So far we have found three sufficient conditions that
allow us to recover the row space of the exact matrix E
from the SVD of the data matrix M. In this section, we
give an explicit expression for the SVD of M in terms of
the SVD of E in the case that

N'N=¢%l, and N'E=0.

The first condition implies that N itself is an orthogonal
matrix and that every column of N has norm o. The sec-
ond condition reflects the orthogonality of the column
spaces of N and E. We can now write for the SVD of M:

M=E+N
U,S. Vi + NV Ve + NV Ve

= (US4 + NV)SH + 021V PNVa0™)
Jsi+ 6, 0 A
' ( 0 an_,> ( ::)
Smi O

J() e
0 Sm2 :n2 )

(10

The second line follows directly from the orthogonality
of each column of N with respect to those of E as is ex-
plained below. We now make the following observations:

There is a gap in the singular spectrum. The smallest

singular value in
v 531 + 0'2 I,

is larger than the largest one in o/, . The g — r smallest
singular values are all equal and can be interpreted as a
“noise threshold,”” which permits estimating the noise
variance from

= (Uml Um2) <

11

The ‘‘exact’® singular values (the singular values of E)
can then be calculated from

Se1 = VS?nl - Uzlr- (12)

Let g, be the smallest value of S,;. One could then define
a signal-to-noise ratio (SNR) in decibels as

S,,,2 = GIq_,..

SNR = [20 10810 9;] dB. 13)

Another possible definition of the signal-to-noise ratio
uses all nonzero singular values o; of S.:

24 .4 ot
SNR = [1og“, gi t - + "’] dB
IE
=20 logmmi dB. (14)

~The row space of E can be recovered. The r right singular
vectors corresponding to the largest singular values of M
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are precisely the columns of V,,. Hence under the given
assumptions, we recover the row space of E (and hence
also its null space) exactly.

A multivariate extension of the Pythagorean lemma.
There is a Pythagoras-like squaring in the expression for
the left singular vectors of M, given by Un; = (U S +
NV,)(S%, + ¢1)"'/% Indeed, U,, S,, consists of column
vectors with norms given by the singular values in S,;.
NV,, consists of column vectors with norms given by o.
Furthermore, the columns of U, are orthogonal to the
columns of NV,, because E‘N = 0. Hence, the columns
of U, S., + NV, have a norm given by the diagonal ele-

ments of
VS,I + [ 1,

which is a multivariate generalization of the Pythagorean
lemma.

The canonical angles between exact and noisy sub-
spaces. It is impossible to recover the original noisefree
column space of E, which is represented by the matrix
U.,,, from the SVD of M in (10). But we will now show
that the canonical angles between the column space of E
and the column space R(U,,;) generated by the r first left
singular vectors of M can be computed. Recall that the
cosines of the canonical angles between the column spaces
R(U,)) and R(U,,) of two orthogonal matrices U, and
U,, are the singular values of the product U}y Un,; (see,
e.g., [13]). Here we find

Uy Uy = U(Ua S + NVL)(S3 + a21)7'2
= S.(83 + o2I)"'/? (15)

=W +6*S;) 1V =8,/Sm =C (say).

(16)

The cosines of the canonical angles are the diagonal ele-
ments of the diagonal matrix C in (16). From (16), we see
that the canonical angles between the column space of E
and the left principal singular subspace of M depend on
the signal-to-noise ratio. The larger the signal-to-noise ra-
tio, the smaller will be the canonical angles. In the noise-
free case, for ¢ = 0, all angles are 0.

The fact that the column space of E cannot be recovered
from the SVD of M can most easily be explained for the
simple case where r = 1 and p = 2. Suppose a vector M
€ R? is given as in Fig. 1 where it is the sum of two
orthogonal but unknown vectors E and N. The question
of interest is the following: In how many ways can we
decompose M in two orthogonal vectors E and N such that
M = E + N and E'N = 0. The classical construction is
depicted in Fig. 2(a). We have to draw a circle that has
M as its diameter. Every point of the circle has the prop-
erty that it generates an orthogonal decomposition, the
sum of which is precisely M. Two of this infinite number
of decompositions are depicted in Fig. 2(a). Even if the
norm of N would be known, say |[N]| = oy, still, forp =
2 there are two solutions as shown in Fig. 2(b). If p = 3,
there is a circle of solutions which can be easily visualized
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Fig. 1. The vector M is the orthogonal sum of the vectors E and N.

-10¢, . & -10F N E
-10 [ 10 -10 0 10

(a) ®)

Fig. 2. (a) The horizontal diameter is the vector M. Every point on the
circle generates an orthogonal decomposition of M. Two such decompo-
sitions are drawn. (b) The small circle has a radius oy which is the norm
of N. Even when gy is known, there are still two orthogonal decomposi-
tions of M in two dimensions. In three dimensions this becomes a circle of
solutions.

from Fig. 2(b) by rotating the circles in the third dimen-
sion, so that two spheres are generated. Their intersection
is then a circle with radius oy. In p dimensions, there is a
(p — 1)-dimensional hypersphere of solutions. The con-
clusion is that the orthogonal decomposition of M into two
vectors E and N is certainly not unique, for r = 1, let
alone for r > 1, even if |[N|| = oy is given. From Fig.
2, we can easily compute the angles between the observed
vector M and all vectors E if [N]| = oy is given. Indeed,
for all vectors E, we have

o Bl IE
1Ml = VIER + INT
1

VT + ONT/IED an
(Note that tan o = |N||/IIE|l.) Observe that cos a is a
function of the signal-to-noise ratio (14). The higher the
SNR, the larger will be cos a, hence the smaller will be
«. In the noiseless case when oy = 0, a = 0 as well.

Expression (16) is the multivariate generalization of
(17) and we will come back to it in Section IV.

D. What to Do if N'N Is Not a Multiple of the Identity
Matrix

There is a price to be paid if condition (9) is not satis-
fied: In that case, we must know the matrix N'N up to
within an unknown real scalar multiple A, i.e., Ly =
N’N\. Assume that Ly, which is a positive definite ma-
trix, is factored as Zy = R'R where R € R?*7 is a non-
singular (false) square root. In this case, we can still re-
cover the appropriate subspaces by considering the SVD
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of the matrix M, = MR ~'. This can be seen as follows.
First define E, and N, via My, = E, + N, = ER™' +
NR ~!. Observe that

NuNy = R7'N'NR™' = 1/M,
which is a scalar multiple of the identity matrix. Define
an orthogonal matrix Y € R?* ¢ which is partitioned as

r q"‘r
Y= (Y 1)

so that R(Y;) = R(R™'V,)) and R(Y2) = R(RV,). Then
R(Y) = R(EY) and E, Y, = 0. We now apply the same
analysis as the one in Section II-B to our transformed
model M, = E, + Ny

M* = E* + N* = [(E* + N*)YI]Y& + N*YzYa

= P,5, 0,7 + P,5,03Y3

oot ()
T N0 s,/ \ovys

which is an SVD of M, if E'N = 0. This can be seen by
observing that R(P)) = R[(Eyx + Ny Y] and R(P) =
R(N,Y,) so that

PP, =0 & Yi(E% + NigNxY, = 0
o V{,R"'RE'+ R“NY)NR™'RV, =0
e VL,R"'R™'N'NV, =
e ViyW,p,=0

which follows from the orthogonality of (3).

The fact that N' N should be known up to within a scalar
is not a trivial requirement. In some cases, this matrix can
be estimated during the absence of the signal contained in
E (i.e., when E = 0). This is, for instance, the case in
ESPRIT [19]. In other cases, a square root R can be di-
rectly computed from the structure of the equations (see,
e.g., [9]). Another remark concerns the numerical com-
putation of the SVD of MR ~'. An explicit formation of
the inverse R ~! followed by the explicit calculation of the
product MR ~' may result in dramatic loss of numerical
accuracy in the data. This can be avoided by using the
quotient singular value of decomposition (QSVD) (called
the generalized SVD in [13], see [7]), which delivers the
required factorizations without forming quotients and
products (see, €.g., [9] fora detailed explanation). In [5],
we describe a framework based upon the SVD and the
QSVD to analyze the geometrical structure of signals with
respect to disturbances (oriented energy of vector signals
and oriented signal-to-signal ratios).

III. MINIMUM VARIANCE ESTIMATION

What is the best estimate of E that could be obtained
by making linear combinations of the noisy data in the
matrix M? This problem can be formulated in the follow-
ing minimum variance estimation framework.

Given the p X ¢ matrix M as in (1), with E satisfying
(2), find the matrix X that minimizes: i !
min |MX - El%
Xerexe

If E would be known, then setting to zero the deriva-
tives of the object function '

IMX - E|2 = «[X'M'MX + E'E - 2X'M'E)

with respect to the elements of X, results in X =
(M'M)~' M'E. Hence, the minimum variance estimate of
E is given by MX = M(M'M)™'M'E. The geometrical
interpretation is that the minimum variance estimate of E
given M is the orthogonal projection of E onto the column
space of M. Observe that rank (MX) = rank(E). Since E
is unknown, this solution cannot be computed from the
noisy data matrix M alone unless additional assumptions
are made. Under the assumptions of Section II-C (¥ ‘N =
ozlq, N'E = 0), we find that an expression for the mini-
mum variance estimate is given by

ml

1
MX=MM'M)"'M'E=(Un Um2)< >

U, U )<s,1 o>< :.)
el 2 0 0 ;2

m2
=Um Umw

.<(s31+a21,)"/2<s:. at VaNy)(Ua U,2)>
o 'WoN' Uy U

<S,1 0><V:1>
0 0 @

SHh+a)'2s, *
= (Uml Un) <

0 *
Sel O tel
(5 5)0h)
= [Up) 844 + 02 1) 21 Vi) (18)

which is a singular value decomposition. Despite the fact
that we do not know the original matrix E, it is possible
to find the minimum variance estimate from the SVD of
M if all the geometrical assumptions from Sections II-B
and C are satisfied (ie., N'N = ¢*I,and N'E = 0). From
expression (18), it can be seen that we do not obtain a
consistent estimate of the long space since Uny # U
The singular values of the minimum variance estimate (18)
are given by

§3,(8% + 02 1) = ($4Sa)Sa = CSa (19)

where C are the cosines of the canonical angles as defined
in (16). The relation of this expression to the classical
geometry of minimum variance estimation can best be il-

©

-



£
]
Z

5
i
|
|
!

~

L £

2
Z

DE MOOR: SYD AND SPACES OF NOISY MATRICES

M
MX
N
E
Fig. 3. The large arrow is the minimum variance estimate MX of E given

M.

lustrated via the same simple vector example of Section
II-C:

Example: Let M € R?*! be the orthogonal sum of two
vectors E and N as in Fig. 1. The minimum variance es-
timate of E, given M, is obtained from the solution of the
optimization problem min; . [[M# — E||*. The solution £
is easily found to be £ = M'E/M'M which can be re-
written as

: E'E E'E NE|?

" MM EE+NN_ JE+ INIF

Hence, the minimum variance estimate of E given M is
Mt = M/|M| |E]l cos a where (see Fig. 3):

s a = |EE _lEI
*TAMM T M

Expression (18) is the multivariate generalization of this
observation. )

The minimum variance estimate (18) is of course not
the only possible estimate of the original signals. Another
estimate is obtained when we approximate M by a matrix
of rank r in least squares sense as

min M — Eygl7.

Eueﬁpxq.nnk(iu)sr<q

The solution is a classical result (originally due to Eckart
and Young, see, e.g., [13]) and follows from the SVD
(10) of M as

Eps = Uy S Vi = [(Uy Sy + NV)(S% + o21)71/7
C[(SH + PV,

Observe that the left and right singular vectors of this least
squares estimate are the same as those of the minimum
variance estimate (18) but the singular values are differ-
ent.

IV. A MATRIX BALL OF SIGNAL RECONSTRUCTIONS

In this section, we derive the multidimensional gener-
alization of the ambiguity illustrated in Fig. 2(b). Even in
the two-dimensional situation illustrated there, the origi-
nal vector E could not be reconstructed uniquely from the
given noisy data vector M, even if the noise variance oy
were known. The situation is similar in the multidimen-
sional case (p > 2). Despite the fact that we can compute
the minimum variance estimate as derived in the previous
section, it is not possible to estimate consistently the
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*‘long space’’ of the exact matrix E from the SVD of M.
However, from (19) we can compute the canonical angles
between the column spaces of M and E, without knowing
E if only the assumptions N'N = ¢?[, and N'E = 0 are
satisfied. We will now show how we can obtain a whole
set of ‘‘equivalent’’ reconstructions of the original sig-
nals. In other words, since we cannot reconstruct uniquely
the exact data matrix E from the noisy version M, we will
describe a whole set of data matrices E that could have
generated the observed data matrix M under the assump-
tions that N'N = o2l and N'E = 0.

First, we define a matrix ball.

Definition 1: A matrix ball 8 with center matrix B, €
R?*9, left radius matrix B; € R”*/ and right radius ma-
trix B, e R™*? is a set of matrices of the form

® = {B|B = B. + B,XB,, X € R'*™ is orthogonal}.
Recall the SVD of M as in (10). Consider a set B of ma-

 trices with the following properties:

1) The rank is r and the singular values are S,,.

2) The right singular vectors are the columns of V,,.

3) The cosines of the canonical angles between the left
principal singular subspace and R(U,,,) are given by the
diagonal elements of C as in (16).

4) The original, exact matrix E is an element of ®.

The main purpose of this section is to show that the set
of matrices ® as determined by these four conditions is a
matrix ball. Let us first concentrate on the third con-
straint. All orthogonal matrices Y, € R? ™" that satisfy this
constraint are given by

Y\ = UnZ CW + UpZ, (NI, = C'O)W] (20

where Z,, Z,, and W, are arbitrary orthogohal matrices of

appropriate dimensions. This can be seen by computing
U, Y, = Z, CW{ which has singular values C. Hence, the

- cosines of the canonical angles between R(Y,) and R(U,,)

are precisely the diagonal elements of C. That Y, is or-

~ thogonal can be verified from

Y\Y, = W,C'CW + w,(, — C'C)W, = I..

The fourth constraint implies that the original matrix U,,
belongs to the set of orthogonal matrices described by (20)
for a specific choice of Z;, Z, and W;:

Uy =Y, = UyZ,CW} + U, Z,VI, — C'C W}
= ZiICW = U, U,=C=2, =W, =1
= Z,VI, - ¢'c = UL, U,
=27, = UL.zUzn(M)"’-

(In order to avoid technical complications, we assume that
all diagonal elements of C are distinct, which is the ge-
neric situation anyway. Also note that VI, — C‘C is a di-
agonal matrix with the sines of the canonical angles be-
tween the column space £ and the column space generated
by U,;.) While Z, and W, can apparently be determined,
we cannot determine Z, because U,, itself is unknown.
Hence, the best we can do for the long space of the orig-
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inal matrix E is to require that U, belongs to the set of
orthogonal matrices

o, = {"h|Y) = UnC + Un,ZVI, — C'C,
Z € R® 7% js orthogonal}. Q1)

If we now add the first and second constraint, we find that ’

the set of matrices ® is a matrix ball given by

® = {B|B = B, + BZB,
Z e R%” 7" is orthogonal}. 22)

where the center matrix is the minimum variance estimate
(18) B, = U,, CS,, V%, the left radius matrix is the or-
thogonal complement of U,.: B; = Uy and the right ra-
dius matrix is

Br = V] - C'CS,, 'el-

V. STATISTICAL ARGUMENTS

The analysis so far has concentrated on the algebraic

‘and geometrical assumptions on E and N that are sufficient

to recover model information about E from the SVD of
M. In Section V-A, we show that asymptotically, as the
number of measurements p = 9, these conditions are
satisfied if the noise is zero mean and has bounded fourth-
order moments. In Section V-B, we investigate how the
exact singular values of E and the angles that characterize
the bias in the long space, can be estimated from the
measured data. In Section V-C, we concentrate on the case
where the noise in N is Gaussian.

A. Asymptotic Behavior asp = ®

In principle, in all that follows, we could indicate the
dependence of the matrices M, E and N on p; but for clar-
ity we will not do so. Note that Vp:

M'M = E'E + N'N-+ E'N + N'E. 23)

Let us first look at the cross terms E‘N and N'E in (23)
under the following assumption.

Assumption I: The elements of N have zero mean.

Then, obviously E(E'N) = 0 because E is now con-
sidered as a fixed deterministic matrix. For the sake of
simplicity, we assume that there is no structure in the ma-
trices (such as (block-)Hankel, (block-)Toeplitz, etc.). In
the case where there is structure, the analysis below can
be adapted without much difficulty. In any case, we as-
sume that the noise covariance matrix E (N'N) can be
computed or estimated up to within a scalar multiple. In
particular, we will assume that

Assumption 2: The elements of N are independently
and identically distributed with possibly unknown vari-
ance »’. . -

If, for instance, the elements of N are independently
and identically distributed with zero mean and (possibly

unknown) elementwise variance »?, we have E(N'N) =
pr*I,. Hence, in this case’

EM'M) = E'E + EN'N) = E'E + pvil,. (24)

This suggests that when we would average over several
experiments (recall that E(*) is the ensemble average)
with identical E matrix but with different realizations for
N, the three *‘geometrical’’ conditions of Section II-B are
satisfied. Indeed, we have

1) E(E'N) = 0.

2) V:lE(N‘N) Ve2 = 0

3) NE(M'M) = N(E'E) + pv’.

In practical experimental situations, however, one can-
not repeat the same experiment over and over again with
the same identical matrix E. Hence, in practice, it is im-
possible to rely on (24) to arrive at the geometrical con-
ditions of Section II-B.

In one experiment, however, it is very well possible to
take a large number of measurements, especially in signal
processing applications. We will now show that, under
some mild conditions, the geometrical and algebraic re-
quirements of Section II-B are achieved asymptotically,
as p — oo. We start again from expression (23). The var-
iance of the elements of E'N as a function of p is given
by E(E'N). = »*L§_,ek. This variance increases with
p according to the energy (the sum of squares) of the ele-
ments in the columns of E. In order to keep it finite as p
— oo, we will divide expression (23) by some function of
p, so that for p = oo, the influence of the cross terms
vanishes. In this way, we will achieve the first geometr-
ical condition (8) of Section II-B. The precise function of
p that will do the job depends on the properties of the
exact signals in E. Quite often, these signals satisfy the
following.

Assumption 3: The exact signals are quasi-stationary,
ie.,

p
2 e}
. k=1 .
lim = finite
p~e P
p
kZ ek
. =1
lim >— =0
p>

In this case, the variance of the inner products between
the columns of E and N grows at most linearly with p.
Let’s now divide (23) by p:

M'M/p = E'E/p + N'N/p + (E'N + N'E)/p.
(25)

3Note that the eigenvalues of E(M'M) will be larger than the eigenval-
uesof E'E, even if E(N *N) is not a multiple of the identity matrix. Indeed,
if a Hermitian matrix is perturbed by a positive definite matrix, its eigen-
values must increase [20, p. 203].
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We find for the variances in the cross terms:

P
2 e}
EE'N/p); = »* "';, -0
Hence, as p grows, the variances go to 0 while the mean
value is also 0. This implies that, even if we do only one
experiment (i.e., simply omit the expected value operator
in (26)), the cross terms in (25) will go to zero as p = o.
Let us now investigate the term N'N /p in (25). We find
for the off-diagonal elements of N'N in (23) that
E(N'N)jis; = 0 and E(N'N)};,; = pr*. This last
equation follows from

()

P
E [g]l Ni,.Ni,.]

asp — . (26)

E(N'N),ix;

P P

+E [2 P2 l=§<1NhNk,N,,-N,j].
The second term is O because of the independence of dif-
ferent elements of N. We see that the variance of the off-
diagonal elements grows linearly with p. When scaled by
p as in (25) we find E(N'N/p)j.i«j = v*/p = Oasp =
oo. Hence, the variance of the scaled off-diagonal ele-
ments goes to zero for increasing p so that N ‘N becomes
more and more a diagonal matrix. For the diagonal ele-
ments, we find E(N'N); = pr? and for their variance

E(N'N); — pvY)? = EI(N'N)Y2 + p*v* — 2p»> (N'N);]

P P
= 4 2 N2
PE(NY) + ZE[E - LZk(,N.kN.,]

+p*v* = 2py* E[(N'N);]
=pEIN}1 +2[(p-D(p-2)

s 211+ phrt - 2pvt
=pEW}) — pv*. @7

For the scaled matrix N'N/p, we then find for the mean
and variance of the diagonal elements E(N'N/p); = 2
and E(N'N/p); — v?* = EN%)/p — v*. Obviously,
we need the additional assumption that

Assumption 4: The fourth-order moments of the noise

are bounded.
Hence, even for one experiment (i.e., when we simply

omit the expected value operator), the matrix N ‘N/p ap-

proaches the identity matrix vzlq as p — o, because the
variance of the diagonal elements goes to zero, so that
asymptotically, the second and third geometrical condi-
tion of Section II-B are satisfied. Summarizing, we find
that

1) E'N/p—~>Qasp — o.

2) N'N/p — »I, which implies that V¢, (N'N/p) V.2

- Qasp — oo,
3) N(M'M/p) = NAE'E/p) + v asp = .
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B. Estimates of the Noise Variance and the Canonical
Angles

The preceding analysis shows that, as p — oo, we grad-
ually approach the geometric situation of Section II-C,
where E‘N = 0 and N'N was a multiple of the identity
matrix. Since singular values are perfectly well condi-
tioned (see, e.g., [20]), it follows from the perturbation
theory for singular values, that with this additive noise,
the noise threshold will become more and more pro-
nounced for increasing p. This allows us to estimate the
noise variance as follows: Let gy, g2, * ", Hp Brats
+ + +, p, be the singular values of M. Then, an estimate
v2, of the variance »? of the elements of N can be obtained
(from (11) with 6% = p»?) as

2 4 e 42
stt - Br+a ”'q. (28)
pig-7)
An estimate of the exact singular values o;, i =1, - - -,
r of E can be obtained (from (12) with 6% = p»?) as

o= Vi —ph Q=1 Q9

Together, expressions (28) and (29) allow us to obtain an
estimate for the signal-to-noise ratio SNR (13) and (14).
Using (28) and (29) the canonical angles that characterize
the bias of the long space can be estimated from (16).
As a matter of fact, the strong consistency of estimates
of the singular values and of quantities that are associated
with the short space only depends on the convergence of
the sample covariance matrix (which is M'M/p) with

" probability 1 to its expected value. That this is the case

when the fourth-order moments are bounded and the exact
signal is quasi-stationary, has been observed before by

several authors [2], [17]. However, here we have also de-

scribed the asymptotic behavior of the long space.

C. Gaussian Noise and Signals

It is often assumed that the elements of the matrix N
have zero mean and are identically and independently
normally distributed. This a priori assumption of nor-
mality is not only mathematically convenient, but via the
central limit theorem (see, e.g., [18]), it is often a good
engineering approximation of the real circumstances.
When ¢ is normally distributed with zero mean and vari-
ance »Z, then E(¢%) = 3»* so that (27) becomes E[(N'N);
=plP = 2pv*. In the case of Gaussian noise, the fact
that N'N/p = o*I, as p — o can also be interpreted as
follows: If we consider the rows of N as vectors in a
g-dimensional space, then all directions in R? are sam-
pled with equal probability, i.e., the row vectors of N lie
equally dense in all directions of R?. In other words, the
probability density function of the row vectors normalized
to have norm 1, is uniform on the unit sphere in R?. The
reverse statement is less trivial (see, e.g., [15]): If the
elements of x € R? are independent zero-mean random
variables such that x / lIx]l is uniformly distributed on the
unit sphere on R?, then the elements of x are normally
distributed if ¢ = 3.




If N'N/p is not a multiple of the identity matrix, the
transformation R ™' discussed in Section II-E, where
E(N'N) = RR', reduces the noise situation to the iso-
tropic case.

In order to make the statistical analysis more tractable,
it is often assumed that also the rows of E are indepen-
dently and identically normally distributed, i.e., also for
the exact signal a statistical model is assumed. In this case,
the asymptotic distribution (i.e., as p — o) of the eigen-
vectors of the sample covariance matrix M ‘M /p is Gauss-
ian. Let v, be the eigenvector of M'M /p associated with
its k th eigenvalue (i.e., Un is the kth right singular vector

of M/ \/_(;). Let v, be the kth right singular vector of

E/\/; andletg;,i = 1,2, - ,rbeits singular values.
Define

)\,~=a,?+v2 i=1, , T
A =2 i=r+1,°'-",4q
Then (see, e.g., [1]):
Elvul = va + 0(p7) (30)
El(m — Elvu)) @m — Elv)]
N < A

= ___L__ . ’V -
pi=tizk (N — )‘k)2 vvy +o(p)

3D
El(0m — Elvp) (Vm — E )8
N
= - ;(—S\k—k_—_—')\—l)i vavh +0(phH k%l

(32)

In the case of Gaussian E and N, formula (28) gives the
maximum likelihood estimate of the noise variance [1, p.
130}.

The following remarkable observation was made in [17,
p. 134]: Consider the projection of the dominant eigen-
vectors V,,; of M onto the exact null space of E: u, =
V,Vivm, k=1,2,+ - ,r. These projections are also
Gaussian distributed with mean and covariances that can
be easily computed from (30)-(32). For k=1, -",r,
we have

Elw) =0+ 0(p™)
Egui] =0 +o(p™) Kk #I

Eluuil = Vo P\ﬁ 5\: "—‘2\'__‘] L+ o(p™h)
“lpi=r+st (N — Wi
2
A _
= Ve 4 > 1 —rV‘eZ + O(P ])-

2p @)

Observe that the scalars \/o} in the last expression are
the squares of the diagonal elements of Sa/S4 =
(CS.)~!. We have already encountered the matrix CS,, as
the singular values of the minimum variance estimate (18).
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Fig. 4. (a) Estimate v, (# **) of the variance »? as a function of p using

(28). (b) Estimates (% * %) of the exact singular values (full line) as a func-

tion of p using (29).

0 500 1000

Fig. 5. The three canonical angles between R(V,,) and R(V,,;) as a func-
tion of p, illustrating the fact that the estimated short space converges to
the exact short space.

The diagonal matrix (CS,,) =2 is the covariance matrix of
the coordinates of the projections of the singular vectors
that generate the short space (the signal subspace) onto

_the exact null space. This explains why W = (CS.))* is

the optimal weighting matrix in the so-called weighted
subspace approach. Hence a maximum likelihood esti-
mate of the r dimensional short space can be obtained from
the solution of a quadratic optimization problem
min |V, W'/* — AT}
overd, TeR™ X7

subject to some structural constraints on A (which maybe
depends on some parameter vector # (as in ESPRIT)) or
has some structure (e.g., a shift structure in system iden-
tification). In this criterion ¥, are the r dominant singular
vectors of the data matrix in the short space and W is the

optimal weighting as described before. For more details
refer to [17]. Even if the signal vectors in E are not
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Fig. 6. Canonical angles between R(Up) and R(U,,) (full line) and their
estimates (* * *), using (28), (29), and (16).
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Fig. 7. Minimum variance reconstruction (*# %) of the first and second

coluzmn of E (exact: full line) using (18) for p = 996. The noise variance
isw®=2.

Gaussian but the rows of N still are, the asymptotic dis-
tribution of the eigenvectors of the sample covariance ma-
trix M'M /p is also normal. The explicit distribution is
given in, e.g., [4] [17, p. 207]. This distribution even
applies when E is deterministic but quasi-stationary.

VI. A NUMERICAL EXAMPLE

In order to illustrate the main points, we now present a
numerical example which was simulated using Matlab. A
matrix E was constructed as follows: Its first column con-
tains a sinusoid 2 * sin (0.1 * k) where k is the row index.
Its second column is pseudorandom binary noise, the
switching moments of which are integer values between
0 and 10 that are all equally probable. The third column

contains a constant signal with amplitude —1. Columns 4

to 6 are obtained by postmultiplying columns 1 to 3 with
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Fig. 8. Minimum variance reconstruction of third column of E, using (18)
with p = 996 for four different elementwise noise variances: (a) y? =
0.001; (b) »* = 0.01; (c) »? = 0.1; (d) »? = L. It is clearly visible how
the “‘uncertainty”’ grows for increasing noise variance.

;

@

Fig. 9. (a) First column of E; (b) Fourth column of E; (c) and (d). Matrix
ball of solutions around the minimum variance estimate, generated from
(22) by plotting the results for 20 random choices of the orthonormal matrix
Z in (21). The noise variance is »* = 2.

the matrix
1 -2 1
-2 3 4
1 2 -1

The number of rows of E is p, where p increases from 6
to 1000. Obviously, for all values of p, the rank of E is
3. We also generated a 1000 X 6 noise matrix N, the
elements of which were normally distributed with mean
zero and variance »2 = 2. Some results are presented in
Figs. 4-9.

VII. APPLICATIONS

_ We invite the reader to apply the insights of this paper
to the following four subspace techniques. We only pro-
vide a brief summary of each of them together with some
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relevant characteristics. For more details, appropriate ref-
erences are given.

A. Total Linear Least Squares

The total linear least squares approach is an alternative
for the classical linear least squares scheme for solving
overdetermined sets of linear equations, in the case that
all data are corrupted by additive noise. Consider an in-
consistent overdetermined set of linear equations Ax = b
where 4 € R?*@~D and for simplicity we take rank (4)
=g — 1 << p. A geometric interpretation of the least
squares solution x = (A4'4)”'4'b is that, first the right-
hand side b is projected orthogonally onto R(4), followed
by a solution of the resulting consistent set of linear equa-
tions. Obviously, only the right-hand side b is modified
to obtain a solution. The total linear least squares ap-
proach tries to modify all data in both A4 and b, with min-
imal effort, so that we obtain a consistent set of equations.
This can be formulated as the following optimization
problem

min (4 5] - B
x,BeRP*4

()0

It can be shown that the solution x can be obtained from
the SVD of the concatenated matrix [4 b] by scaling the
right singular vector corresponding to the smallest sin-
gular value, so that its last component is —1. The solution
x corresponds then to the first (¢ — 1) components of this
scaled right singular vector. Some references are [8], [12],
113, [22]. :
Using the notation of this paper, let us call M = {4 bl
The problem reduces to the least squares approximation
of a matrix of observations M = E + N by a rank deficient
matrix, in precisely the same way as in Section II-D. The
null space of E contains the linear relations and the rank
r of E determines the number of linearly independent lin-
ear relations among its columns, which is ¢ — r. Hence,
if the elements of the noise N are zero mean and have
bounded fourth-order moments, we can recover the orig-
inal linear relations asymptotically as p — o from the
SVD of the data matrix M. The long space of E, which
contains the noiseless signals, cannot be estimated con-
sistently. A least squares estimate can be obtained from
the SVD of M as described in Section II-D. These con-
sistency results (i.e., the asymptotic unbiasedeness) for
the total least squares problem in particular were derived
in [10], [11] together with an expression for the asymp-

subject to

totic error covariance matrix of the total least squares so- _

lution (which goes to zero as the number of equations goes
to infinity).

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 9, SEPTEMBER 1993

B. Direction-of-Arrival Estimation ESPRIT

The basic model in the ESPRIT approach (see, e.g.,
[19)) is

M=E+N=TS+NeR?™, g¢g>p

where § € R"*9 contains the emitted (small-band) sig-
nals. Note that the long space here is the row space and
the short space is the column space. T € RP*" is a static
transfer matrix, which has some additional structure which
is imposed by the array manifold. The rank 7 of E deter-
mines the number of sources while the direction-of-arrival
of each source can be determined from the short space of
E via the solution of an eigenvalue problem. When the
elements of N are zero mean and have bounded fourth-
order moments, a consistent estimate of the number of
sources r and the directions of arrival is obtained. It is
impossible from the SVD of M to obtain a consistent es-
timate of the emitted signals which are the rows of S (the -
so-called signal copy problem). These signals belong to
the long space of E and only a least squares or minimum
variance estimate can be obtained. In this context, it was
shown recently [17, p. 133] that the weighted subspace
fitting method to estimate the angles of arrival, asymptot-
ically achieves the lowest estimation error variance on the
directions of arrival. It is remarkable that the optimal
weighting matrix is precisely the square of the diagonal
matrix (19), which contains the singular values of the
minimum variance estimate (18).

C. Separation of the Fetal ECG From the Maternal
ECG

The basic subspace model in this application is given
by
Si

M=E+N=(Th T2)<S

>+N eRP*9, g>p.
2

Here M is a matrix that contains cutaneous measurements.
Typically three electrodes are placed on the abdomen and
three others are placed on the thorax of the mother which
results in p = 6 measurement channels. The mother’s
heartbeat is represented by S; € ®**?, which can typi-
cally be decomposed in three orthogonal signals. T, rep-
resents the transfer, which is assumed to be static, from
the mother heart to the measurement electrodes. The fetal
ECG is represented by S, € R2*? which is two dimen-
sional. T, is the static transfer from fetal ECG to elec-
trodes. Typically the 5 X p matrix

(5)

S

is orthogonal and the smallest singular value of S, is larger
than the largest of S,. By an appropriate placing of the
electrodes, one can ensure that also (7} Ty) is orthogo-
nal. This implies that for this application, the SVD is most

naturally reflected in the model itself! Extensive experi-
ments have demonstrated the applicability of this ap-
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proach together with the plausibility of some of the as-
sumptions, such as, e.g., the ones concerning the noise N
(see, €.8., [3], [21]). It can be concluded from the results
in this paper that one cannot recover the original signals
contained in the matrices S, and S,. This is because they
belong to the long space. One can, however, recover
asymptotically the linear combinations that should be
made of the columns of the exact matrix E, so that E would
be decomposed into S; (the mother heartbeat) and S, (the
fetal ECG). Despite the fact that we have the exact linear
combinations, we can only apply them to the noisy mea-
surement matrix M. This always results in inconsistent
estimates. Equations (21) and (22) could be used to gen-
erate an uncertainty band around the minimum variance
solution obtained from the SVD of M. Because physicians
are typically interested in the signals themselves and not
in the linear relations, this conclusion is a little bit dis-
appointing. Extensive simulations and experiments how-
ever have demonstrated that the least squares estimate of
the signals as described in Section II-D, still provide very
useful medical diagnostic information (see, e.g., [3],
[21]). The minimum variance estimate (18) suggested in
this paper might even perform better, but this has not yet
been verified experimentally.

D. Identification of State Space Models from Noisy
Input-Output Data

In [6], [16] we have proved the following result. As-
sume that the vectors w} = (1} yi)' contain the inputs u,
e B™ and outputs y, € R’ of a multivariate linear time-
invariant discrete-time system of order n. Construct a
block Hankel matrix W with the vectors w,, which has
much more columns than rows and divide it into two parts
of equal size: an upper part, which we call W, and a
lower part called Wey.. Then, there is an n-dimensional
nontrivial intersection between the row spaces of W, and
Wieare- This intersection is nothing more than a state se-
quence of the linear dynamical system. The state space
model can be elegantly computed from the short space of
W via its SVD (for details see [6], [16]). The relevant
elements for this subspace technique are: In the case of
input—output data that are corrupted by white* noise, the
short space can still be estimated consistently as the num-
ber of columns goes to infinity. This implies that we ob-
tain consistent estimates of the state space matrices.

It is impossible to obtain a consistent estimate of the
state sequence, since it belongs to the long space of the
block Hankel matrix with input-output data. This result
is apparently new and perhaps provides an answer to a
long-standing open problem posed by Kalman in his path-
breaking paper [14], namely, whether it is possible to ob-
tain (consistent) estimates of the state from noise cor-
rupted input-output data. Our approach suggests that the

“This is an additional assumption, which reflects a dynamical property
of the noise. This assumption is enforced by the block Hankel structure of
the data matrix and the requirement that N'N must be a multiple of the
identity matrix asymptotically.
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answer is no. If the noise is white and Gaussian, one can
obtain consistent estimates of the state space model and
then use a Kalman filter to obtain a least squares estimate
of the state. The error covariance matrix of the estimate
of the state is, however, not zero asymptotically.

VIII. CONCLUSIONS

In this paper, we have given a geometrical description
and statistical description of a fundamental asymmetry in
the consistency properties of estimates of the long and
short space of a matrix. While the short space can be es-
timated consistently under certain orthogonality assump-
tions, the estimate of the long space suffers from an
asymptotic bias, which can be characterized in terms of
certain canonical angles. These can be estimated and al-
low us to describe a matrix ball of equivalent signal re-
construction, which describes the uncertainty in trying to
reconstruct the long space. The central solution is the
minimum variance estimate, which can be constructed
from the SVD of the data matrix. We have shown that the
geometric and algebraic conditions are satisfied for noisy
matrices, if the noise elements are zero mean and have
bounded fourth-order moments. The results were illus-
trated by a numerical example and four different signal
processing applications were enumerated.

It is true that in this paper we have only analyzed the
asymptotic behavior of the SVD of noisy matrices. It has
been observed by many users (and it can be verified ex-
perimentally) that SVD-based algorithms remain robust
with noisy data matrices that are only slightly overdeter-
mined (short data records). The analysis in this case is
much more involved; the main reason for the difficulty in
the finite case is the lack of orthogonality between the
column spaces of E and N, which corresponds to a certain
(but unknown) amount of correlation between the exact
signals and the noise. One could analyze the finite case
statistically. However, there do not yet exist fully satis-
factory approaches, although some analysis of the finite
case can be found in [17].
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