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From the last claim of Theorem 4.1, we can assume that b/a < 8, which
implies that @ > 1/8 since b > 1. Furthermore, a' < 1/a implies that
a < 4(1 + 1/y/B). Hence, the question is: can the function f(x) be
greater than 1/« for all x € (1/8, 3(1 + 1//B)). Now a very messy
calculation will show that f/(x) < 0 on this interval. Alternatively, one
can see that with b, 8 fixed and @ increasing, ®(a, b) = f(a) can only
decrease, this being an optimum constrained sensitivity which can be
made smaller the smaller is this constraint. This argument shows that
f'(x) <0 throughout the interval. Quite evidently, the explicit form of
f(x), being analytic in x, prevents f’(x) being identically zero on any
subinterval. Hence, in the interval [1/8, (1 + 1/v/B)], f(x) attains its
minimum only at the right endpoint (in fact, it can be checked that this
endpoint is a uniquely possible extreme point of f(x) in its domain
‘of definition). An easy calculation shows that at the endpoint, f [% 1+
1/vB) = 1/a. Thus, f(x) > 1/a for all interior points in the interval
and in particular f(a) > 1 /e.

Case 2: Suppose that b’ < 1/« and b — b < (2ab —a* — b)B. Then
arguing as for Case 1, we can show that

b++/b'BB 1)
—————ﬁ"_—b“—"— > I/a.

Case 3: Suppose that the first three alternatives of Theorem 4.1 are
precluded. We must show that if b/a < 8, then h(a, b) > 1/a, where

X y B-1 1
1-xy—-1\xB-y o
First, it is not hard to see that there are only the following three poséi-
bilities for @ and b:

hix, y) =

and a+b —2ab>(a—-a’)B (A6)
and b2 —-b>Qab-a*-b)B (AT

a <1/a<d’
b <1ja<a
max(a’, b’) < 1/a. (A.8)

If a and b satisfy (A.6), it was shown in the proof of Theorem 4.1 that

h(a, b) > b’ > 1/a.

In the same way, it can be shown that if @ and b satisfy (A.7), then

h(a,b) >a’ >1/a.

__Now suppose that 2 and b satisfy (A.8), or equivalently,

a<xo? %(1 +1/y/B) and b2y 2 %(1 +/8).

Since min(a’, b") < 1/a, the above two inequalities cannot be replaced
by equalities simultaneously. Since ®(a, b) = h(a, b) is a constrained
optimum, it is intuitively clear that

8 7]

—_— < —h >0.

6xh(x’ N<Oo and 3y x,» =20

In addition, neither partial derivative can be identical to zero on an inter-
val. As a direct calculation shows, #(xo, ¥) = 1/a. Since eithera < xo,
b > yo, 0r a < Xxo, b > yo, it follows that

h(a, b) > 1/a.

Finally, Theorem 4.2 is concluded by combining the above arguments.
[m}
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A Unifying Theorem for Linear and Total Linear Least
Squares

BART DE MOOR anp JOOS VANDEWALLE

Abstract—1t is shown how both linear least squares and total lin-
ear least squares estimation schemes are special cases of a rank one
modification of the data matrix or the sample covariance matrix. For
a problem with n unknowns, there exist n linear least squares solu-
tion while the total linear least squares solution is (generically) unique.
When the signal-to-noise ratio is sufficiently high, the total least squares
solution is a nonnegative combination of the least squares solutions.

1. INnTRODUCTION

Among the most popular schemes for estimating linear relations from
noisy data are the Linear Least Squares (LLS) and the Total Linear Least
Squares (TLLS) schemes. The literature on LLS is vast and the problem
has a long history, starting with Gauss and Legendre. It is most com-
monly used in signal processing and system identification because of its
straightforward geometrical interpretation (the orthogonality principle),
its structure, (which is optimally suited for recursive implementations),
and the relative ease by which statistical and numerical properties can
be derived. References [7], [8], and [10]-[12] provide good surveys on
the numerical and statistical richness of the subject. The TLLS prob-
lem, known in the statistical community as *‘orthogonal regression,”
can be traced back over more than 100 years, being rediscovered many
times [1]. The term TLLS was coined in [6], although its solution, us-
ing the singular value decomposition, was introduced in [5]. Statistical
properties, algorithms, and applications in signal processing and system
identification can be found in [4] and [13].
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The problem of identifying linear relations from noisy data can be cast
in a matrix formulation as follows.

Let the m x n real matrix 4 with m > n represent m different mea-
surements on n measured channels. At least one linear relation exists
between the columns of the matrix A if there is a nonzero vector X such
that’

Ax =0, n

This is equivalent to the algebraic condition:

r=rank(A)<n

indicating that there exist n — r linearly independent linear relations
between the columns of A. Generically, however, real measurements
will always be such that A is of full column rank n. Most frequently,
one then makes the assumption that the data were generated by *‘exact”
data that have been perturbed by noise (uncertainties, inaccuracies, etc.)
in an additive way. Denote by A the exact and by A the noise matrix.
Then
A=A+A.

The problem of identifying linear relations from the data matrix A can
be considered as modifying A to obtain a rank deficient matrix A, based
upon several @ priori assumptions to be made (recently, some of these @
priorisms have received a good deal of cx:iticism, as discussed in [2], [3],
and [9]). Once a rank deficient matrix A has been obtained, the linear
relations follow immediately from the kernel of A4 as in (1).

We will make the following assumptions throughout the note.

o The noise is additive and all columns of the data matrix A are
perturbed by noise.

o r =rtank(A) = n — 1. This implies that we are looking only for 1
linear relation. This can be achieved by sufficiently high signal-to-noise
ratios in static estimation, by reducing the number of variables from
statistical dependency tests, or by assuring that conditions of persistant
excitation are satisfied in a dynamical estimation scheme. Of course, the
precise estimation of r itself given only the raw data is a highly nontrivial
task which is, however, not discussed here.

Both LLS and TLLS schemes modify the available data matrix A in a
particular way, which is explored in Sections I and III. In Section IV,
it will be shown how both LLS and TLLS are special cases of a rank
one modification of the data matrix 4 or the sample covariance matrix
T =A'A.

II. Linear LEAST SQUARES

Denoting by a; the ith column of A and by A4; the m x (n—1) matrix
obtained from A by omission of g; , the ith LLS estimate y; of the linear
relations between the columns of A is obtained by minimizing

lla; — Ayl 2)

where || - || is the standard 2-norm of a vector. Because r(4) = n, it
follows that 7(A4;) = n — 1. Hence, the vector y; that minimizes (2) is
unique and given by N

yi =(AlA) " Ala,. 3)

Obviously, there are n such least squares solutions, fori = 1,--. ,n. The
geometrical interpretation for each of the LLS solutions is well known
and can easily be derived from the singular value decomposition (SVD)
of A; [7): )

A; =UD;V; 4)

where, in this case, U; is m x (n — 1) orthonormal, D;(n — 1) x (n -
1) diagonal with positive diagonal elements (the singular values), and
Vi(n — 1) x (n — 1) orthonormal. Then (3) can be rewritien as

Y = V,D,""U"-a,
and the residual vector can be decomposed as

& =a Ay =U,-UU)a . (5
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which is nothing else than the orthogonalization of @ onto the range of
A;. The modification of the data matrix A4 for the ith LLS solution hence
consists of an orthogonal decomposition of the ith column ¢ into its
orthogonal projection onto the range of 4; and the residual vector given'
by (5). This is of course nothing else than the well-known orthogonality
principle, which is sometimes exploited to derive elegant solutions to
least squares problems [12]. The conclusion is that each of the n LLS
solution leads to the modification of only 1 column vector of the
data matrix A in order to make it singular.

It is less known that the n LLS solutions y;, as in (3), can be derived
from the columns of the inverse of the sample covariance matrix ¥ of
the data

S=A'A.

Without loss of generality, we derive this result for i = n. The sample
covariance matrix can then be partitioned as

ALA, Ala,
X = (A, an)l(An a,)= .
alA, dya,

Via a well-known lemma for the inverse of a partitioned matrix, it follows

that

st ((A;,A,, - ALa,(@han) " ab AT —(ALAR) T AL [ >
—a, An(AL AT [an 1/an

a, =a'a, —a,A,(ALA) T ALan. ©)

The scalar a, has a double significance as follows.

e When the nth column of L' is multiplied with — a,, the vector
consisting of the first # — 1 components is the same as the nth LLS
solution y, derived in (3).

e Using SVD of A, defined in (4) results in

a, =dla, —a,U,Una,
=da' (I, — UsU\ ) a,.
Hence, a, is nothing else than the square of the norm of the residual

vector &, (5) from the nth least squares solution.
These results apply for the other columns of =~! and the correspond-

ing diagonal elements in a trivial manner.

I11. ToraL Linear LEAsT SQUARES

For each of the LLS solutions, only one column of the data matrix A
is modified. However, the fact that all columns of A are noisy suggests
an estimation scheme in which all columns are modified in order to make
the data matrix singular. This is achieved by the total linear least squares
solution (TLLS). It looks for the matrix A with r(4) = n - 1 that is
closest to A in Frobenius norm:

min — 1A - A)E.

over all A, rank (A)=n

The n x 1 vector x satisfying Ax = 0 is then called the TLLS solution.
The solution is immediate from the singular value decomposition of A:

A=UDV' = wbv].

i=1

In case 8,1 > 9, (the generic case), the optimal solution A is given by
the first n — 1 terms

n—1
A = Zu,&iuﬁ
i=1
and the TLLS solution x is up to a scalar

XTLLS = VUn- @)
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For a proof, see [6]. The nongeneric case occurs whenever Sy =6y
and is analyzed in detail in [13] but will not be considered here.

The geometrical interpretation follows immediately from the singular
value decomposition of A

n n-1
A= Zu,&,uf = Zu,-&,v} +u,,6,,v£,

The TLLS estimation scheme decomposes the data in a model for the
exact part, A, and one for the pure noise part, A, with rank (4) =
Hence, all columns of A are proportional to the nth left singular vector
u, and orthogonal to the range of A. Despite the fact that, contrary to the
~ LLS solution, now all columns of A are modified, the solution remains
very structured: the noise model is a rank one matrix!

Using the SVD of A, it is a straightforward exercise to show that the
TLLS solution x7,.s is nothing else than the eigenvector of the sample
covariance matrix X = A’ A, corresponding to the smallest eigenvalue.

=A+A.

IV. Rank ONe MobiFicaTiONs

Both the LLS and TLLS solutions decompose the matrix 4 as
A=A+A
with the additional properties
rank (4) = 1 ®
Aa=o0. )

We shall first investigate the properties of rank one matrices A that lower
the rank of A (condition 8) and use the results to characterize the rank one
matrices A that lower the rank of A and are orthogonal to the resulting
A (conditions 8 and 9).

Lemma 1—Rank Reduction of Rank One: Let A be an m x n ma-
trix, m > n and rank(A) = n. Let A = poq' be a rank one ma-
trix with o a nonzero scalar, p an m x 1 and ¢ an n x 1 vector with

lpll = lgll = 1.1f:
(A-pog'x=0 (10)

then
1) p belongs to the range of A and

. p'A(A’A)_'A’p =1, (1
2) the solution x does not depend on g
x=(A"A)"'A'pB (12)

where 8 is a nonzero scalar; and
3) ¢ is determined by p and ¢

o' =g'(4'A)7'A'p. (13)

Proof: Observe that from rank (A) = n it follows that ¢'x # 0.
From (10) one finds that p = Ax /(o(g'x)) which proves the first prop-
erty and p'A(A'A)"'A'p = 1 holds for any unit vector p in the
range of A. Put § = o(g'x). Premultiplication of p with (A A A
proves (12). In order to prove (13), substitute (12) in (10) to find that
A(A'A)"'A'pB = paq' (A’ A)~' A’ pB. Premultiplication with p/ then
proves (13). )
_If, in addition to the conditions of Lemma 1, we also require that
A'A =0, the following result applies.

Theorem 1: Rank reduction of rank one with orthogonality require-
ments. Consider A, A as in Lemma 1 with the additional requirement
that

A'A = 14
Then
1) A'p=qe (15)
2) e t=q'(A'A) 'q (16)
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3) a2 =p'AA'p 17
4) p =A(A'A)"'qa. (18)

__ Proof: Equation (15) follows immediately from (14) because
A'A = (A" - qap')pog’ = 0 = (A'p - qo)q'. Because g #0,
A'p = qo. Equation (16) follows from a combination of (10)-(12) and
(15). Equation (17) follows from premultiplying (15) with p/ 4. Finally,
(18) follows from (10) and (11) combined with (15). a

Similar results can also be derived via the sample covariance matrix.
Because of the orthogonality property (14) and the additivity of the noise,
the sample covariance matrix can be written as

T=A'A
=A'A+A'A
=L+%

where rank (£) = 1. While T is positive definite, both £ and ¥ are
nonnegative definite. The following theorem characterizes all nonnegative
definite rank one matrices I that, when subtracted from X, result in a
nonnegative definite matrix % of rank n— 1.

Theorem 2: Let £ be an n x n positive definite matrix. Let ¥, =
qolq' be a rank one matrix, with g an n x 1 vector with ||¢|| =1 and
o, a nonzero scalar. Define ¥ =% —£,. Then the conditions

. rgnk().')) =n-1
e X is nonnegative definite
are satisfied if and only if

o7t =¢'S7'q. "(19)

The solution x, of (¥ — £,)x, =0 is given by

x,=L"'q. 20y
Proof:
If Part: With £,, 64, and x, as above, it follows that (X — E,,)xq =
TZ~'q — qo2q'L™'q = Q. Because rank(X) = n and rank(%,) =1,

it follows that rank (¥ — E,) n — 1, Moreover, the matrix (X —
24)2 WE - E,,) is obviously nonnegative definite. But

(E-5)(=-5)=2-28,+5,57'E,
=L -2%, +qolq'
=2-%

Hence,  — E is nonnegative definite.
Only If Part The conditions (X — ga2g')x, = 0 and rank(X) =
n tmply that g’ Xq ;éO and that x, = ©7'qolq' x,. Premultiplication
with ¢’ results in ¢'x, = ¢'Z~! qo q'x, from which it follows that
072 =q'C7'q. It is stratghtforward to show that x, = ™'q is the
only solution for a fixed g. ]
Theorems 1 and 2 characterize all rank one modifications of a given
matrix A as A = A — A where rank (A) 1and A'A = 0. It is the
choice of the vector g that fixes the solution x, [via (20)], the noise
“energy”’ [via (19)] and the direction p in which all of the columns of 4

will be modified to make it singular {via (18)]. The n LLS solutions and

the TLLS solution correspond to certain specific choices of the vector ¢
which result in special geometrical, numerical, and statistical properties.
The ith LLS solution and its properties, as explored in Section II,
follow from the choice of ¢ = e; where e; is the unit vector with the ith
component 1 and all others zero. From (16) and (19), we find that g,7* =
€ '(A'A)"'e; = el =™ 'e;. Hence, the ith diagonal element of - 1s the
inverse of the square of the norm of the residual as in (6). From (18),
p = A(A'A)"'e;a,,, hence, from (12), x5, = (A'A)" e (0., B),
which is (20), up to a scalar. The ith LLS solution hence follows from
the ith column of £~', which was also found in Section II. The noxse
covariance matrix 2,, , for the ith LLS solution is equal to E, =ga’ e,

hence contains only one nonzero element, which is the inverse of the 1th'

diagonal element of £~
The TLLS solution is found by choosing ¢ = v, , the eigenvector of T
corresponding to the smallest eigenvalue. The corresponding o, 2 follows

o

i
i
ol
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from (19) and o2 is the smallest eigenvalue of .. Hence, of all possible
rank one modlﬁcatlons in Theorem 2, the TLLS modification is the one
with the smallest Frobenius norm. From (18) we get that p = u,, the
right singular vector corresponding to the smallest singular value. The
rank one noise covariance is given by

%, =vaol v @n
From (20), the TLLS solution is given by
xries =57 v =vq0,% (22)

This last relation establishes an interesting relation with the results re-
ported in [2], {3], and [9]. Since the columns of £~ are (up to a scalar)
the LLS solutions, it follows that xr;.s is a nonnegative combination
(=linear combination with nonnegative weights) of the LLS solutions,
if va has nonnegative components. A sufficient condition for this is that
£~! is sign-similar to an elementwise positive matrix (i.e., by symmet-
ric sign changes of the form S!S, where § is a diagonal sign matrix,
it can be made elementwise positive). In this case, the Perron-Frobenius
theorem for nonnegative matrices applies. Since v, is the eigenvector
corresponding to the largest eigenvalue of £~', its components can be
chosen to be nonnegative if ="' is sign-similar to an elementwise posi-
tive matrix. The fact that ' is (sign-similar to) an elementwise positive
matrix also implies that the LLS solutions can all be transformed to the
positive orthant by appropnate sign changes. Assume that we start from
an exact m x n matrix A of rank (A) = n — 1 (which is well condi-
tioned in the sense that its two smallest nonzero singular values are not
too close). Then for sufficiently small noise matrices A (not necessarily
of rank one), added to A, the inverse of the sample covariance matrix
will be (sign similar to) an elementwise positive matrix, the columns of
which are the least squares solutions. In this case, the TLLS solution is
a nonnegative combination of these least squares solutions, which will
be closer to the orthogonal “‘exact” solution of Ax = O than each of
the least squares solutions. It is proved in [2], [3], and [9] that, if !

is sign-similar to an elementwise positive matrix, the LLS solutions are
the vertices of a simplex with the following property: for every vector
x within the simplex, there exists a nonnegative diagonal matrix ¥ with
Tx = Xx such that £ — X is nonnegative definite of rank n — 1, Hence,
(22) expresses the fact that the TLLS. solution also lies within this sim-
plex. While the corresponding covariance matrix (21) is not diagonal,
it is possible to determine a nonnegative diagonal matrix ¥ such that
(£ —X)xrrLs =0 with £ — ¥ nonnegative definite of rank n — 1: simply
choose L = g2 I,. The qualitative conditions under which £~ will be
sign-similar to an elementwise positive matrix are precisely those stated
in the Introduction. If, for instance, the Frobenius norm of the added
noise matrix A is increased, the (positive) simplex of the LLS solutions
grows “‘bigger” until its vertices reach the orthant plants bordering the
positive orthant. At this point, the matrix £™' ceases to be (sign-similar
to) an elementwise positive matrix. Further research is, however, needed
for a more quantitative description.
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A Hamiltonian-Jacobi Algorithm
RALPH BYERS

Abstract — This note adapts the nonsymmetric Jacobi iteration to the
special structure of Hamiltonian matrices. This Hamiltonian-Jacobi al-
gorithm uses symplectic-unitary similarity transformations to solve al-
gebraic Riccati equations through the Hamiltonian-Schur form. It pre-
serves Hamiltonian structure without using a condensed form. Although
it converges too slowly for use on conventional serial computers, it may
be attractive for some highly parallel architectures.

1. INTRODUCTION

A matrix M € C***?" is Hamiltonian if it is of the form

-
F A"
where A, F,G €C"*", F = FH¥ G = G" [6], [11]. The superscript

H denotes complex conjugate transpose. Solutions X € C"*" to the al-
gebraic Riccati equation

M= H

"F4+A¥X +XA-XGX =0 )

correspond to invariant subspaces of M. If X satisfies (2), then
A G 1, 1,
[F ] [—x] - [ '

I
In particular, the columns of "

4 ] [A -GX]).

span an n-dimensional invariant

subspace of M. Conversely, ifY € C"*" is nonsingular and Z € C"*" is

such that the columns of span an n-dimensional invariant subspace

Y
z
of M, then X = —ZY ~! satisfies (2). As it arises in control theory, the
desired solution is stabilizing in the sense that all eigenvalues of A— GX
have negative real part. This implies that the associated n-dimensional
invariant subspace is the one corresponding to the eigenvalues of M with
negative real part Under mild assumptions, such an invariant subspace
exists and is unique [10].

Numerical methods for finding the invariant subspace through an
eigenvalue-eigenvector factorization of M were proposed by MacFarlane
{13] and Potter [17]. Laub [12] improved numerical stability and lowered
work requirements by using a Schur decomposition to find the subspace.

Manuscript received January 20, 1989; revised August 18, 1989. Some of this work
was completed while the author was employed in the Mathematics Department, North
Carolina State University, Raleigh, NC. This work was supported in part by the Na-
. tional Science Foundation under Grant CCR-8820882, and University of Kansas General
Research Allocations 3758-20-038 and 3692-20-038.

The author is with the Department of Mathematics, University of Kansas Lawrence,
KS 66045.

IEEE Log Number 9034491,

0018-9286/90/0500-0566$01.00 © 1990 IEEE




