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Abstract

A solution to the stochastic realization problem is given here in terms of a generalized
singular value decomposition (GSVD) of block Hankel and block Toeplitz matrices, related
to the future and the past outputs of 8 MIMO time-discrete, time-invariant, linear, finite-
dimensional, second-order stationary stochastic process. The process-order estimation is
based on the canonical angles between transformed spaces of the future and the past
outputs, which can be expressed directly by means of the GSVD. This estimation is
obtained after applying a so-called Orthogonality Theorem. The GSVD also proposes
a framework to classify different realization schemes and is interesting from a numerical

viewpoint.

Keywords: approximate stochastic realization, canonical angles, RV-coefficient, GSVD
(QPQ-SVD, PQ-SVD, PSVD)

Contents:

1. Introduction

2. Markovian representation of a stochastic process

3. The RV-coefficient as a measure of closeness between spaces

4. The generalized singular value decomposition (GSVD)

5. Classification of realization schemes by means of the GSVD

6. Estimation of the process-order and obtaining a state vector sequence
7 ‘S'tocha.stic realization algorithm

8. Conclusions

9. References

-5

1 Introduction

In the recent past the problem of finding a finite dimensional Markovian representation (state:
space model) from the knowledge of the autocovariance sequence of a second-order stationary
stochastic process, received much attention because of applications in system identification.
digital filtering, signal processing, time series modelling, aerospace engineering, metrology.
geophysical data processing etc. Several realization schemes were introduced [7][5], based on
the maximization of performance indices, subject to certain constraints. This paper aims
to unify the different approaches within a generalized singular value decomposition (GSVD)
framework: for each optimization criterion with its constraints, we have to apply a certain
GSVD-configuration in order to get a state vector sequence of the stochastic process and to
estimate the process order.

The process order will then be determined as an amount of interaction between the past
and the future of the stochastic process, based on that GSVD and a so-called Orthogonality
Theorem. The principle is not based on finding an intersection between transformed past and
future output spaces, but on linear dependencies in terms of that Orthogonality Theorem. A
state vector sequence is then obtained as a transformation of the past or future outputs of



the process. Another difference with previous methods is that no use is made of a backward
state-space representation: all reasoning is based on a forward state-space model, which has
its future and past input-output matrix equations. The GSVD offers then a unifying frame-
work for different realization schemes and allows to compute them in a numerical reliable way.

Notations:

A': transpose of matriz A

At : matriz related to the future

A~ : matriz related to the past

A~t: inverse of A'

(A)*: pseudo-inverse of A

A(i: 7, k2 1): submatriz of A consisting of rows i to j and columns k to lof A
8PAN oi(row)(A): space generated by the columns (rows) of A
A|B: projection of spanco(A) on spanc.(B)

I;: identity matriz (i x i) '

z: columnvector

z,: columnvector at time k

z(i): i-th component of z

{.} : setof.

. : estimation of .

E{.}: ezxpectation operator of .

GSVD: generalized singular value decomposition
QOSVD: ordinary singular value decompostiion
PSVD: product SVD

QSVD: quotient SVD

PQ-SVD: product-quotient SVD

QPQ-SVD: quotient-product-quotient SVD

2 Markovian representation of a stochastic process

-%

Let us suppose that a state space representation (called Markovian representation) of the
form:

Zrey = Azt (1)

gk = C-Qk — Wy

can serve as a model for a MIMO stochastic process, which is time-discrete, time-invariant,
linear, finite-dimensional and second order stationary. Here {z;} is the (n X 1) state vector
process, {v,} (n x 1) and {w,} (I x 1) are zero mean white Gaussian noise processes with
variance o2, {y, } is the ({ x 1) output vector process.

Theorem 1:
The state space form (1) can be formulated more algebraically by means of so-called input-
output (I/O) equations:
Yt = r*xt4+rtvt e wt (2)

Y- =R e 4 (3)



Here the 1/0-equation (2) is related to the future of the process and (3) to the past of the
process. The matrices v+ and W+ are block Hankel, ¥~ and W~ are block Toeplitz matrices,
'+ and '~ are extended observability matrices. The matrices of the I/O-equation are written

out here:

L Qk+| Ek+j—l
] y e Yy
Y+([1)<]) - k41 .k‘+2 .k+)
| Yepiot Yoo Yeqivj-2 |
Yoo Yk Vi
Ve, Y Wi
F{lixg] = k-2 k-1 -k Ju
| Yeoi Yiinn Ypoing=1

For the definition of W+(li x j) and W~ (li x j) just replace the symbol y by w.

X*(nxj) = [2k Zk4r - pTINEN
X" (nxj) = [Zeci Thoitr = Tkeivi-1]

For the definition of V*(n x j) and V™ (n x j) just replace the symbol = by v.

[ C 1 o Lak
G.A C.A"?
rt(lixn) = 0. 4% , I (lixn)=|:
: C.4
L C.AT g
[ o T A -
C :
T+Uixn) = | CA LT (lixn)=| C.4
i c
| B4 ] 0

proof:
The proof is a straightforward repeated substitution of (1). -

Stochastic realization aims then to find the matrices A and C of the state space description
(1) from the knowledge of the output vector process and to obtain a state vector sequence.
Three aspects are involved with this problem of stochastic realization:

1. estimation of the process order n
2. obtaining a state vector sequence X ¥ or X~

3. computation of A and C.



Let us introduce now some assumptions.

Assumption 1:
There exist matrices F(Ii x n) and G(li x n) such that

1SN
—

xt = F'yt (
X~ = GY-

—
o
~—

A method for obtaining F and G will be described in chapter 6.

Assumption 2:
Let us assume that the property of ergodicity holds for the stochastic process which means

that an expected value over several measurements may be replaced by an expected value over

time. Suppose then that for j > li:

v | oo | VIVH) VHWH(1: L)
E{[ :u&_k ] fv, w,]} = ; [ w+(1 :1,:)(17+)f WH(1: 1) (W1 [’:))t by (6)

(6xs = 1 if k = s, otherwise §ks = 0)

with
1
=P = a’l, (7)
J
1 5
SWHA LWL L)) = ot
J
Assumption 3:
Assume for large j:
) n
—_.‘X (V ) = 0 i (&)
J
) —— _ iy
~XT(WwWT)y = 0
J
1 r+ e
7
1 R
- WHXxT)Y = 0
J

Theorem 2:
The extended observability matrix 't can be obtained by a QR-factorization of HEFPLET T =

() (7)) = (@1 Q) [ A, } (©)

where

' = (R;:lRlQ)t



under the conditions that:

XHV*Y = 0 (10)
xXtwt = o
Proof:
The factorization (9) delivers us 2 equations:
(X+)t = Qi
(Y)Y = QiRiz+ Q:Rn
Eliminate @, in these equations:
(Y*) = (X YR Riz + Q2R (11)

-~ Equation (11) may be identified with (2):
(V) = (XOTH) +(THV+ W)

because assumption (10) obeys the QR-factorization property that Q4Q, = O.
Thus 't may be identified as:
I'* = (Ry) Ru)

Thanks to the shiftstructure of I'* we can compute 4 and C as:

A = (EEpr.TF
g = 1k

with

C CA .
CA CA?
P = o o  TF = C A3
A2 ¥ Ll
Remark:

Because conditions (10) differ from (8) by the factor j, the conditions (7) must be adapte:

into:

iy = oL
WHL: L )(WH(L:1,2) = o',

when the matrices 4 and C of I't are used for simulation of the stochastic process.

In the next 2 sections we briefly repeat the concepts of the RV-coefficient [4][5] and the
generalized singular value decomposition (GSVD) [1][2].



3 The RV-coeflicient as a measure of closeness between spaces

The RV-coefficient, introduced by Robert and Escoufier [4] as a tool for solving a large class
of problems arising in multivariate statistical analysis, is defined as follows:

Definition 1:
Suppose that 2 data matrices X and Y are given, then the RV-coefficient between those

matrices is defined as:
= t XYEY X!

RV(X,Y) = race( XY .Y X") |

[trace(X X*)2.trace(YY!)?]:

(12)

This RV-coefficient serves as a measure of closeness between the sﬁaces span,,,(X) and
span,,,(Y) and it has the following properties:

1. RV(X,Y) € [0,1]
2. the larger RV (X,Y), the closer span,,.(X) and span,,,(Y) ly to each other.

Special cases are:
- RV(X,Y) =1if and only if X = kY (k is a nonzero scalar)

_RV(X,Y)=0ifand only if XY* =0
3. RV(X,Y) = RV(Y, X)
4. RV(A'X,Y) = RV(X,Y) if A orthogonal
5. RV(kX,Y) = RV(X,Y) for some nonzero scalar k

This concept will be developed later for measuring the closeness of the spaces spanon (X 7)

and span;ow(X 7).

4 The generalized singular value decomposition (GSVD)

As a generalization of the ordinary singular value decomposition (OSVD), a factorization of a
set of matrices can be obtained as a so-called GSVD. This is recently introduced by De Moor
and Golub [1][2].

The theorem is repeated here for real matrices only:

Theorem 3:

Given a set of k real matrices with compatible dimensions: {A;(nyxn;), A
ni_1 )y Ax(ng_; x ng)}. Then there exist matrices U, Vi, D =1k
Zi{(j = 1,k — 1) such that the next factorization can be obtained:

A, = ULDXT! (13)
Ay = Z,D,X;!
A = Z.‘_lD.Xl—_I
Ay = Zi DV}



with:
e Ui(ny x ny) and Vi(ng x ni) are orthonormal matrices

e the matrices D;(j = 1,k — 1) have the form:

[ I(T'IJ') O O O 7
O(rj = r,) O 0 o
O ](T'.)J') O O
Dil(njq X ¥y ) 0 O(r%‘—l = TZ,‘) 0 0
0] o e HLTy) 0
L 0 0 O(le‘_l —Tj-1 —TJ'J-) O |
The dimension of the submatrices of D; are given between brackets and ry = 0, r; =
J_, = rank(A;). The integers r;; are ranks of certain matrices, given in a constructive
proof of this theorem.
o the matrix Dy has the form:
[ Di,(m) 0 0 0
O(rlkfi - T;k) O O O
0 Dy, (r2,) 0 0
Dk(nk_l X T‘Lk) - |0 O(T'?k—l - T'Zk) 0 0
0 O Dkk(rkk) O
L O O O(ﬂk_l — Tk—-1 — rkk) O B

with rg = Ef:z ri, = rank(As) and the r;, X, matrices D, are diagonal with positive

diagonal elements.

o nonsingular matrices X;(n; x n;) and Z;(nj_, x n;_y) with j = 1,k — 1, where Z, is
either Z; = X;! or Z; = X; (i.e. both choices are always possible).

Proof: see [2].

Because one can choose either Z; = X;l or Z; = X; we can define the following GSVD-

nomenclature:

Definition 2:

e If for the matrix pair (A4;, A,41) in theorem 3, we have that Z, = X;, we say that the
factorization of that pair is of the P-type.

e On the other hand, if for a matrix pair (4,, A;4) in theorem 3, we have that Z; = X
the factorization of that pair is of the Q-type.

o The name of a chain of factorizations of the matrices 4;(: = 1,k) as in theorem 3 is
then obtained by simply enumerating the different types.



Example:
A QPQ-SVD of a set of matrices {A(no xny), Az(n X ny ), Aa(na x ny), A(n3 x ny)} means:

A = UD X' (14)
Ay = X['D2X;!
A; = XoDiX;'
Ay = X7V

with Uil = 1, Vivy = I (U, and V, are square); X, X2, X3 are nonsingular and square
matrices and Dy, Dy, D3, D4 have the same dimensions as respectively Ay, Ay, Ay, A,

In the following section, this GSVD-framework will be applied in order to classify different
stochastic realization schemes. Due to its extremely analysing property, the GSVD will give
very much geometrical and algebraical insight into the problem of stochastic realization.

5 Classification of realization schemes by means of the GSVD

Concepts of canonical correlation analysis [13], principal component analysis [7] and RV-
coefficient optimization [5] were already applied to the stochastic realization problem in the
past. A unifying approach is given here within a2 GSVD framework.

5.1 Strategy to obtain Xt and X~

In order to evaluate dependencies between Y'* and ¥~ we look at the following optimization

~problem:
extr|, {I'Hm} (15)
under constraints:
EYRYL = g -t
MR™M = Ay

which is called 2 symmetric stochastic realization problem because the constraints of L anc

M have the same structure and where
e H = Y“"(Y‘)‘, Rt = Y*(Y*’)‘ ol — Y'(Y“)r

o L(li x i) and M(li x l1) contain respectively the /i solution vectors [ and m of the

optimization problem.
e A; and A,y are diagonal matrices

An Orthogonality Theorem (see chapter 6) will tell us then how to evaluate dependencies
between L'V T and M'Y ™ and how we can select vectors I'Y* and m!Y ~, which contribute
to respectively Xt and X . Other stochastic realization problems like the unsymmetric
one and the symmetric with orthonormality constraints on the solution matrices will also be

studied.



5.2 A QPQ-SVD approach to the symmetric stochastic realization problem

We will now derive the solution of the following optimization problem:

extry {67 L Hm. 6.} (16)
under constraints:
L'RYL =A; = diag{8L,y - 0L}
MR~M = Ay = diag{8arns - 61}

This stochastic realization problem is called symmetric because the constraints for L and M
have the same structure. The Lagrangian function has the form:

Ll my) = G Bl by P 3 LR, 572 1) = 7065 m' R m. 85" - 1)

One can check that the constraints [, R*1, = 0 and m{ R~ m, = 0 with s # k are not relevant
to the problem. Let us now define new variables [, and m, as:

1, = L& (17)

my = Mg

Thus
E(lmmm)\ﬂ) = !'!-_\ng = }‘~U{_\.R+£-_\ 1) = T-(m{gﬁfﬂl-_\ = 4

The extremal solutions are given by:

% =0 : Hm, =2 \R'l,

;Z; =0 : HUy=27yR"m,

g—i = ¢+ LRl =1 )
gs =0 : mkR m, =1

Clearly these equations have several solutions for I, and ma, A and 7. After some manipu-
lations we get the following generalized eigenvalue problems: ‘

H(Ri)-lHl.L._\ = R+.Lh3.!\ (lfxr
HY(R*)'H.My = R .MaT

with La(l1 x li) and M (li x li) containing the solution vectors [, and m.; A and I are
diagonal matrices which depend on the values A and 7. These matrices Ly and M are thus

defined as:

Ex = BEF
My = MA}"?

10



Equations (18) mean:

YHY Y- (Y )y (YH).Ly = YHY*).LaA (19)
PRI P YN My, = YT M

Let us now take a QPQ -SVD of the set {(Y),Y*, (Y ™), Y~} asin (14):

¥ty = U D X[ (20)
Yt = X['D:X;!
(Y7) = XoD3Xj;'
¥ = XDV

From this expression (20) the numerical advantage of a GSVD can be seen: no products are
made of matrices Y+ and Y, but an explicit factorization is obtained and hence there will

be no loss of accuracy.
Because of the orthonormality properties of U; and V, and the nonsingularity of X, X», Xy

we get:
(D3D3).(DsDY) ™ (Do D3) (X7 La] = (DiD1)[X['Lal-A (21)
(D2 D3) (D' Dy) (Do D3).[X5 ' Ma] = (D4DY).[X5 ' M,a)T

The matrices D{ D, D, D3 and D,D} are diagonal matrices. If the matrices D!D, and D, Dy
are equal to the identity matrix (which is normally the case), then we obtain the following

eigenvalue problems:
(DsDY) (X[ 'Ls] = [X7'LalA (22)
(BB W] = [X'MgLr

In order to obtain a solution of (22), which satisfies the constraints L' R*Ly = I; and
MY R™M, = I;, we apply a Cholesky factorization on D{D, and D,D}:

iy = RiR,r_ . (28)
DDy = RjRa
Let us now change (22) into:
R (D4D ) R RLJ‘ L‘_\] = [RL‘X“IL_\].A (24;
RM(D4D4) RM .[RM}[;[]U,_\] = {Rn,u‘i’:,—]ﬂf_\j.f

Because of the diagonality of R; and Ras:

(R X[ ' a)A (251
[Rar Xy ' Ms)T

(DyD )'[R,rX 'La]
(D55 [ RarX s M s

Il

The matrix (D,D!)"" is diagonal and hence there exist always the next solution:
1 g

AT = (DD (26)
B X'y = By
RaX5'Ms = Iy

11



One can check that the constraints are satisfied. The solution matrices Ly and M, are thus:

Ls = Xl e=X (27)
My = XaR;! = Xy(D.DY)~'/?

We see that the solution of the optimization problem can be completely written in function
of the QPQ-factorization of the matrix set {(Y "), Y*,(Y~),Y "} in a very elegant way.
Relations between L'Y* and M'Y ™ can be detected in:

LAY (Y ) My = XL(X1) D X5 . XoDsX3' . Xy(DyDY) Y2 (28)
= (D4Dj)“/? =AV2_T12 -5 = diag(sy, - ,8)

Note that (s;)mar gives the global maximum of (16) and (s;)m;, the global minimum and
all elements of S have values between 0 and 1 because of the orthonormality of LYY and
M.Y ~ and they can be interpreted as the cosine of the canonical angles between the spaces

apansu( LAY T) and spaneu{MAY ™).

Instead of optimizing (16), we can also look at:

- trace(L\ H(R™) " 'H'L,)
RV{L YT MY = A %
(LoY ™, My ) [trace([“)Q]1/2.[&,“6(1“)2}1/2 (29)
trace(M_fAHt(R+)—1HMA)

[trace(I};)?]V/2.[trace(]);)?]!/?

and formulate the symmetric stochastic realization problem as:

eztry [UNH(R™) 'H'1.} , AR La =1y (30)
extry  {myH'(RT)'Hm,} , MAR My =1y

This gives us 2 Lagrangian functions:

Lo(la,)) = (SH(R™)THY - AR L, - 1) (31
Laf(ma,y) = miHY(RY) 'Hmy —v.(myR m, - 1)

The solution to the problem is given by:

/3
0Ly _ 0 i H{RYTH'ds = AB A, (32)
al
cutal =0 : HY (R") 'Hm, =R .m,
dm |
oL,
—BT =0 !3R+L}, =1
L; -
2Eni =0 : myR mg =1
O

We can conclude that this is the same eigenvalue problem as (18).

A third approach to the symmetric stochastic realization problem is based on obtaining X *

12



and X ~ respectively as a projection of (Y )  on (¥ ~)* and (Y 7)" on (Y'*)". These projections
are equal to:

Pt o= (YO () = (¥T)(RT)TH (33)
P = (YT)|(¥*) = () (RY)'H

Here P* is the projection of span.((Y1)') on span.((Y ~)") and P~ of span.((¥Y ~)') on
span.((Y *)!). These projections are related to a linear least squares solution of:

(¥yo)pt = (¥*y (34)
(Y+)£P— i (Yf)!

We can approach the symmetric stochastic realization problem then as:
ezt m, {ma(P7) P} (35)

under constraints

Ly(P7) P La I
Mi(PY)Y'P*Ma = I

It is left to the reader to check that we obtain the same eigenvalue problem as (18) and the

same solution as (27).

5.3 A PQ-SVD approach to the unsymmetric stochastic realization prob-
lem

In analogy with the RV-coeflicient approach to the ‘symrnetric stochastic realization problem,
this unsymmetric problem can be stated as:

extry {INH(R™)T'H'l } , LiyLa =1, (36)
eztry {m‘_\H!Hm_\} ; MSR_AIA = I, 2%
This stochastic realization problem is called unsymmetric because the constraints for L and

M have not the same structure. Note that the role of L, and M, may be exchanged in (36
The Lagrangian functions of the problem are:

Lo(la,A) = IWH(RT)TTHYy = ALy - 1) (37
Laf(my,y) = myH'Hm, —7y.(miR my - 1)

The solution has to satisfy:

g‘& :0 . H(R_)_IH.!.EA:A.EA (38]
3l

aﬁ,\f =0 : H!fiﬂ_\ 2=y 'YR_m“}

dm :

oLy,

H =0 !f_\!_}, =1
8Ly _

8—7! =0 m'_\.R ma =1



With the same notations as for the symmetric problem we obtain the following eigenvalue

problems:

H(R™)'H".Ly = Lad (39)
H'HMy, = R M,.TI

Let us now take a PG -SVD of the matrix set {Y*,(Y "), Y}

Yt = UiD X! | (40)
(F% = s
Y- = X;'DaV{

Thanks to the orthonormality of U; and V3 and the nonsingularity of the matrices X, and
X5, (39) can be written as:
(D D3)(D3D5)™ (D1 D2)" [U{Ls] = [UjLa].A (41)
(D1D;)'.(D1D2).[X;'Ma] = (D3D5).[X5' ' My)T

Normally DD, is the identity matrix. The matrix D, D5 is diagonal and after applying a
Cholesky factorization D3D}

D;]D_lj = RS\IR,‘\! (42)
we obtain
(DsD4)"(U{Ls]) = [UiLalA (43)
(D3D4) L [RMu XTI Ma) = [Rar X5 'Ma)T

Because of the diagonality of (D3D4)~" there always exist a solution of the form:

A=T = (DyDY)" (44)
UIELf_\ - II! -1
Ry X, My = I
The solution to (36) is then:
My = XDy *

The solution of the optimization problem can thus be written as a function of the PQ-
factorization of the matrix set {¥'*, (¥ ~), ¥ ~}. We can remark that for the unsymmetric

stochastic realization problem:
LAY () My = (DsDY P = AV =T = § (46)

The diagonal elements of S are not necessarily lying between 0 and 1 in this case, because
the orthonormality of L4 Y * was not required.

14



5.4 A PSVD approach to the symmetric stochastic realization problem

with orthonormality constraints to the solution matrices

The symmetric stochastic realization problem with orthonormality constraints to the solution

matrices, formulated with the RV-coefficient approach, takes the form:

z’:‘:l:tl",:‘l {E_\HHti_\} y LE_\LA = J;
extny, {mZHLHmA} , MSM,_\‘ = Iy

(47)

This problem is in accordance with the principal components approach (PC-H) of Arun and

Kung [7]. The derivatives of the Lagrangian functions propose the following solution:

HH' LA
H'H.Ma

= Ly.A

()

After applying a PSVD to the matrix pair

we get:

Because of the diagonality of DDy, there exist always a solution of the form:

@ F =

),' + =

Ma.T

U,D, X[
X\ D;V;

(D1 D2).(D1D2) (U Ls] =
(D1D2) (D Dy).[VaMs] =

Let us remark that:

B VM s Dl = AR =T 2 8

A:r et
L =
M, =

(D, Dy)?
U,
V-_)

(48)

(49)

(50)

(51)

As in the PQ-case, the diagonal elements of § are not necessarily lying between 0 and 1,

because the orthonormality of LY " and MY~ was not required.

Finally, the results of this chapter are summarized here in a table.

Constraints GSVD-configuration ]
Symm. LRV L = Ag QPQ-SVD of

MB-M = Ay | Y)Y+, (r=), Y-}
Unsymm. | 'L = Ay, PQ-SVD of

MR~M = Ay | {YH,(Y )Y}
Symm. L'L = Ay, PSVD of

MM = Ay {Y+,(Yf)r}

15



6 Estimation of the process order and obtaining a state vec-
tor sequence

In the previous section, 3 approaches to the stochastic realization problem were proposed:
1. a QPQ-SVD approach to the symmetric stochastic realization problem
2. a PQ-5VD approach to the unsymmetric stochastic realization problem

3. aPSVD approach to the symmetric stochastic realization problem with orthonormality
constraints on the solution matrices

From the viewpoint of estimating the stochastic process order and obtaining a state vector
sequence, the first approach is most important. Indeed, let us interpret the result (27).
Because of the orthonormality of LYY *+ and MAY =, an OSVD of LY HM,:

L' HM, = RSV"

will have a S-matrix with the same diagonal elements as (DyD%)~'/2 (eventually the sequence
can change) and there exists always a possible OSVD with R = T = I;;. The matrix §
contains thus the canonical angles between LYY " and M{Y "~ and because of the diagonality
of L'y HM, we can interpret directly the angles between !t,_\l.Y‘* and m‘,_\“l". The state vector
sequences X+ and X ~ are then determined by selecting those ﬁ_\i}"*’ and Ln-is,-Y_v which are
not orthogonal to each other (a.pproximately). This part of the matrices L, and M, will be
respectively stored in F and G. The matrices X+ and X~ are then equal to Xt = Fiy+
and X~ = G'Y~ with F' = L(1: n,:) and G' = M'(1: n,:) (suppose that the elements of
5 are ordered as in an OSVD).

Instead of looking at an intersection between span,o (LYY 1) and 8pan, o, (MLY ) in order
to determine X+ and X -, we evaluate dependencies between L!Y* and M!'Y - and apply
the following philosophy with respect to our linear stochastic model:

Orthogonality is absence of linear dependencies

-7

and

The linear model explains all linear dependencies between X+ and X -

thus

Orthogonal vectors it’-‘-;Y-’L and mgi}"’ do not contribute to the model

The following theorem (Orthogonality Theorem) will tell us that this philosophy is only valid
if 7 > [1, thus if we take many measurement data into account.

Theorem 4: Orthogonality Theorem

Consider a fixed subspace S” in the j dimensional vectorspace of j-tuples R7 (7 > 7). Assume
that a random vector v is generated with equal probability for all directions in 7. Then
the directional probability density function p(a,r,7) of the angle a between v and the fixed
subspace 8" is given by:

pla,r,j) = K(r,7).(sina)’ """} (cosa) ™"

whiete: K{#,9) = 29—?1_"' and the Cy can be obtained recursively as:
g
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Remark: the angle a is measured between v and its orthogonal projection on S".

Proof: see [3]. O

In figure 1 an example of this Orthogonality Theorem is given for r = 2. Let us now apply this
theorem to our stochastic realization problem. Let S"(r = li} be equal to span, (MY ~);
the vectors {’,_\‘._Y"" play then the role of v in the case that they do not contribute to the model.
However the angle a does not correspond to the angle between [}, ¥'* and mly Y ", we may
conclude that for large values of j orthogonal vectors {’{_\”_I’Jr and m‘,_\il’_ do not contribute
to the model. It is also possible to allocate span, (LYY ") to S". An n x n diagonal matrix

is then obtained as:

Sy = XH(X™)

Definition 3:
The matrix S in :

L \HMy =S = (D,D})"1/?

is called the interaction matrix.

This definition arises from the fact that S measures the interaction between the past and
the future of the process [10]. So much canonical angles between span,,, (LYY *) and
span,,,(M4.Y ) near to 90° refer to a low process order and a low interaction level be-
tween past and future of the process and less near to 90° refers to a high process order.
Now we will give an example of estimating the process order from the interaction matrix.

-7

Example 1:
In figure 2 the canonical angles between L }¥"* and M\ 1"~ are calculated for different values

of j for artificially constructed stochastic processes of order 2 and 3 with 2 outputs; {7 wa:
chosen equal to 8, Ay = Ayy = I;;. We may conclude that only for j >, a senseful order
estimation is possible, which is an illustration of the Orthogonality Theorem.

Example 2:
In figure 3 a simulation is given of a first order stochastic process

Tk = O-YIk + Vi
Y = 0.5z

with?1 =6,k =7,l= 1,7 = 200. All data before the vertical line were used for the estimation
of the model. The process order was estimated equal to 1.
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Figure 1: Probability density function of angle between random vector and fized subspace S-
for different values of j
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Figure 3: Original and simulated output of stochastic process: Tipr = 0.7z + v, vi

6,k=7,1=1,7 =200 (full ine = original).

with 1
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7 Stochastic realization algorithm

Finally, we propose as a summary an algorithm to approach the symmetric stochastic real-

ization problem:

1;

b

Given the output process {gk}, construct the past and future output matrices ¥~ and
¥

- Compute a QPQ-SVD of the matrix set kL Y=}

(Y-!-)t - UJDIX;I
Yt = X,_thX{]
(}" B )t = /YQD;].X:;I
Y= = Xybvl
Obtain the interaction matrix § = (D,D})=12 in order to estimate the process order.
Select the vectors I'Y * and m'y -~ belonging to the largest diagonal elements of § (the
number of selected vectors is determined by the Orthogonality Theorem) and construct
with those vectors X+ and X ~: -
_X"l' — F(}f“r
X~ = G'v
where L = X, M = X;.5, Ft = B :ny0), 60 = MY(1 : n,:) (suppose that the

elements of § are ordered as in an OSVD)

Take the following QR-factorization:

(X ()] = Q1 Q) [ o J

where

L™ = (B Ryy)!
The matrices 4 and C of the state space model of the stochastic process can then be
obtained easily from I'*, because of its shift structure.

-7

4 = =TT
& = THi=l 1)
with
C CA
, CA - CA?
=1, » It = |,
CAiﬁ'l C“il—l

When you use the model for simulation take then vy and w,:

1 1
v, = rand(n, N), w, = .rand({, N
£ 25 \/}V— ( ) k \/N ( )
where rand is a random matrix (see comments of (1)) and N is the total number of
samples to be displayed. The division by VN is necessary , because otherwise theorem
2 does not hold.
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Remark:
Instead of taking a QPQ-SVD in step 2 of this algorithm, we can get the same result with 3

OSVD’s:

(Y"')"‘ = Ulil;(V[)'!
(Y7) = UpZy(Va)
UltU, = USV

where 5 has the same meaning as in (28). The matrices X+ and X = are then:

8

Xt U Y1:n,:)U!
X° = ¥V Yi:nll

Conclusions

The Markovian representation of a stochastic process was written as a matrix I/O-equation.
Under certain conditions a state vector sequence can be obtained as a transformation of the
past or future output matrices. This transformation matrix follows then from an optimization

problem.

It is shown that the GSVD is very useful as an extremely analysing tool in the problems of
symmetric and unsymmetric stochastic realization. It proposes a classification for different
possible realization schemes together with a tool for computing them in a numerical reliable
way. An interaction matrix, which is important for the process order estimation can also be
written in an elegant way thanks to the GSVD.
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