GENERALIZATIONS OF THE SINGULAR VALUE AND QR DECOMPOSITIONS*

BART DE MOOR ${ }^{\dagger}$ AND PAUL VAN DOOREN ${ }^{\ddagger}$
We dedicate this paper to Gene Golub, a true source of inspiration for our work, but also a genuine friend, on the occasion of his 60 th birthday

Abstract

This paper discusses multimatrix generalizations of two well-known orthogonal rank factorizations of a matrix: the generalized singular value decomposition and the generalized QR(or URV-) decomposition. These generalizations can be obtained for any number of matrices of compatible dimensions. This paper discusses in detail the structure of these generalizations and their mutual relations and gives a constructive proof for the generalized QR-decompositions.

Key words. singular value decomposition, QR-factorization, URV-decomposition, complete orthogonal decomposition

AMS(MOS) subject classifications. 15A09, 15A18, 15A21, 15A24, 65F20

1. Introduction. In this paper, we present multimatrix generalizations of some well-known orthogonal rank factorizations. We show how the idea of a QR-decomposition (QRD), a URV-decomposition (URVD), and a singular value decomposition (SVD) for one matrix can be generalized to any number of matrices. While generalizations of the SVD for any number of matrices have been derived in [9], one of the main contributions of this paper is the constructive derivation of a generalization for the QRD (or URVD) for any number of matrices of compatible dimensions. The idea is to reduce the set of matrices $A_{1}, A_{2}, \ldots, A_{k}$ to a simpler form using unitary transformations only. Hereby, we avoid explicit products and inverses of the matrices that are involved. We show that these generalized QR-decompositions (GQRD) can be considered as a preliminary reduction for any generalized singular value decomposition (GSVD). The reason is that there is a certain one-to-one relation between the structure of a GQRD and the "corresponding" GSVD, which is explained in detail below.

This paper is organized as follows. In §2, we provide a summary of orthogonal rank factorizations for one matrix. We briefly review the SVD, the QRD, and the URVD as special cases. In §3, we give a survey of existing generalizations of the SVD and QRD for two or three matrices. In $\S 4$, we summarize the results on GSVDs for any number of matrices of compatible dimensions. Section 5 , which contains the main new contribution of this paper, describes a generalization of the QRD and the URVD for any number of matrices. We derive a constructive, inductive proof which shows that a GQRD can be used as a preliminary reduction for a corresponding GSVD. In $\S 6$, we analyze in detail the structure of the GQRDs and GSVDs and show that there is a one-to-one relation between the two generalizations. This relation is elaborated in more detail in $\S 7$, where we illustrate how a GQRD can be used as a preliminary step in the derivation of a corresponding GSVD.

[^0]While all results in this paper are stated for complex matrices, they can be specialized to the real case without much difficulty. This can be done in much the same way as with the SVD for complex and real matrices. In particular, it suffices to restate most results using the term real orthonormal instead of unitary and to replace a superscript " $*$ " (which denotes the complex conjugate transpose of a matrix) by a superscript " t " (which is the transpose of a matrix).
2. Orthogonal rank factorizations. Any matrix $A \in C^{m \times n}$ can be factorized as

$$
\begin{equation*}
A=Q\binom{R}{0} \Pi \tag{1}
\end{equation*}
$$

where $R \in C^{n \times n}$ is upper trapezoidal and Π is a real $n \times n$ permutation matrix that permutes the columns of A so that the first $r_{a}=\operatorname{rank}(A)$ columns are linearly independent. The matrix $Q \in C^{m \times m}$ is unitary and can be partitioned as

$$
Q=\left(\begin{array}{cc}
r_{a} & m-r_{a} \\
Q_{1} & Q_{2}
\end{array}\right) .
$$

If we partition R accordingly as $R=\left(\begin{array}{ll}R_{11} & R_{12}\end{array}\right)$, where $R_{11} \in C^{r_{a} \times r_{a}}$ is upper triangular and nonsingular, we obtain

$$
A=Q_{11}\left(\begin{array}{ll}
R_{11} & R_{12}
\end{array}\right) \Pi
$$

which is sometimes called the QR-factorization of A.
If we rewrite (1) as

$$
Q^{*} A=\binom{R}{0} \Pi
$$

we see that Q is an orthogonal transformation that compresses the rows of A. Therefore, it is called a row compression. A similar construction exists, of course, for a column compression. A complete orthogonal factorization of an $m \times n$ matrix A is any factorization of the form

$$
A=U\left(\begin{array}{rr}
T & 0 \tag{2}\\
0 & .0
\end{array}\right) V^{*}
$$

where T is $r_{a} \times r_{a}$ square nonsingular and $r_{a}=\operatorname{rank}(A)$. One particular case is the SVD, which has become an important tool in the analysis and numerical solution of numerous problems, especially since the development of numerically robust algorithms by Golub and his coworkers [15], [16], [17]. The SVD is a complete orthogonal factorization where the matrix T is diagonal with positive diagonal elements:

$$
A=U \Sigma V^{*}
$$

Here $U \in C^{m \times m}$ and $V \in C^{n \times n}$ are unitary and $\Sigma \in \Re^{m \times n}$ is of the form ${ }^{1}$

$$
\Sigma=\left(\begin{array}{ccccc}
\sigma_{1} & 0 & \cdots & 0 & 0 \\
0 & \sigma_{2} & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \sigma_{r_{a}} & 0 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

[^1]The positive numbers $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r_{a}}>0$ are called the singular values of A, while the columns of U and V are the left and right singular vectors.

In applications where $m \gg n$, it is often a good idea to use the QRD of the matrix as a preliminary step in the computation of its SVD. The SVD of A is obtained via the SVD of its triangular factor as

$$
A=Q R=Q\left(U_{r} \Sigma_{r} V_{r}^{*}\right)=\left(Q U_{r}\right) \Sigma_{r} V_{r}^{*} .
$$

This idea of combining the QRD and the SVD of the triangular matrix, in order to compute the SVD of the full matrix, is mentioned in [22, p. 119] and more fully analyzed in [3]. In [18] the method is referred to as R-bidiagonalization. Its flop count is ($m n^{2}+n^{3}$), as compared to $\left(2 m n^{2}-2 / 3 n^{3}\right)$ for a bidiagonalization of the full matrix. Hence, whenever $m \geq 5 / 3 n$, it is more advantageous to use the R-bidiagonalization algorithm.

There exist still other complete orthogonal factorizations of the form (2) where only T is required to be triangular (upper or lower) (see, e.g., [18]). Such a factorization was called a URV-decomposition in [27]. Here

$$
A=U\left(\begin{array}{cc}
R & 0 \\
0 & 0
\end{array}\right) V^{*}
$$

where $U \in C^{m \times m}, V \in C^{n \times n}$ are unitary matrices and $R \in C^{r_{a} \times r_{a}}$ is square nonsingular upper triangular.

It is well known that the QR-factorization of a singular matrix A and of its transpose A^{*} can be used for finding the image and kernel of A (URV-decompositions actually give both at once). In this paper, we try to extend these ideas to several matrices. Suppose we have a sequence of matrices $A_{i}, i=1, \ldots, k$, and we want to know the kernels (or null spaces) of each partial product $A_{1} \cdot A_{2} \ldots A_{j}$. We could form these products and compute QR-decompositions of each of them. That can, in fact, be avoided, as shown below. Let us take the "special" example $A_{i}=A, i=1,2,3$, with

$$
A=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

It is well known that the null spaces of A^{i} in fact give the Jordan structure of A, and this structure is already obvious from the form of A. But let us reconstruct it from a sequence of QR-decompositions (in fact we need here RQ-decompositions of A). The first one is, of course, a column compression of A_{1}, for which we use the permutation of columns 2 and 4 (denoted by the matrix P_{24}):

$$
A_{1} P_{24}=\left[\begin{array}{ll|lll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The separation line here indicates that the first two columns of P_{24} (i.e., e_{1} and e_{4}) span the kernel of $A=A_{1}$. For the kernel of $A^{2}=A_{1} A_{2}$ we do not form this product,
but apply the inverse of the orthogonal transform P_{24} (which is again P_{24}) to the rows of $A_{2}=A$:

$$
P_{24} A_{2}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Since $A_{1} A_{2}=\left(A_{1} P_{24}\right)\left(P_{24} A_{2}\right)$, it is clear that the kernel of $A_{1} A_{2}$ is also the kernel of the bottom part of $P_{24} A_{2}$. The following column compression of $P_{24} A_{2}$ actually yields the kernel of both A_{2} and the product $A_{1} A_{2}$. Perform indeed the orthogonal transformation $P_{24} P_{35}$:

$$
P_{24} A_{2} P_{24} P_{35}=\left[\begin{array}{cc|cc|c}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

We see that the kernel of A_{2} comprises the first two columns of $P_{24} P_{35}$ (i.e., e_{1} and e_{4} as before) and the kernel of $A_{1} A_{2}$ comprises the first four columns of $P_{24} P_{35}$, i.e., e_{1}, e_{2}, e_{4}, and e_{5}. An additional step of this procedure finally shows that the kernel of the product $A_{1} A_{2} A_{3}=\left(A_{1} P_{24}\right)\left(P_{24} A_{2} P_{24} P_{35}\right)\left(P_{35} P_{24} A_{3}\right)$ is that of the bottom part of the matrix

$$
P_{35} P_{24} A_{3}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

which is a zero matrix. Hence the kernel of A^{3} is the whole space, as expected. The interesting part of this simple example is the fact that we have not formed the intermediate products to get their corresponding kernels. The case treated here of equal matrices A_{i} is a simple one (and could be solved using the results of [19]), but in the next few sections we show how this can also be done for arbitrary sequences of matrices. The key idea is that at each step we do a number of QR-factorizations on the blocks of a partitioned matrix (column blocks in our case). This then induces a new partitioning on the rows of this matrix, on the columns of the next matrix, and so on.
3. Generalizations for two or three matrices. In the last decade or so, several generalizations for the SVD have been derived. The motivation is basically the necessity to avoid the explicit formation of products and matrix quotients in the computation of the SVD of products and quotients of matrices. Let A and B be nonsingular square matrices and assume that we need the SVD of $A B^{-*}=U S V^{*} .^{2}$ It is well known that the explicit calculation of B^{-1}, followed by the computation of the product, may result in loss of numerical precision (digit cancellation), even before any factorization is attempted! The reason is the finite machine precision of

[^2]any calculator. Therefore, it seems more appropriate to come up with an implicit combined factorization of A and B separately, such as
\[

$$
\begin{align*}
& A=U D_{1} X^{-1} \\
& B=X^{-*} D_{2} V^{*} \tag{3}
\end{align*}
$$
\]

where U and V are unitary and X nonsingular. The matrices D_{1} and D_{2} are real but "sparse" (quasi-diagonal), and the product $D_{1} D_{2}^{-t}$ is diagonal with positive diagonal elements. Then we find

$$
A B^{-*}=U D_{1} X^{-1} X D_{2}^{-t} V^{*}=U\left(D_{1} D_{2}^{-t}\right) V^{*}
$$

A factorization as in (3) is always possible for two square nonsingular matrices. In fact, it is always possible for two matrices $A \in C^{m \times n}$ and $B \in C^{n \times p}$ (as long as the number of columns of A is the same as the number of rows of B, which we refer to as a compatibility condition). In general, the matrices A and B may even be rank deficient. The combined factorization (3) is called the quotient singular value decomposition (QSVD) and was first suggested in [32] and refined in [23] (it was originally called the generalized SVD, but we have suggested a standardized nomenclature in [6]).

A similar idea might be exploited for the SVD of the product of two matrices $A B=U S V^{*}$, via the so-called product singular value decomposition (PSVD)

$$
\begin{align*}
& A=U D_{1} X^{-1}, \\
& B=X D_{2} V^{*}, \tag{4}
\end{align*}
$$

so that $A B=U\left(D_{1} D_{2}\right) V^{*}$, which is an SVD of $A B$. The combined factorization (4) was proposed in [13] as a formalization of ideas in [21]. In the general case, for two compatible matrices A and B (which may be rank deficient), the PSVD of (4) always exists and provides the SVD of $A B$ without the explicit construction of the product. Similarly, if A and B are compatible, the QSVD always exists. However, it does not always deliver the SVD of $A B^{\dagger}$ when B is rank deficient (B^{\dagger} is the pseudoinverse of B).

Another generalization, this time for three matrices, is the restricted singular value decomposition (RSVD). It was proposed in [35], and numerous applications were reviewed in [7]. It was soon found that all of these generalized SVDs for two or three matrices are special cases of a general theorem, presented in [9]. The main result is that there exist GSVDs for any number of matrices $A_{1}, A_{2}, \ldots, A_{k}$ of compatible dimensions. The general structure of these GSVDs was further analyzed in [10]. The dimensions of the blocks that occur in any GSVD can be expressed as ranks of the matrices involved and as certain products and concatenations of these. We present a summary of the results below.

As for generalizations of the QRD, it is mainly Paige [25] who pointed out the importance of generalized QRDs for two matrices as a basic conceptual and mathematical tool. The motivation is that in some applications, we need the QRD of a product of two matrices $A B$ where $A \in \Re^{m \times n}$ and $B \in \Re^{n \times p}$. For general matrices A and B such a computation avoids forming the product explicitly, and transforms A and B separately to obtain the desired results. Paige [25] refers to such a factorization as a product QR factorization. Similarly, in some applications we need the QR-factorization of $A B^{-1}$ where B is square and nonsingular. A general numerically robust algorithm would not compute the inverse of B nor the product explicitly, but would transform A and B separately. Paige [25] proposed calling such a combined
decomposition of two matrices a generalized QR factorization, following [20]. We propose here to reserve the name generalized QRD for the complete set of generalizations of the QR-decompositions, which are developed in this paper. We also propose a novel nomenclature, as we did for the generalizations of the SVD in [6].

Stoer [28] appears to be the first to have given a reliable computation of this type of generalized QR-factorization for two matrices (see [14]). Computational methods for producing the two types of generalized QR factorizations for two matrices, as described above, have appeared regularly in the literature as (intermediate) steps in the solution of some problems. In this paper, we derive a constructive proof of generalizations of the QRD for any number of matrices. As we see below, our generalized QRDs can also be considered the appropriate generalization of the URVD of a matrix.
4. Generalized singular value decompositions. In this section, we present a general theorem that can be considered the appropriate generalization for any number of matrices of the SVD of one matrix. It contains the existing generalizations of the SVD for two matrices (i.e., the PSVD and the QSVD) and three matrices (i.e., the RSVD) as special cases. A constructive proof can be found in [9].

Theorem 4.1 (generalized singular value decompositions for k matrices). Consider a set of k matrices with compatible dimensions: $A_{1}\left(n_{0} \times n_{1}\right), A_{2}\left(n_{1} \times n_{2}\right), \ldots$, $A_{k-1}\left(n_{k-2} \times n_{k-1}\right), A_{k}\left(n_{k-1} \times n_{k}\right)$. Then there exist
-Unitary matrices $U_{1}\left(n_{0} \times n_{0}\right)$ and $V_{k}\left(n_{k} \times n_{k}\right)$.
-Matrices $D_{j}, j=1,2, \ldots,(k-1)$ of the form
where

$$
\begin{equation*}
r_{0}=0, \quad r_{j}=\sum_{i=1}^{j} r_{j}^{i}=\operatorname{rank}\left(A_{j}\right) . \tag{6}
\end{equation*}
$$

$-A$ matrix S_{k} of the form

$$
\left.\begin{array}{c}
 \tag{7}\\
\\
r_{k}^{1} \\
r_{k-1}^{1}-r_{k}^{1} \\
r_{k}^{2} \\
S_{k-1} \\
n_{k-1} \times n_{k}
\end{array}=\begin{array}{l}
r_{k-1}^{2}-r_{k}^{2} \\
r_{k}^{3} \\
\\
\ldots
\end{array} \quad \begin{array}{ccccccc}
r_{k}^{1} & r_{k}^{2} & r_{k}^{3} & \ldots & \ldots & r_{k}^{k} & n_{k}-r_{k} \\
S_{k}^{1} & 0 & 0 & \ldots & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & \ldots & 0 & 0 \\
0 & S_{k}^{2} & 0 & \ldots & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & \ldots & 0 & 0 \\
0 & 0 & S_{k}^{3} & \ldots & \ldots & 0 & 0 \\
0 & \ldots & \ldots & \ldots & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \ldots & \ldots & S_{k}^{k} & 0 \\
0 & 0 & \ldots & \ldots & \ldots & 0 & 0
\end{array}\right),
$$

where

$$
\begin{equation*}
r_{k}=\sum_{i=1}^{k} r_{k}^{i}=\operatorname{rank}\left(A_{k}\right) \tag{8}
\end{equation*}
$$

and the $r_{k}^{i} \times r_{k}^{i}$ matrices S_{k}^{i} are diagonal with positive diagonal elements. Expressions for the integers r_{j}^{i} are given in $\S 6 .^{3}$
-Nonsingular matrices $X_{j}\left(n_{j} \times n_{j}\right)$ and $Z_{j}, j=1,2, \ldots,(k-1)$ where Z_{j} is either $Z_{j}=X_{j}^{-*}$ or $Z_{j}=X_{j}$ (i.e., both choices are always possible), such that the given matrices can be factorized as

$$
\begin{aligned}
A_{1} & =U_{1} D_{1} X_{1}^{-1} \\
A_{2} & =Z_{1} D_{2} X_{2}^{-1} \\
A_{3} & =Z_{2} D_{3} X_{3}^{-1} \\
\cdots & =\cdots \\
A_{i} & =Z_{i-1} D_{i} X_{i}^{-1} \\
\cdots & =\cdots \\
A_{k} & =Z_{k-1} S_{k} V_{k}^{*}
\end{aligned}
$$

Observe that the matrices D_{j} in (5) and S_{k} in (7) are generally not diagonal. Their only nonzero blocks, however, are diagonal block matrices. We propose to label them as quasi-diagonal matrices. The matrices $D_{j}, j=1, \ldots, k-1$ are quasi-diagonal, their only nonzero blocks being identity matrices. The matrix S_{k} is quasi-diagonal and its nonzero blocks are diagonal matrices with positive diagonal elements. Observe that we always take the last factor in every factorization as the inverse of a nonsingular matrix, which is only a matter of convention (another convention would result in a modified definition of the matrices Z_{i}). As for the name of a certain GSVD, we propose to adopt the following convention (see also [9]).

Definition 4.2 (the nomenclature for GSVDs). If $k=1$ in Theorem 4.1, then the corresponding factorization of the matrix A_{1} will be called the (ordinary) singular value decomposition. If for a matrix pair $A_{i}, A_{i+1}, 1 \leq i \leq k-1$ in Theorem 4.1, we have $Z_{i}=X_{i}$, then the factorization of the pair is said to be of P type. If, on the other hand, for a matrix pair $A_{i}, A_{i+1}, 1 \leq i \leq k-1$ in Theorem 4.1, we have $Z_{i}=X_{i}^{-*}$, then the factorization of the pair is said to be of Q type. The name of a GSVD of the matrices $A_{i}, i=1,2, \ldots k>1$ as in Theorem 4.1, is then obtained by simply enumerating the different factorization types.

Let us give some examples.
Example. Consider two matrices $A_{1}\left(n_{0} \times n_{1}\right)$ and $A_{2}\left(n_{1} \times n_{2}\right)$. Then, we have two possible GSVDs:

	P type	Q type
A_{1}	$U_{1} D_{1} X_{1}^{-1}$	$U_{1} D_{1} X_{1}^{-1}$
A_{2}	$X_{1} S_{2} V_{2}^{*}$	$X_{1}^{-*} S_{2} V_{2}^{*}$

The P-type factorization is called the PSVD (see [8] and references therein), while the Q-type factorization is called the QSVD.

[^3]Example. Let us write a PQQP-SVD for five matrices:

$$
\begin{aligned}
& A_{1}=U_{1} D_{1} X_{1}^{-1}, \\
& A_{2}=X_{1} D_{2} X_{2}^{-1}, \\
& A_{3}=X_{2}^{-*} D_{3} X_{3}^{-1}, \\
& A_{4}=X_{3}^{-*} D_{4} X_{4}^{-1}, \\
& A_{5}=X_{4} S_{5} V_{5}^{*}
\end{aligned}
$$

We also introduce a notation using powers that symbolize a certain repetition of a letter or of a sequence of letters:

- $\mathrm{P}^{3} \mathrm{Q}^{2}$-SVD $=P P P Q Q-S V D$,
- $(\mathrm{PQ})^{2} \mathrm{Q}^{3}(\mathrm{PPQ})^{2}-\mathrm{SVD}=\mathrm{PQPQQQQPPQPPQ-SVD}$.

Despite the fact that there are 2^{k-1} different sequences of letters P and Q at level $k>1$, not all of these sequences correspond to different GSVDs. The reason for this is that, for instance, the QP-SVD of $\left(A^{1}, A^{2}, A^{3}\right)$ can be obtained from the PQ-SVD of $\left(\left(A^{3}\right)^{*},\left(A^{2}\right)^{*},\left(A^{1}\right)^{*}\right)$. Similarly, the $\mathrm{P}^{2}(\mathrm{QP})^{3}$-SVD of $\left(A^{1}, \ldots, A^{9}\right)$ is essentially the same as the (PQ) ${ }^{3} \mathrm{P}^{2}$-SVD of $\left(\left(A^{9}\right)^{*}, \ldots,\left(A^{1}\right)^{*}\right)$. The number of different factorizations for k matrices is, in fact, $\frac{1}{2}\left(2^{k-1}+2^{k / 2}\right)$ for k even and $\frac{1}{2}\left(2^{k-1}+2^{(k-1) / 2}\right)$ for k odd.

A possible way to visualize Theorem 4.1 is to build a tree with all different factorizations for $1,2,3$, etc \cdots matrices as follows:

| 1 | | | | | | | \mathbf{O} | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ | | | | | | \mathbf{P} | | \mathbf{Q} | | | | | |
| $\mathbf{3}$ | | | | | \mathbf{P}^{2} | | $\mathbf{P Q}$ | | \mathbf{Q}^{2} | | | | |
| $\mathbf{4}$ | | $\mathbf{P}^{\mathbf{3}}$ | | $\mathbf{P}^{2} \mathbf{Q}$ | | $\mathbf{P Q P}$ | | $\mathbf{P Q}^{2}$ | | $\mathbf{Q P Q}$ | | $\mathbf{Q}^{\mathbf{3}}$ | |
| \ldots | \ldots | | \ldots |

5. Generalized URVDs. In this section, we derive a generalization for several matrices, of the URVD of one matrix. We proceed in several stages. First, we show how k matrices can be reduced to block triangular matrices using unitary transformations only. Next, we show how the block triangular factors can be triangularized further to triangular factors.

Theorem 5.1. Given k complex matrices $A_{1}\left(n_{0} \times n_{1}\right), A_{2}\left(n_{1} \times n_{2}\right), \ldots, A_{k}$ $\left(n_{k-1} \times n_{k}\right)$, there always exist unitary matrices $Q_{0}, Q_{1}, \ldots, Q_{k}$ such that

$$
T_{i}=Q_{i-1}^{*} A_{i} Q_{i}
$$

where T_{i} is a block lower triangular or block upper triangular matrix (both cases are always possible) with the following structures:
-Lower block triangular (denoted by a superscript l) :

$$
T_{i}^{l}=\begin{gather*}
 \tag{9}\\
r_{i-1}^{1} \\
r_{i-1}^{2} \\
\vdots \\
r_{i-1}^{i}
\end{gather*}\left(\begin{array}{cccccc}
r_{i}^{1} & r_{i}^{2} & \ldots & r_{i}^{i-1} & r_{i}^{i} & r_{i}^{i+1} \\
T_{i, 1} & 0 & \ldots & 0 & 0 & 0 \\
* & T_{i, 2} & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & \ldots & * & T_{i, i} & 0
\end{array}\right) .
$$

- Upper block triangular (denoted by a superscript u):

$$
T_{i}^{u}=\begin{gather*}
 \tag{10}\\
r_{i-1}^{1} \\
r_{i-1}^{2} \\
\vdots \\
r_{i-1}^{i}
\end{gather*}\left(\begin{array}{cccccc}
r_{i}^{1} & r_{i}^{2} & \ldots & r_{i}^{i-1} & r_{i}^{i} & r_{i}^{i+1} \\
T_{i, 1} & * & \ldots & * & * & 0 \\
0 & T_{i, 2} & \ldots & * & * & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & \ldots & 0 & T_{i, i} & 0
\end{array}\right),
$$

where $T_{i, j}, j=1, \ldots, i$ are full column rank matrices and each $*$ represents a nonzero block. The block dimensions coincide with those of Theorem 4.1. In particular,

$$
\begin{aligned}
r_{0}^{1} & =n_{0}, \\
r_{i}^{i+1} & =\operatorname{nullity}\left(A_{i}\right)=n_{i}-r_{i},
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{j=1}^{i} r_{i}^{j} & =\operatorname{rank}\left(A_{i}\right)=r_{i} \\
\sum_{j=1}^{i} r_{i-1}^{j} & =n_{i-1} .
\end{aligned}
$$

Our proof of Theorem 5.1 is inductive: We obtain the required factorization of A_{i} from that of A_{i-1}.

Proof. The induction is initialized for $i=1$ as follows. First, take the case where T_{1} is to be lower block triangular. Use a unitary column compression matrix Q_{1} to reduce the matrix A_{1} to

$$
\left.T_{1}^{l}=A_{1} Q_{1}=r_{0}^{1} \begin{array}{cc}
r_{1}^{1} & r_{1}^{2} \\
\left(T_{1,1}\right. & 0
\end{array}\right),
$$

where

$$
\begin{aligned}
& r_{1}^{1}=\operatorname{rank}\left(T_{1,1}\right)=\operatorname{rank}\left(A_{1}\right), \\
& r_{1}^{2}=\operatorname{nullity}\left(A_{1}\right)=n_{1}-r_{1}
\end{aligned}
$$

and

$$
r_{0}^{1}=n_{0} .
$$

The case where T_{1} is required to be upper block triangular is similar:

$$
\left.T_{1}^{u}=A_{1} Q_{1}=r_{0}^{1} \begin{array}{cc}
r_{1}^{1} & r_{1}^{2} \\
\left(T_{1,1}\right. & 0
\end{array}\right) .
$$

Observe that we have taken $Q_{0}=I_{n_{0}}$.
Now, we can start our induction. Assume that we have the required factorization for the first $i-1$ matrices

$$
\begin{aligned}
T_{1} & =Q_{0}^{*} A_{1} Q_{1}, \\
\vdots & =\vdots \\
T_{i-1} & =Q_{i-2}^{*} A_{i-1} Q_{i-1},
\end{aligned}
$$

where the matrices $T_{j}, j=1, \ldots, i-1$ have the block structure as in Theorem 5.1. We now want to find a unitary matrix Q_{i} such that $T_{i}=Q_{i-1}^{*} A_{i} Q_{i}$ is either lower or upper block triangular. First, consider the case where T_{i} is to be lower block triangular. The matrix $Q_{i-1}^{*} A_{i}$ can be partitioned according to the dimensions of the block columns of T_{i-1} as

$$
Q_{i-1}^{*} A_{i}=\begin{align*}
& r_{i-1}^{1} \tag{11}\\
& r_{i-1}^{2} \\
& \vdots \\
& r_{i-1}^{i}
\end{align*}\left(\begin{array}{c}
n_{i} \\
* \\
\vdots \\
*
\end{array}\right) .
$$

It is always possible to construct a unitary matrix Q_{i} to compress the columns of each of the block rows to the left as

$$
T_{i}^{l}=Q_{i-1}^{*} A_{i} Q_{i}=\begin{align*}
& r_{i-1}^{1} \tag{12}\\
& r_{i-1}^{2} \\
& \vdots \\
& r_{i-1}^{i}
\end{align*}\left(\begin{array}{ccccc}
r_{i}^{1} & r_{i}^{2} & \ldots & r_{i}^{i} & r_{i}^{i+1} \\
T_{i, 1} & 0 & \ldots & 0 & 0 \\
* & T_{i, 2} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & \ldots & T_{i, i} & 0
\end{array}\right)
$$

where the subblocks $T_{i, j}$ are of full column rank, denoted by $r_{i}^{l}, l=1, \ldots, i$ and $r_{i}^{i+1}=\operatorname{nullity}\left(A_{i}\right)$. Hereto, we first compress the first block row of (11) to the left with unitary column transformations applied to the full matrix. Then we proceed with the second block row in the deflated matrix (i.e., without modifying the previous block column). By repeating this procedure i times, we find the required form (12).

Obviously,

$$
\begin{equation*}
r_{i}^{l} \leq r_{i-1}^{l}, \quad l=1, \ldots, i \tag{13}
\end{equation*}
$$

The construction of T_{i} when it is required to be upper block triangular is similar. Construct a unitary matrix Q_{i} that compresses the columns of the block rows of $Q_{i-1}^{*} A_{i}$ to the right. The only difference is that we now start from the bottom to find that

$$
T_{i}^{u}=Q_{i-1}^{*} A_{i} Q_{i}=\begin{align*}
& r_{i-1}^{1} \tag{14}\\
& r_{i-1}^{2} \\
& \vdots \\
& r_{i-1}^{i}
\end{align*}\left(\begin{array}{ccccc}
r_{i}^{i+1} & r_{i}^{1} & r_{i}^{2} & \ldots & r_{i}^{i} \\
0 & T_{i, 1} & * & \ldots & * \\
0 & 0 & T_{i, 2} & \ldots & * \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & \ldots & 0 & T_{i, i}
\end{array}\right) .
$$

We can now apply an additional (block) column permutation to the right of the matrix T_{i}^{u} so as to find the matrix of (10). This completes the proof.

We now demonstrate that the matrices $T_{i, j}$ can always be further reduced to triangular form using unitary transformations into

$$
\binom{0}{R_{i, j}^{l}}
$$

in the case when T_{i} is lower block triangular. Here, $R_{i, j}^{l}$ is a lower triangular matrix. Similarly, we can always reduce $T_{i, j}$ to

$$
\binom{R_{i, j}^{u}}{0}
$$

in the case where T_{i} is upper block triangular. Here $R_{i, j}^{u}$ is an upper triangular matrix. In order to demonstrate this, we need the following result.

LEMMA 5.2. Let P_{1}, \ldots, P_{k} be k given complex matrices where P_{i} has dimensions $p_{i-1} \times p_{i}, p_{i-1} \geq p_{i}$ and $\operatorname{rank}\left(P_{i}\right)=p_{i}$. Then there always exist unitary matrices $Q_{0}, Q_{1}, \ldots, Q_{k}$ such that

$$
R_{i}=Q_{i-1}^{*} P_{i} Q_{i}
$$

where R_{i} is either of the form

$$
R_{i}=\begin{align*}
& \tag{15}\\
& p_{i-1}-p_{i} \\
& p_{i}
\end{align*}\left(\begin{array}{c}
p_{i} \\
0 \\
R_{i}^{l}
\end{array}\right)
$$

with R_{i}^{l} a lower triangular matrix, or

$$
\left.R_{i}=\begin{array}{l}
 \tag{16}\\
p_{i} \\
p_{i-1}-p_{i}
\end{array} \quad \begin{array}{c}
p_{i} \\
R_{i}^{u} \\
0
\end{array}\right)
$$

with R_{i}^{u} upper triangular. For every $i=1, \ldots, k$, both choices, (15) and (16), are always possible.

Proof. Again, the proof is by induction, but now for decreasing index i. For the initialization, start with $i=k$ and obtain a QR-decomposition of P_{k} with either an upper or a lower triangular factor as required. This defines the unitary matrix Q_{k-1}. We take $Q_{k}=I_{p_{k}}$. Hence, we find
-Lower triangular:

$$
P_{k}=Q_{k-1} R_{k}=Q_{k-1}\binom{0}{R_{k}^{l}} ;
$$

-Upper triangular:

$$
P_{k}=Q_{k-1} R_{k}=Q_{k-1}\binom{R_{k}^{u}}{0}
$$

We can now start the induction for $i=k-1, k-2, \ldots, 1$. Therefore, assume that we have the required factorizations for the matrices $P_{k}, P_{k-1}, \ldots, P_{i+1}$:

$$
\begin{aligned}
R_{k} & =Q_{k-1}^{*} P_{k} Q_{k}, \\
R_{k-1} & =Q_{k-2}^{*} P_{k-1} Q_{k-1}, \\
\vdots & =\vdots, \\
R_{i+1} & =Q_{i}^{*} P_{i+1} Q_{i+1} .
\end{aligned}
$$

Then, if R_{i} is to be lower triangular, obtain a QR-decomposition of the product $P_{i} Q_{i}$ as

$$
P_{i} Q_{i}=Q_{i-1} R_{i}=Q_{i-1}\binom{0}{R_{i}^{l}}
$$

so that

$$
R_{i}=\binom{0}{R_{i}^{l}}=Q_{i-1}^{*} P_{i} Q_{i}
$$

If R_{i} is required to be upper triangular, obtain a QR -decomposition as

$$
P_{i} Q_{i}=Q_{i-1} R_{i}=Q_{i-1}\binom{R_{i}^{u}}{0}
$$

so that

$$
R_{i}=\binom{R_{i}^{u}}{0}=Q_{i-1}^{*} P_{i} Q_{i} .
$$

This completes the construction.
We now repeatedly apply Lemma 5.2 on the full rank blocks in the matrices T_{i} in (9) and (10). First, we apply Lemma 5.2 to the sequence of k subblocks

$$
T_{1,1} \quad T_{2,1} \ldots T_{k, 1}
$$

Next, we apply it to the sequence of the $k-1$ subblocks

$$
T_{2,2} \quad T_{3,2} \ldots T_{k, 2}
$$

In general, we apply Lemma $5.2 k$ times to the k sequences of subblocks

$$
T_{j, j}, T_{j+1, j}, \ldots, T_{k, j} \quad \text { for } j=1, \ldots, k
$$

In applying Lemma 5.2 to the j th of these sequences, we can find a sequence of unitary matrices $Q_{0}^{[j]}, Q_{1}^{[j]}, \ldots, Q_{k-j+1}^{[j]}$ and matrices $R_{i, j}$ such that

$$
T_{i, j}=Q_{i-j}^{[j]} R_{i, j} Q_{i-j+1}^{[j] *}, \quad i=j, \ldots, k,
$$

where

$$
R_{i, j}=\binom{0}{R_{i, j}^{l}}
$$

or

$$
R_{i, j}=\binom{R_{i, j}^{u}}{0}
$$

We now define the unitary matrices \tilde{Q}_{i} for $i=0, \ldots, k$, which are block diagonal with blocks

$$
\tilde{Q}_{i}=\operatorname{diag}\left(Q_{i}^{[1]}, Q_{i-1}^{[2]}, \ldots, Q_{1}^{[i]}, Q_{0}^{[i+1]}\right), \quad i=0, \ldots, k
$$

with

$$
Q_{0}^{[k+1]}=I .
$$

Next we define

$$
\tilde{T}_{i}=\tilde{Q}_{i-1}^{*} T_{i} \tilde{Q}_{i}, \quad i=0, \ldots, k
$$

Then, it can be verified that for the lower triangular case we obtain

$$
\tilde{T}_{i}=\tilde{T}_{i}^{l}=\begin{gather*}
r_{i-1}^{1} \tag{17}\\
r_{i-1}^{2} \\
\vdots \\
r_{i-1}^{i}
\end{gather*}\left(\begin{array}{ccccc}
r_{i}^{1} & r_{i}^{2} & \ldots & r_{i}^{i} & r_{i}^{i+1} \\
R_{i, 1} & 0 & \ldots & 0 & 0 \\
* & R_{i, 2} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & \ldots & R_{i, i} & 0
\end{array}\right)
$$

and for the upper triangular case we find that

$$
\tilde{T}_{i}=\tilde{T}_{i}^{u}=\begin{align*}
& r_{i-1}^{1} \\
& r_{i-1}^{2} \tag{18}\\
& \vdots \\
& r_{i-1}^{i}
\end{align*}\left(\begin{array}{ccccc}
r_{i}^{1} & \ldots & r_{i}^{i-1} & r_{i}^{i} & r_{i}^{i+1} \\
R_{i, 1} & * & \ldots & * & 0 \\
0 & R_{i, 2} & \ldots & * & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & R_{i, i} & 0
\end{array}\right) .
$$

If we now combine (9)-(17) and (10)-(18), we obtain a combined factorization of the form

$$
\tilde{T}_{i}=\left(Q_{i-1} \tilde{Q}_{i-1}\right)^{*} A_{i}\left(Q_{i} \tilde{Q}_{i}\right)
$$

Hence, we have proved the following theorem.
Theorem 5.3 (generalized URVDs). Given k complex matrices $A_{1}\left(n_{0} \times n_{1}\right), A_{2}$ $\left(n_{1} \times n_{2}\right), \ldots, A_{k}\left(n_{k-1} \times n_{k}\right)$, there always exist unitary matrices $Q_{0}, Q_{1}, \ldots, Q_{k}$ such that

$$
\tilde{T}_{i}=Q_{i-1}^{*} A_{i} Q_{i}
$$

where \tilde{T}_{i} is a lower triangular or upper triangular matrix (both cases are always possible) with the following structures:
-Lower triangular (denoted by a superscript l):

$$
\tilde{T}_{i}^{l}=\begin{aligned}
& \\
& r_{i-1}^{1} \\
& r_{i-1}^{2} \\
& \vdots \\
& r_{i-1}^{i}
\end{aligned}\left(\begin{array}{ccccc}
r_{i}^{1} & r_{i}^{2} & \ldots & r_{i}^{i} & r_{i}^{i+1} \\
R_{i, 1} & 0 & \ldots & 0 & 0 \\
* & R_{i, 2} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & \ldots & R_{i, i} & 0
\end{array}\right)
$$

where

$$
R_{i, j}=\binom{0}{R_{i, j}^{l}}
$$

and $R_{i, j}^{l}$ is a square nonsingular lower triangular matrix.

- Upper triangular (denoted by a superscript u):

$$
\tilde{T}_{i}^{u}=\begin{aligned}
& r_{i-1}^{1} \\
& r_{i-1}^{2} \\
& \vdots \\
& r_{i-1}^{i}
\end{aligned}\left(\begin{array}{ccccc}
r_{i}^{1} & \ldots & r_{i}^{i-1} & r_{i}^{i} & r_{i}^{i+1} \\
R_{i, 1} & * & \cdots & * & 0 \\
0 & R_{i, 2} & \cdots & * & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & R_{i, i} & 0
\end{array}\right),
$$

where

$$
R_{i, j}=\binom{0}{R_{i, j}^{u}}
$$

and $R_{i, j}^{u}$ is a square nonsingular upper triangular matrix. The block dimensions coincide with those of Theorem 4.1.

As for the nomenclature of these generalized URVDs, we propose the following definition.

Definition 5.4 (nomenclature for generalized URV). The name of a generalized URVD of k matrices of compatible dimensions is generated by enumerating the letters L (for lower) and U (for upper), according to the lower or upper triangularity of the matrices $T_{i}, i=1, \ldots, k$ in the decomposition of Theorem 5.3.

For k matrices, there are 2^{k} different sequences with two letters. For instance, for $k=3$, there are eight generalized URVD (LLL, LLU, LUL, LUU, ULL, ULU, UUL, UUU).

Remarks. The decompositions in Theorems 5.1 and 5.3 both use column and row compressions of a matrix as a cornerstone for the rank determination of the individual blocks. As already pointed out in $\S 2$, the rank determination can be done via an ordinary SVD (OSVD), but a more economical method uses the QRD as initial step, since typically the matrices involved here have many more columns than rows or vice versa. A further alternative would be to replace the OSVD of the triangular matrix resulting from the initial QRD by a rank-revealing QRD. Since the time of the initial paper drawing attention to this [5], much progress has been made in this area, and we only want to stress here that such alternatives can only benefit our decomposition.

The overall complexity of this GQRD is easily seen to be comparable to that of performing two QRDs of each matrix A_{i} involved. For each A_{i} we indeed apply the left transformation Q_{i-1}^{*} derived from the previous matrix and then apply a "special" compression Q_{i} of the resulting matrix while respecting its block structure. Both steps have a complexity comparable to a QRD of a matrix of the same dimensions. For parallel machines we can check that the "block" algorithms [18] for one-sided orthogonal transformations such as the QRD can also be applied to the present decomposition, and that they will yield satisfactory speedups. The main reason for this is that the two-sided orthogonal transforms applied to each A_{i} are done separately, and hence they can essentially be considered one-sided for parallellization purposes.
6. On the structure of the GSVD and the GQRD. In this section, we first point out how for each GSVD there are two generalized URVDs, and we clarify the correspondence between the two types of generalized decompositions. Next, we give a summary of expressions for the block dimensions r_{i}^{j} in Theorems 4.1 and 5.1,
in terms of the ranks of the matrices A_{1}, \ldots, A_{k} and concatenations and products thereof. These expressions were derived in [10].

Recall the nomenclature for the generalized URVDs (Definition 5.4) and the GSVDs (Definition 4.2). The relationship between these two definitions is as follows. A pair of identical letters, i.e., L-L or U-U, that occurs in the factorization of A_{i}, A_{i+1} corresponds to a P-type factorization of the pair. A pair of alternating letters, i.e., L-U or U-L, that occurs in the factorization of A_{i}, A_{i+1} corresponds to a Q-type factorization of the pair. As an example, for a PQP-SVD of four matrices, there are two possible corresponding generalized URVDs, namely an LLUL-decomposition and a UULU-decomposition. As with the GSVD, we can also introduce the convention to use powers of (a sequence of) letters. For instance, for a $\mathrm{P}^{3} \mathrm{Q}^{2}-\mathrm{SVD}$, there are two GURVs, namely, an L^{4} UL-URV and a U^{4} LU-URV.

We now derive expressions for the block dimensions $r_{i}^{j}{ }^{4}$ Let us first consider the case of a GSVD that consists only of P-type factorizations. Denote the rank of the product of the matrices $A_{i}, A_{i+1}, \ldots, A_{j}$ with $i \leq j$ by

$$
r_{i(i+1) \cdots(j-1) j}=\operatorname{rank}\left(A_{i} A_{i+1} \ldots A_{j-1} A_{j}\right)
$$

Theorem 6.1 (on the structure of P^{k-1}-SVD, L^{k}-URV, and U^{k}-URV). Consider any of the factorizations above for the matrices $A_{1}, A_{2}, \ldots, A_{k}$. Then, the block dimensions r_{j}^{i} that appear in Theorems 4.1, 5.1, and 5.3 are given by:

$$
\begin{gather*}
r_{j}^{1}=r_{(1)(2) \cdots(j)} \tag{19}\\
r_{j}^{i}=r_{i(i+1) \cdots(j)}-r_{(i-1)(i) \cdots(j)} \tag{20}
\end{gather*}
$$

with $r_{j}^{i}=r_{i}$ if $i=j$.
Next, consider the case of a GSVD that only consists of Q-type factorizations. Denote the rank of the block bidiagonal matrix

$$
\left(\begin{array}{ccccccc}
A_{i} & 0 & 0 & \ldots & 0 & 0 & 0 \tag{21}\\
A_{i+1}^{*} & A_{i+2} & 0 & \ldots & 0 & 0 & 0 \\
0 & A_{i+3}^{*} & A_{i+4} & \ldots & 0 & 0 & 0 \\
0 & \cdots & \cdots & \ldots & \ldots & \cdots & 0 \\
0 & \cdots & \cdots & \ldots & A_{j-3}^{*} & A_{j-2} & 0 \\
0 & \cdots & \cdots & \ldots & 0 & A_{j-1}^{*} & A_{j}
\end{array}\right)
$$

(by $r_{i|i+1| \ldots|j-1| j}$).
Theorem 6.2 (on the structure of Q^{k-1} - SVD, (LU) ${ }^{k / 2}$-URV (k even), (UL) ${ }^{k / 2}{ }_{-}$ URV (k even), (UL) ${ }^{(k-1) / 2} U$-URV (k odd), and (LU) ${ }^{(k-1) / 2} L$-URV (k odd)). Consider any of the above factorizations for the matrices $A_{1}, A_{2}, \ldots, A_{k}$. Then,

- If $j-i$ is even,

$$
r_{i|\cdots| j}=r_{i|\cdots| j-1}+\left(r_{j}^{1}+r_{j}^{2}+\cdots+r_{j}^{i}\right)+r_{j}^{i+2}+r_{j}^{i+4}+\cdots+r_{j}^{j-2}+r_{j}^{j} ;
$$

- If $j-i$ is odd,

$$
r_{i|\cdots| j}=r_{i|\cdots| j-1}+\left(r_{j}^{i+1}+r_{j}^{i+3}+\cdots+r_{j}^{j-2}+r_{j}^{j}\right) .
$$

[^4]For the general case, we need a mixture of the two preceding notations for block bidiagonal matrices, the blocks of which can be products of matrices, such as

$$
\left(\begin{array}{ccccc}
A_{i_{0}} A_{i_{0}+1} \ldots A_{i_{1}-1} & 0 & 0 & \ldots & 0 \\
\left(A_{i_{1}} \ldots A_{i_{2}-1}\right)^{*} & A_{i_{2}} \ldots A_{i_{3}-1} & 0 & \ldots & 0 \\
0 & \left(A_{i_{3}} \ldots A_{i_{4}-1}\right)^{*} & A_{i_{4}} \ldots A_{i_{5}-1} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \ldots & A_{i_{l}} \ldots A_{j}
\end{array}\right)
$$

where $1 \leq i_{0}<i_{1}<i_{2}<i_{3}<\cdots<i_{l} \leq j \leq k$. Their rank is denoted by

$$
r_{\left(i_{0}\right) \cdots\left(i_{1}-1\right)\left|i_{1} \cdots\left(i_{2}-1\right)\right| \cdots \mid i_{l} \cdots(j) .}
$$

For instance, the rank of the matrix

$$
\left(\begin{array}{ccc}
A_{2} A_{3} & 0 & 0 \\
A_{4}^{*} & A_{5} A_{6} A_{7} & 0 \\
0 & \left(A_{8} A_{9}\right)^{*} & A_{10}
\end{array}\right)
$$

is represented by $r_{(2)(3)|4|(5)(6)(7)|(8)(9)|(10)}$.
Theorem 6.3 (on the structure of a GSVD and a GURV). The rank $r_{\left(i_{0}\right)\left(i_{0}+1\right) \ldots\left(i_{1}-1\right)\left|i_{1} \ldots\left(i_{2}-1\right)\right| \ldots \mid i_{1} \ldots j}$ can be derived as follows:

1. Calculate the following $l+1$ integers $s_{j}^{i}, i=1,2, \ldots, l+1$:

$$
\begin{aligned}
s_{j}^{1} & =r_{j}^{1}+r_{j}^{2}+\cdots+r_{j}^{i_{0}} \\
s_{j}^{2} & =r_{j}^{i_{0}+1}+r_{j}^{i_{0}+2}+\cdots+r_{j}^{i_{1}}, \\
\cdots & =\cdots, \\
s_{j}^{l+1} & =r_{j}^{i_{l-1}+1}+r_{j}^{i_{l-1}+2}+\cdots+r_{j}^{i_{l}} .
\end{aligned}
$$

2. Depending on l even or odd there are two cases:
-l even:

$$
\begin{aligned}
& r_{i_{0} \cdots i_{1}-1\left|i_{1} \cdots i_{2}-1\right| \cdots \mid i_{l} \cdots j}=r_{i_{0} \cdots i_{1}-1\left|i_{1} \cdots i_{2}-1\right| \cdots \mid i_{l-1} \cdots i_{l}-1}+s_{j}^{1}+s_{j}^{3}+\cdots+s_{j}^{l+1} \\
& \quad-l \text { odd: }
\end{aligned}
$$

$$
r_{i_{0} \cdots i_{1}-1\left|i_{1} \cdots i_{2}-1\right| \cdots \mid i_{l} \cdots j}=r_{i_{0} \cdots i_{1}-1\left|i_{1} \cdots i_{2}-1\right| \cdots \mid i_{l-1} \cdots i_{l}-1}+s_{j}^{2}+s_{j}^{4}+\cdots+s_{j}^{l+1}
$$

Observe that Theorems 6.1 and 6.2 are special cases of Theorem 6.3. While Theorem 6.1 provides a direct expression of the dimensions r_{j}^{i} in terms of differences of ranks of products, Theorems 6.2 and 6.3 do so only implicitly. This is illustrated in the following examples.

Example. Let us determine the block dimensions of the quasi-diagonal matrix S_{4} in a QPP-SVD of the matrices $A_{1}, A_{2}, A_{3}, A_{4}$ (which are also the block dimensions of an LUUU- or a ULLL-decomposition). From Theorem 6.2 we find that

$$
\begin{aligned}
r_{4}^{4} & =r_{4}-r_{34}, \\
r_{3}^{4} & =r_{34}-r_{234} .
\end{aligned}
$$

From Theorem 6.3, we find that

$$
s_{4}^{1}=r_{4}^{1}, \quad s_{4}^{2}=r_{4}^{2}
$$

and

$$
r_{(1) \mid(2)(3)(4)}=r_{1}+s_{4}^{2}
$$

so that

$$
r_{4}^{2}=r_{1 \mid(2)(3)(4)}-r_{1}
$$

Finally, since $r_{4}=r_{4}^{1}+r_{4}^{2}+r_{4}^{3}+r_{4}^{4}$, we find that

$$
r_{4}^{1}=r_{1}+r_{(2)(3)(4)}-r_{1 \mid(2)(3)(4)}
$$

Observe that this last relation can be interpreted geometrically as the dimension of the intersection between the row spaces of A_{1} and $A_{2} A_{3} A_{4}$:

$$
r_{4}^{1}=\operatorname{dim} \operatorname{span}_{\text {row }}\left(A_{1}\right)+\operatorname{dim} \operatorname{span}_{\text {row }}\left(A_{2} A_{3} A_{4}\right)-\operatorname{dim} \operatorname{span}_{\text {row }}\binom{A_{1}}{A_{2} A_{3} A_{3}}
$$

Example. Consider the determination of $r_{5}^{1}, r_{5}^{2}, r_{5}^{3}, r_{5}^{4}, r_{5}^{5}$ in a $\mathrm{PQ}^{3}-\mathrm{SVD}$ of five matrices $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ with Theorem 6.3 , which coincides with the structure of a UULUL-URV or an LLULU-URV (see Table 1).

Table 1

	s_{5}^{i}
$r_{4 \mid 5}$	$s_{5}^{1}=r_{5}^{1}+r_{5}^{2}+r_{5}^{3}+r_{5}^{4}$
	$s_{5}^{2}=r_{5}^{5}$
$r_{3\|4\| 5}$	$s_{5}^{1}=r_{5}^{1}+r_{5}^{2}+r_{5}^{3}$
	$s_{5}^{2}=r_{5}^{4}$
	$s_{5}^{3}=r_{5}^{5}$
$r_{2\|3\| 4 \mid 5}$	$s_{5}^{1}=r_{5}^{1}+r_{5}^{2}$
	$s_{5}^{2}=r_{5}^{3}$
	$s_{5}^{3}=r_{5}^{4}$
	$s_{5}^{4}=r_{5}^{5}$
$r_{(1)(2)\|3\| 4 \mid 5}$	$s_{5}^{1}=r_{5}^{1}$
	$s_{5}^{2}=r_{5}^{2}+r_{5}^{3}$
	$s_{5}^{3}=r_{5}^{4}$
	$s_{5}^{4}=r_{5}^{5}$

These relations can be used to set up a set of equations for the unknowns r_{5}^{1}, r_{5}^{2}, $r_{5}^{3}, r_{5}^{4}, r_{5}^{5}$, using Theorem 6.3 as

$$
\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
r_{5}^{1} \\
r_{5}^{2} \\
r_{5}^{3} \\
r_{5}^{4} \\
r_{5}^{5}
\end{array}\right)=\left(\begin{array}{l}
r_{5} \\
r_{4 \mid 5}-r_{4} \\
r_{3|4| 5}-r_{3 \mid 4} \\
r_{2|3| 4 \mid 5}-r_{2|3| 4} \\
r_{(1)(2)|3| 4 \mid 5}-r_{(1)(2)|3| 4}
\end{array}\right)
$$

the solution of which is

$$
r_{5}^{1}=r_{3|4| 5}-r_{3 \mid 4}+r_{(1)(2)|3| 4}-r_{(1)(2)|3| 4 \mid 5}
$$

$$
\begin{aligned}
r_{5}^{2} & =r_{(1)(2)|3| 4 \mid 5}-r_{(1)(2)|3| 4}-r_{2|3| 4 \mid 5}+r_{2|3| 4}, \\
r_{5}^{3} & =r_{2|3| 4 \mid 5}-r_{2|3| 4}-r_{4 \mid 5}+r_{4}, \\
r_{5}^{4} & =r_{5}-r_{3|4| 5}+r_{3 \mid 4}, \\
r_{5}^{5} & =r_{4 \mid 5}-r_{4} .
\end{aligned}
$$

7. A further block diagonalization of the GQRD. In this section, we note that a further block diagonalization of a GQRD can be interpreted as a preliminary step towards the corresponding GSVD. We proceed in two stages. First, we observe that each upper or lower triangular matrix in the generalized URVD of Theorem 5.3 can be block diagonalized. Next, we show how these block diagonalizations can be propagated backward through the GQRD. The first step is the factorization of the upper and lower triangular matrices \tilde{T}_{i} of Theorem 5.3 into an upper or lower triangular matrix and a block diagonal matrix. For lower triangular matrices $\tilde{T}_{i}=\tilde{T}_{i}^{l}$, we can obtain a factorization of the form

$$
\tilde{T}_{i}^{l}=L_{i} \tilde{D}_{i}^{l}
$$

where

$$
L_{i}=\begin{gathered}
r_{i-1}^{1} \\
r_{i-1}^{2} \\
\vdots \\
r_{i-1}^{i}
\end{gathered}\left(\begin{array}{ccccc}
r_{i-1}^{1} & r_{i-1}^{2} & \ldots & r_{i-1}^{i-1} & r_{i-1}^{i} \\
I & 0 & \ldots & 0 & 0 \\
* & I & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & \ldots & * & I
\end{array}\right),
$$

Since the diagonal blocks $R_{i, j}$ are of full column rank, such a factorization is always possible. In a similar way, for upper triangular matrices $\tilde{T}_{i}=\tilde{T}_{i}^{u}$, we find a factorization of the form

$$
\tilde{T}_{i}^{u}=U_{i} \tilde{D}_{i}^{u}
$$

with U_{i} an upper triangular block matrix with identity matrices on the block diagonal:

$$
\begin{aligned}
& U_{i}=\begin{array}{c}
r_{i-1}^{1} \\
r_{i-1}^{2} \\
\vdots \\
r_{i-1}^{i}
\end{array}\left(\begin{array}{ccccc}
r_{i-1}^{1} & r_{i-1}^{2} & \ldots & r_{i-1}^{i-1} & r_{i-1}^{i} \\
I & * & \ldots & * & * \\
0 & I & \ldots & * & * \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & I
\end{array}\right), \\
& \tilde{D}_{i}^{u}=\begin{array}{c}
\\
r_{i-1}^{1} \\
r_{i-1}^{2} \\
\vdots \\
r_{i-1}^{i}
\end{array}\left(\begin{array}{ccccc}
r_{i}^{1} & r_{i}^{2} & \ldots & r_{i}^{i} & r_{i}^{i+1} \\
R_{i, 1} & 0 & \ldots & 0 & 0 \\
0 & R_{i, 2} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & R_{i, i} & 0
\end{array}\right) .
\end{aligned}
$$

Now suppose that we have done this for all matrices $\tilde{T}_{i}, i=1, \ldots, k$ in a GQRD of Theorem 5.3. We show how we can propagate a further block diagonalization backward through the GQRD, in a way that is completely consistent with the corresponding GSVD of Theorem 4.1. To simplify the notation, we simply replace \tilde{T}_{i} by T_{i} and \tilde{D}_{i} by D_{i} in the following.

First, assume that T_{k} is lower block triangular. It then follows from the previous section that we can factorize T_{k} as

$$
T_{k}^{l}=L_{k} D_{k}
$$

Depending on whether T_{k-1} is upper or lower triangular, we have two cases:
$-T_{k-1}=T_{k-1}^{l}$ lower triangular. In this case, the product $T_{k-1}^{l} L_{k}$ is lower triangular as well, and we can obtain a similar decomposition

$$
T_{k-1}^{l} L_{k}=L_{k-1} D_{k-1}
$$

where L_{k-1} is again lower triangular and D_{k-1} has the same diagonal blocks $R_{i, j}$ as T_{k-1}^{l}.
$-T_{k-1}=T_{k-1}^{u}$ upper triangular. In this case, the product $T_{k-1}^{u} L_{k}^{-*}$ is upper triangular, and we can obtain a factorization

$$
T_{k-1}^{u} L_{k}^{-*}=U_{k-1} D_{k-1}
$$

where U_{k-1} is upper triangular and D_{k-1} has the same diagonal blocks $R_{i, j}$ as T_{k-1}^{u}.
It is easily verified that when T_{k} is upper triangular, similar conclusions can be obtained.

In general, let T_{i} be lower triangular and assume that it is factorized as

$$
T_{i}^{l}=L_{i} D_{i} Z_{i}
$$

Assume that T_{i-1} is lower triangular. Then T_{i-1} can be factored as

$$
T_{i-1}^{l}=L_{i-1} D_{i-1} L_{i}^{-1}
$$

If T_{i-1} is upper triangular, it can be factored as

$$
T_{i-1}^{u}=U_{i-1} D_{i-1} L_{i}^{*}
$$

where U_{i-1} is upper triangular. The cases with T_{i} upper triangular are similar. Table 2 summarizes all possibilities.

Table 2

T_{i} Lower triangular	T_{i-1} Lower triangular	$T_{i-1}=L_{i-1} D_{i-1} L_{i}^{-1}$
$T_{i}=L_{i} D_{i} Z_{i}$	T_{i-1} Upper triangular	$T_{i-1}=U_{i-1} D_{i-1} L_{i}^{*}$
T_{i} Upper triangular	T_{i-1} Lower triangular	$T_{i-1}=L_{i-1} D_{i-1} U_{i}^{*}$
$T_{i}=U_{i} D_{i} Z_{i}$	T_{i-1} Upper triangular	$T_{i-1}=U_{i-1} D_{i-1} U_{i}^{-1}$

Example. Let us apply this result to a sequence of four matrices $A_{1}, A_{2}, A_{3}, A_{4}$ with compatible dimensions. If the required sequence is ULUU, then

$$
\begin{aligned}
& A_{1}=Q_{0} T_{1}^{u} Q_{1}^{*}=Q_{0}\left(U_{1} D_{1} L_{2}^{*}\right) Q_{1}^{*}=\left(Q_{0} U_{1}\right) D_{1}\left(Q_{1} L_{2}\right)^{*} \\
& A_{2}=Q_{1} T_{2}^{l} Q_{2}^{*}=Q_{1}\left(L_{2} D_{2} U_{3}^{*}\right) Q_{2}^{*}=\left(Q_{1} L_{2}\right) D_{2}\left(Q_{2} U_{3}\right)^{*} \\
& A_{3}=Q_{2} T_{3}^{u} Q_{3}^{*}=Q_{2}\left(U_{3} D_{3} U_{4}^{-1}\right) Q_{3}^{*}=\left(Q_{2} U_{3}\right) D_{3}\left(Q_{3} U_{4}\right)^{-1} \\
& A_{4}=Q_{3} T_{4}^{u} Q_{4}^{*}=Q_{3}\left(U_{4} D_{4}\right) Q_{4}^{*}=\left(Q_{3} U_{4}\right) D_{4} Q_{4}^{*}
\end{aligned}
$$

Note that $U_{1}=I_{n_{0}}$. This follows immediately from the block structure of U_{i} for $i=1$. Observe that the relationships between the common factors in the left-hand side of these expressions conform with the requirements for a QQP-SVD. Only the middle factors $D_{i}, i=1,2,3,4$ are not quasi-diagonal.
8. Conclusions. In this paper, a constructive proof was given of a multimatrix generalization of the concept of rank factorization. The connection of this new decomposition with the analogous GSVD was also shown. The block structure of both generalizations and the ranks of the individual diagonal blocks in both decompositions were indeed shown to be identical. As is shown in a forthcoming paper, the spaces spanned by certain block columns of the orthogonal transformation matrices Q_{i} are, in fact, identical to those of the GSVD. The difference lies only in a particular choice of basis vectors for these spaces. The consequences of these connections are still under investigation. We mention the following results here:

- Updating the above decomposition to yield the GSVD requires nonorthogonal transformation. These updating transformations can be chosen block triangular with diagonal block sizes compatible with the index sets derived in Theorem 4.1.
- A modified orthogonal decomposition can be defined where the compound matrix is not triangularized but diagonalized. This new factorization is a variant of the above decomposition where now a special coordinate system is chosen for each of the individual orthogonal transformations Q_{i}. The result is an orthogonal decomposition of the type of Theorem 5.3 where now the generalized singular values can be extracted from the diagonal elements of some triangular blocks. The orthogonal updating needed to obtain this new decomposition can be done with techniques described in [2].
- A geometric interpretation can be given of the bases obtained from the transformation matrices Q_{i} in Theorem 5.1. As particular examples of these spaces we retrieve the following well-known concepts.
(a) For the case $A_{i}=(A-\alpha I)$ the GQRD in fact reconstructs the nested null spaces of the matrices $(A-\alpha I)^{i}$, which reveal the Jordan structure of the matrix A at the eigenvalue α (see also the example in §2).
(b) For the cases $A_{2 i}=(A-\alpha B)$ and $A_{2 i+1}=B$ the decomposition reconstructs the nested null spaces of the sequences $\left[B^{-1}(A-\alpha B)\right]^{i}$ and $\left[(A-\alpha B) B^{-1}\right]^{i}$, which reveal the Kronecker structure of the pencil $\lambda B-A$ at the generalized eigenvalue α (see [30] and [31]).
(c) For the cases $A_{1}=D$ and $A_{i}=C \cdot A^{i-1} \cdot B, i=1, \ldots$, the decomposition reconstructs the invertibility subspaces of the discrete time system

$$
\begin{aligned}
x_{k+1} & =A x_{k}+B u_{k}, \\
y_{k} & =C x_{k}+D u_{k} .
\end{aligned}
$$

These are in fact also the spaces constructed by the structure algorithm of Silverman [29], and they play a role in several key problems of geometrical systems theory [34].
Other applications of GSVDs have been described in [7], [8], [11], [13], and [35], while applications of the generalized QR-decompositions are described in [25] and [36].

Acknowledgment. Gene Golub's hospitality in the summer of 1989 lies at the origin of this joint paper. We also would like to thank Steven Van Leemput for
generating the MATLAB code for the GSVD and the GQRD based on the constructive proofs of the GSVD in [9] and of the GQRD of Theorem 5.3 of this paper.

REFERENCES

[1] A. BJörck, Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT, 7 (1967), pp. 1-21.
[2] A. Bojanczyk, M. Ewerbring, F. Luk, and P. Van Dooren, An accurate product SVD algorithm, in Proc. Second Internat. Sympos. on SVD and Signal Processing, Kingston, RI, pp. 217-228, June 1990; Signal Proc., to appear.
[3] T. Chan, An improved algorithm for computing the singular value decomposition, ACM Trans. Math. Software, 8 (1982), pp. 72-83.
[4] -, Algorithm 581: An improved algorithm for computing the singular value decomposition, ACM Trans. Math. Software, 8 (1982), pp. 84-88.
[5] ——, Rank revealing QR factorizations, Linear Algebra Appl., 88/89 (1987), pp. 67-82.
[6] B. De Moor and G. H. Golub, Generalized singular value decompositions: A proposal for a standardized nomenclature, ESAT-SISTA Report 1989-10, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium, April 1989.
[7] ——, The restricted singular value decomposition: Properties and applications, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 401-425.
[8] B. De Moor, On the structure and geometry of the product singular value decomposition, Linear Algebra Appl., 168 (1992), pp. 95-136.
[9] B. De Moor and H. Zha, A tree of generalizations of the singular value decomposition, ESAT-SISTA Report 1990-11, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium, June 1990; Linear Algebra Appl., to appear.
[10] B. De Moor, On the structure of generalized singular value decompositions, ESAT-SISTA Report 1990-12, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium, June 1990.
[11] ——, Generalizations of the OSVD: Structure, properties, applications, in Proc. Second Internat. Workshop on SVD and Signal Processing, University of Rhode Island, Kingston, RI, June 1990, pp. 209-216; Signal Proc., to appear.
[12] ——, A history of the singular value decomposition, ESAT-SISTA Report, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium, February 1991.
[13] K. V. Fernando and S. J. Hammarling, A product induced singular value decomposition for two matrices and balanced realisation, in Linear Algebra in Signal Systems and Control, B. N. Datta, C. R. Johnson, M. A. Kaashoek, R. Plemmons, and E. Sontag, eds., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1988, pp. 128-140.
[14] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London, 1981.
[15] G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, SIAM J. Numer. Anal., 2 (1965), pp. 205-224.
[16] P. A. Businger and G. H. Golub, Algorithm 358: Singular value decomposition of a complex matrix, Comm. Assoc. Comp. Mach., 12 (1969), pp. 564-565.
[17] G. H. Golub and C. Reinsch, Singular value decomposition and least squares solutions, Numer. Math., 14 (1970), pp. 403-420.
[18] G. H. Golub and C. Van Loan, Matrix Computations, Second Edition, The Johns Hopkins University Press, Baltimore, MD, 1989.
[19] G. Golub and J. Wilkinson, Ill-conditioned eigensystems and the computation of the Jordan canonical form, SIAM Rev., 18 (1976), pp. 578-619.
[20] S. Hammarling, The numerical solution of the general Gauss-Markov linear model, NAG Tech. Report TR2/85, Numerical Algorithms Group Limited, Oxford, 1985.
[21] M. T. Heath, A. J. Laub, C. C. Paige, and R. C. Ward, Computing the singular value decomposition of a product of two matrices, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 1147-1159.
[22] R. J. Hanson and C. L. Lawson, Extensions and applications of the Householder algorithms for solving linear least squares problems, Math. Comp., 23 (1969), pp. 787-812.
[23] C. C. Paige and M. A. Saunders, Towards a generalized singular value decomposition, SIAM J. Numer. Anal., 18 (1981), pp. 398-405.
[24] C. C. Paige, Computing the generalized singular value decomposition, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 1126-1146.
[25] ——, Some aspects of generalized QR factorizations, in Reliable Numerical Computation, M.

Cox and S. Hammarling, eds., Oxford University Press, Oxford, U.K., 1990, pp. 73-91.
[26] G. W. Stewart, A method for computing the generalized singular value decomposition, in Proc. Matrix Pencils, Pite Havsbad, 1982, B. Kagström and A. Ruhe, eds., Lecture Notes in Mathematics 973, Springer-Verlag, Berlin, New York, 1983.
$[27] \quad$, An updating algorithm for subspace tracking, UMIACS-TR-90-86, CS-TR 2494, Computer Science Tech. Report Series, University of Maryland, College Park, MD, July 1990.
[28] J. Stoer, On the numerical solution of constrained least-squares problems, SIAM J. Numer. Anal., 8 (1971), pp. 382-411.
[29] L. M. Silverman, Discrete Riccati Equations: Alternative Algorithms, Asymptotic Properties and System Theory Interpretations, in Control and Dynamical Systems, Academic Press, New York, 1976.
[30] P. VAN Dooren, The computation of Kronecker's canonical form of a singular pencil, Linear Algebra Appl., 27 (1979), pp. 103-140.
[31] ——, Reducing subspaces: Definitions, properties and algorithms, in Proc. Matrix Pencils, Lecture Notes in Mathematics 973, Springer-Verlag, Berlin, New York, 1983, pp. 58-73.
[32] C. F. Van Loan, Generalizing the singular value decomposition, SIAM J. Numer. Anal., 13 (1976), pp. 76-83.
[33] J. H. Wilkinson, The Algebraic Eigenvalue Problem, The Clarendon Press, Oxford, U.K., 1965.
[34] M. Wonham, Linear Multivariable Control, a Geometric Approach, Springer-Verlag, New York, 1974.
[35] H. Zha, The restricted SVD for matrix triplets and rank determination of matrices, Scientific Report 89-2, Konrad-Zuse Zentrum für Informationstechnik, Berlin, Germany, 1989; SIAM J. Matrix Anal. Appl., 12 (1991), pp. 172-194.
[36] ——, The implicit QR decomposition and its applications, ESAT-SISTA Report 1989-25, Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium.

[^0]: * Received by the editors April 16, 1991; accepted for publication (in revised form) October 18, 1991. This research was partially supported by the Belgian Program on Interuniversity Attraction Poles and the European Community Research Program ESPRIT, BRA 3280.
 \dagger Department of Electrical Engineering, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium (demoor@esat.kuleuven.ac.be). This author is a Research Associate of the Belgian National Fund for Scientific Research (NFWO).
 \ddagger Coordinated Science Laboratory, University of Illinois, Urbana, Illinois 61801 (vdooren@uicsl.csl.uiuc.edu).

[^1]: ${ }^{1}$ In this paper, we use the convention that zero blocks may be "empty" matrices, i.e., certain block dimensions may be 0 .

[^2]: ${ }^{2}$ The notation B^{-*} refers to the complex conjugate transpose of the inverse of the matrix B.

[^3]: ${ }^{3}$ In [9], these block dimensions follow from the constructive proof.

[^4]: ${ }^{4}$ Recall that the subscript i refers to the i th matrix, while the superscript j refers to the j th block in that matrix.

