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Abstract. This paper discusses multimatrix generalizations of two well-known orthogonal rank
factorizations of a matrix: the generalized singular value decomposition and the generalized QR-
(or URV-) decomposition. These generalizations can be obtained for any number of matrices of
compatible dimensions. This paper discusses in detail the structure of these generalizations and
their mutual relations and gives a constructive proof for the generalized QR-decompositions.
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1. Introduction. In this paper, we present multimatrix generalizations of some
well-known orthogonal rank factorizations. We show how the idea of a QR-decompo-
sition (QRD), a URV-decomposition (URVD), and a singular value decomposition
(SVD) for one matrix can be generalized to any number of matrices. While gener-
alizations of the SVD for any number of matrices have been derived in [9], one of
the main contributions of this paper is the constructive derivation of a generalization
for the QRD (or URVD) for any number of matrices of compatible dimensions. The
idea is to reduce the set of matrices A1, A2,..., Ak to a simpler form using unitary
transformations only. Hereby, we avoid explicit products and inverses of the matrices
that are involved. We show that these generalized QR-decompositions (GQRD) can
be considered as a preliminary reduction for any generalized singular value decompo-
sition (GSVD). The reason is that there is a certain one-to-one relation between the
structure of a GQRD and the "corresponding" GSVD, which is explained in detail
below.

This paper is organized as follows. In 2, we provide a summary of orthogonal
rank factorizations for one matrix. We briefly review the SVD, the QRD, and the
URVD as special cases. In 3, we give a survey o1 existing generalizations of the SVD
and QRD for two or three matrices. In 4, we summarize the results on GSVDs for
any number of matrices of compatible dimensions. Section 5, which contains the main
new contribution of this paper, describes a generalization of the QRD and the URVD
for any number of matrices. We derive a constructive, inductive proof which shows
that a GQRD can be used as a preliminary reduction for a corresponding GSVD. In
6, we analyze in detail the structure of the GQRDs and GSVDs and show that there
is a one-to-one relation between the two generalizations. This relation is elaborated
in more detail in 7, where we illustrate how a GQRD can be used as a preliminary
Step in the derivation of a corresponding GSVD.
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While all results in this paper are stated for complex matrices, they can be spe-
cialized to the real case without much difficulty. This can be done in much the same
way as with the SVD for complex and real matrices. In particular, it suffices to re-
state most results using the term real orthonormal instead of unitary and to replace
a superscript "." (which denotes the complex conjugate transpose of a matrix) by a
superscript "t" (which is the transpose of a matrix).

2. Orthogonal rank factorizations. Any matrix A E Cmn can be factorized
as

where R Cnxn is upper trapezoidal and H is a real n x n permutation matrix
that permutes the columns of A so that the first ra rank(A) columns are linearly
independent. The matrix Q Cmxm is unitary and can be partitioned as

IFa m ra
).

If we partition R accordingly as R (Rll R12), where Rll Crxra is upper
triangular and nonsingular, we obtain

A=QI(RI Rle)H
which is sometimes cMled the QR-factorization of A.

If we rewrite (1) as

Q’A-( R

we see that Q is an orthogonal transformation that compresses the rows of A. There-
fore, it is called a row compression. A similar construction exists, of course, for a
column compression. A complete orthogonal factorization of an m x matrix A is any
factoriation of the form

(2) A U ( T 0 V*

where T is rax ra square nonsingular nd ra rank(A). One particular case is the
SVD, which has become an important tool in the nalysis and numericM solution
of numerous problems, especially since the development of numericMly robust algo-
rithms by Golub nd his coworkers [15], [16], [17]. The SVD is complete orthogonM
factorization where the matrix T is diagonal with positive diagonM elements:

A UEV*.

Here U Cmxm and V Cnxn are unitary and E mxn is of the form

(71 0 0 0
0 a2 0 0

0 0 rra 0
0 0 0 0

In this paper, we use the convention that zero blocks may be "empty" matrices, i.e., certain
block dimensions may be 0.
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The positive numbers 0-1

_
0"2

_ _
0-ra > 0 are called the singular values of A,

while the columns of U and V are the left and right singular vectors.
In applications where m >> n, it is often a good idea to use the QRD of the matrix

as a preliminary step in the computation of its SVD. The SVD of A is obtained via
the SVD of its triangular factor as

A QR- Q(UrE.V?) (QUr)ErV?.

This idea of combining the QRD and the SVD of the triangular matrix, in order
to compute the SVD of the full matrix, is mentioned in [22, p. 119] and more fully
analyzed in [3]. In [18] the method is referred to as R-bidiagonalization. Its flop count
is (mn2+n3), as compared to (2mn2-2/3n3) for a bidiagonalization of the full matrix.
Hence, whenever m _> 5/3n, it is more advantageous to use the R-bidiagonalization
algorithm.

There exist still other complete orthogonal factorizations of the form (2) where
only T is required to be triangular (upper or lower) (see, e.g., [18]). Such a factoriza-
tion was called a URV-decomposition in [27]. Here

where U E Cm m V C
gular upper triangular.

are unitary matrices and R Cra xr is square nonsin-

It is well known that the QR-factorization of a singular matrix A and of its
transpose A* can be used for finding the image and kernel of A (URV-decompositions
actually give both at once). In this paper, we try to extend these ideas to several
matrices. Suppose we have a sequence of matrices Ai, 1,..., k, and we want to
know the kernels (or null spaces) of each partial product A1. A2... Aj. We could form
these products and compute QR-decompositions of each of them. That can, in fact,
be avoided, as shown below. Let us take the "special" example Ai A, 1, 2, 3,
with

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

It is well known that the null spaces of A in fact give the Jordan structure of A, and
this structure is already obvious from the form of A. But let us reconstruct it from a
sequence of QR-decompositions (in fact we need here RQ-decompositions of A). The
first one is, of course, a column compression of A1, for which we use the permutation
of columns 2 and 4 (denoted by the matrix P24):

0
0
0
0
0

0 1 0
1 0 0
0 0 0
0 0 1
0 0 0

The separation line here indicates that the first two columns of P24 (i.e., el and ea)
span the kernel of A A. For the kernel of A2 AIA2 we do not form this product,
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but apply the inverse of the orthogonal transform P24 (which is again P24) to the rows
of A2 A:

0 1 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

Since A1A2 (AIP24)(P24A2), it is clear that the kernel of AIA2 is also the kernel
of the bottom part of P24A2. The following column compression of P24A2 actually
yields the kernel of both A2 and the product AA2. Perform indeed the orthogonal
transformation P24P35:

P24A2P24P35

0 0 0 1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

We see that the kernel of A2 comprises the first two columns of P24P35 (i.e., el and e4
as before) and the kernel of A1A2 comprises the first four columns of P24P35, i.e.,
e2, e4, and e5. An additional step of this procedure finally shows that the kernel of
the product A1A2A3 (AIP24)(P24A2P24P35)(P35P24A3) is that of the bottom part
of the matrix

0 1 0 0 0
0 0 0 0 1

P35P24A3-- 0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

which is a zero matrix. Hence the kernel of A3 is the whole space, as expected.
The interesting part of this simple example" is the fact that we have not formed the
intermediate products to get their corresponding kernels. The case treated here of
equal matrices Ai is a simple one (and could be solved using the results of [19]), but
in the next few sections we show how this can also be done for arbitrary sequences of
matrices. The key idea is that at each step we do a number of QR-factorizations on
the blocks of a partitioned matrix (column blocks in our case). This then induces a
new partitioning on the rows of this matrix, on the columns of the next matrix, and
so on.

3. Generalizations for two or three matrices. In the last decade or so,
several generalizations for the SVD have been derived. The motivation is basically
the necessity to avoid the explicit formation of products and matrix quotients in the
computation of the SVD of products and quotients of matrices. Let A and B be
nonsingular square matrices and assume that we need the SVD of AB-* USV*.2

It is well known that the explicit calculation of B-1, followed by the computation
of the product, may result in loss of numerical precision (digit cancellation), even
before any factorization is attempted! The reason is the finite machine precision of

The notation B-* refers to the complex conjugate transpose of the inverse of the matrix B.
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any calculator. Therefore, it seems more appropriate to come up with an implicit
combined factorization of A and B separately, such as

A UD1X-1,
(3) B=X-*D2V*,

where U and V are unitary and X nonsingular. The matrices D1 and D2 are real but
"sparse" (quasi-diagonal), and the product DID is diagonal with positive diagonal
elements. Then we find

AB-* UDIX-1XDtV U(DDt)v*.

A factorization as in (3) is always possible for two square nonsingular matrices. In
fact, it is always possible for two matrices AE Cmn and B E Cnv (as long as the
number of columns of A is the same as the number of rows of B, which we refer to as a
compatibility condition). In general, the matrices A and B may even be rank deficient.
The combined factorization (3) is called the quotient singular value decomposition
(QSVD) and was first suggested in [32] and refined in [23] (it was originally called the
generalized SVD, but we have suggested a standardized nomenclature in [6]).

A similar idea might be exploited for the SVD of the product of two matrices
AB USV*, via the so-called product singular value decomposition (PSVD)

A UD1X-l,
(4) B XD2V*,

so that AB U(DID2)V*, which is an SVD of AB. The combined factorization (4)
was proposed in [13] as a formalization of ideas in [21]. In the general case, for two
compatible matrices A and B (which may be rank deficient), the PSVD of (4) always
exists and provides the SVD of AB without the explicit construction of the product.
Similarly, if A and B are compatible, the QSVD always exists. However, it does not
always deliver the SVD of ABt when B is rank deficient (Bt is the pseudoinverse
of B).

Another generalization, this time for three matrices, is the restricted singular
value decomposition (RSVD). It was proposed n [35], and numerous applications
were reviewed in [7]. It was soon found that all of these generalized SVDs for two or
three matrices are special cases of a general theorem, presented in [9]. The main result
is that there exist GSVDs for any number of matrices AI,A.,...,Ak of compatible
dimensions. The general structure of these GSVDs was further analyzed in {10]. The
dimensions of the blocks that occur in any GSVD can be expressed as ranks of the
matrices involved and as certain products and concatenations of these. We present a
summary of the results below.

As for generalizations of the QRD, it is mainly Paige {25] who pointed out the
importance of generalized QRDs for two matrices as a basic conceptual and math-
ematical tool. The motivation is that in some applications, we need the QRD of a
product of two matrices AB where A mx and B nxp. For general matrices
A and B such a computation avoids forming the product explicitly, and transforms
A and B separately to obtain the desired results. Paige [25] refers to such a factor-
ization as a product QR factorization. Similarly, in some applications we need the
QR-factorization of AB- where B is square and nonsingular. A general numerically
robust algorithm would not compute the inverse of B nor the product explicitly, but
would transform A and B separately. Paige [25] proposed calling such a combined
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decomposition of two matrices a generalized QR factorization, following [20]. We pro-
pose here to reserve the name generalized QRD for the complete set of generalizations
of the QR-decompositions, which are developed in this paper. We also propose a novel
nomenclature, as we did for the generalizations of the SVD in [6].

Stoer [28] appears to be the first to have given a reliable computation of this type
of generalized QR-factorization for two matrices (see [14]). Computational methods
for producing the two types of generalized QR factorizations for two matrices, as de-
scribed above, have appeared regularly in the literature as (intermediate) steps in the
solution of some problems. In this paper, we derive a constructive proof of generaliza-
tions of the QRD for any number of matrices. As we see below, our generalized QRDs
can also be considered the appropriate generalization of the URVD of a matrix.

4. Generalized singular value decompositions. In this section, we present a
general theorem that can be considered the appropriate generalization for any number
of matrices of the SVD of one matrix. It contains the existing generalizations of the
SVD for two matrices (i.e., the PSVD and the QSVD) and three matrices (i.e., the
RSVD) as special cases. A constructive proof can be found in [9].

THEOREM 4.1 (generalized singular value decompositions for k matrices). Con-
sider a set of k matrices with compatible dimensions: A1 (no nl),A2 (nl n2),...,
Ak-1 (nk-2 nk-1),Ak (nk-1 nk). Then there exist

--Unitary matrices UI (no no) and Vk (nk nk).
--Matrices Dj, j 1, 2,..., (k 1) of the form

nj_ nj

where

(6)

(7)

rj_ rj
2

rj
2 2

rj_ rj
rj

J
rj

J
nj-1 rj-1 rj

2 3 J
nj -rj

[
rj rj rj rj
I 0 0 0 0
0 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 I 0 0
0 0 0

0 I 0

0 0 0 0

ro O,

A matrix Sk of the form

rk
rk- rkr

2r_l rk
rk

J
rank(Aj).rj E rj

i=1

kr r r rk nk rk

o o o o
0 0 0 0 0
0 S 0 0 0
0 0 0 0 0
0 0 S 0 0
0 0 0

nk-l rk-l rk \ 0 0
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where

(8) rk Er rank(A)
i--1

and the rk rk matrices S are diagonal with positive diagonal elements. Expressions
for the integers rj are given in 6 a

Nonsingular matrices Xj (n n) and Zi, j 1, 2,..., (k- 1) where Z is
either Zj X* or Z Xi (i.e., both choices are always possible), such that the
given matrices can be factorized as

A1 U1D1X1,
A2 ZID2X1,
A3- Z2D3X1,

Ai- Zi-IDiX-1,

Ak Zk- SkV;

Observe that the matrices Dj in (5) and Sk in (7) are generally not diagonal.
Their only nonzero blocks, however, are diagonal block matrices. We propose to label
them as quasi-diagonal matrices. The matrices Dj, j 1,..., k- 1 are quasi-diagonal,
their only nonzero blocks being identity matrices. The matrix Sk is quasi-diagonal
and its nonzero blocks are diagonal matrices with positive diagonal elements. Observe
that we always take the last factor in every factorization as the inverse of a nonsingular
matrix, which is only a matter of convention (another convention would result in a
modified definition of the matrices Zi). As for the name of a certain GSVD, we
propose to adopt the following convention (see also [9]).

DEFINITION 4.2 (the nomenclature for GSVDs). If k 1 in Theorem 4.1, then
the corresponding factorization of the matrix A1 will be called the (ordinary) singular
value decomposition. If for a matrix pair Ai, Ai+l, 1 <_ _< k- 1 in Theorem 4.1,
we have Zi Xi, then the factorization of the pair is said to be of P type. If, on
the other hand, for a matrix pair Ai, Ai+I, 1 <_ _< k- 1 in Theorem 4.1, we have
Zi X-*, then the factorization of the pair is said to be of Q type. The name of a
GSVD of the matrices Ai, 1, 2,... k > 1 as in Theorem 4.1, is then obtained by
simply enumerating the different factorization types.

Let us give some examples.
Example. Consider two matrices A (no n) and A2 (n n2). Then, we have

two possible GSVDs"

A1
P type Q type

U1D1X UID1X
XS:V X*S:V;

The P-type factorization is called the PSVD (see [8] and references therein), while
the Q-type factorization is called the QSVD.

In [9], these block dimensions follow from the constructive proof.
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Example. Let us write a PQQP-SVD for five matrices"

A1 U1DIX1,
A2 XID2Xf1,
A3 Xf*D3X1,
A4 Xf D4X1,
A X4SV.

We also introduce a notation using powers that symbolize a certain repetition of
a letter or of a sequence of letters:

p3Q2-SVD PPPQQ-SVD,
(PQ)2Q3(PPQ)2-SVD PQPQQQQPPQPPQ-SVD.

Despite the fact that there are 2k-1 different sequences of letters P and Q at level
k > 1, not all of these sequences correspond to different GSVDs. The reason for this
is that, for instance, the QP-SVD of (A1, A2, A3) can be obtained from the PQ-SVD
of ((A3) *, (A2) *, (A1)*). Similarly, the P2(Qp)3-SVD of (A1,... ,A9) is essentially the
same as the (PQ)3p2-SVD of ((A9)*,..., (A1)*). The number of different factoriza-

(2k-1 2k/2 (2k-1 (ktions for k matrices is, in fact, / for k even and / :2 -1)/2) for
k odd.

A possible way to visualize Theorem 4.1 is to build a tree with all different fac-
torizations for 1, 2, 3, etc matrices as follows:

O
P Q

p2 pQ Q2
p3 pQ pQp pQ QpQ Q3

5. Generalized URVDs. In this section, we derive a generalization for several
matrices, of the URVD of one matrix. We proceed in several stages. First, we show
how k matrices can be reduced to block tria.ngular matrices using unitary transfor-
mations only. Next, we show how the block triangular factors can be triangularized
further to triangular factors.

THEOREM 5.1 Given k complex matrices AI (no hi), A2 (hi n2), Ak
(nk-1 nk), there always exist unitary matrices Qo, Q1,..., Qk such that

where Ti is a block lower triangular or block upper triangular matrix (both cases are
always possible) with the following structures:

--Lower block triangular (denoted by a superscript l)

(9) T/t

2 i--1 r+lri ri r ri
ri_ Ti,1 0 0 0 0
2

ri_ * Ti,2 0 0 0

r_ T, 0
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--Upper block triangular (denoted by a superscript u)"

(10) T/u

2 i-1 r+lri ri r ri
ri-1 * 0
2 Ti,2 * * 0ri_

0 0 T, 0ri_

where Ti,j j 1,..., are full column rank matrices and each represents a nonzero
block. The block dimensions coincide with those of Theorem 4.1. In particular,

r no,

r+1 nullity(Ai) ni ri,

and

E j rank(A)r r
j--1

ri_ hi-1.
j=l

Our proof of Theorem 5.1 is inductive: We obtain the required factorization of
Ai from that of Ai-1.

Proof. The induction is initialized for 1 as follows. First, take the case where
T1 is to be lower block triangular. Use a unitary column compression matrix Q1 to
reduce the matrix A to

where

and

T=AIQ=r (TI,1 0),

r rank(T1,1) rank(A),
rl
2 nullity(A1) n rl,

r o.

The case where T1 is required to be upper block triangular is similar:

T* AIQ1 =r (T1,1 0 ).
Observe that we have taken Qo Ino.

Now, we can start our induction. Assume that we have the required factorization
for the first i- 1 matrices

=QoAQ,

Ti-1 Qi*_2Ai-l Qi-1,
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where the matrices Tj,j 1,... ,i- 1 have the block structure as in Theorem 5.1.
We now want to find a unitary matrix Qi such that Ti Q_IAQi is either lower
or upper block triangular. First, consider the case where Ti is to be lower block
triangular. The matrix Q-IA can be partitioned according to the dimensions of the
block columns of T_I as

(11)

ni

ri_
2r ,

Q_ n
ri_

It is always possible to construct a unitary matrix Q to compress the columns of each
of the block rows to the left as

(12)

1-1 /andwhere the subblocks Ti,j are of full column rank, denoted by r,r+1 nullity(A). Hereto, we first compress the first block row of (11) to the left
with unitary column transformations applied to the full matrix. Then we proceed with
the second block row in the deflated matrix (i.e., without modifying the previous block
column). By repeating this procedure times, we find the required form (12).

Obviously,

1_< l-l, i.(13) r ri_l,

The construction of Ti when it is required to be upper block triangular is similar.
Construct a unitary matrix Q that compresses the columns of the block rows of
Q-IAi to the right. The only difference is that we now start from the bottom to find
that

(14)

r+l 2
ri /’i ri

0 Til *ri-1
2 0 0 T2 *

T Q_IAiQi
ri-1

0 0 Ti,il’i-

We can now apply an additional (block) column permutation to the right of the matrix

T/ so as to find the matrix of (10). This completes the proof.
We now demonstrate that the matrices T,j can always be further reduced to

triangular form using unitary transformations into
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in the case when Ti is lower block triangular. Here, R,j is a lower triangular matrix
Similarly, we can always reduce Ti,j to

in the case where Ti is upper block triangular. Here R. is an upper triangular matrix3
In order to demonstrate this, we need the following result.

LEMMA 5.2. Let PI,..., Pk be k given complex matrices where Pi has dimensions
pi-1 pi, pi-1 >_ pi and rank(Pi) pi. Then there always exist unitary matrices
Q0, Q1,...,Qk such that

i--1

where Ri is either of the form

(15)

Pi

Ri-Pi-l-pi ( 0)piR
with R a lower triangular matrix, or

(16) R- pi

p- pi

Pi

with R upper triangular. For every 1,...,k, both choices, (15) and (16), are
always possible.

Proof. Again, the proof is by induction, but now for decreasing index i. For the
initialization, start with k and obtain a QR-decomposition of Pk with either an
upper or a lower triangular factor as required. This defines the unitary matrix Qk-.
We take Qk Ipk. Hence, we find

--Lower triangular:

(0)
--Upper triangular:

Pk lk-lRk Qk-1

We can now start the. induction for k 1, k 2,..., 1. Therefore, assume that
we have the required factorizations for the matrices Pk, Pk-1,..-, Pi+"

Rk (*k_ Pk k

Rk-1 l*k_2Pk- lk-1,

Ri+ (Pi+ (i+1"
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Then, if Ri is to be lower triangular, obtain a QR-decomposition of the product PiQi
as

(o)PiQi Qi-lRi Qi-1 R
so that

R Q-IPQ"

If Ri is required to be upper triangular, obtain a QR-decomposition as

PiQi Qi-IRi Qi-1

so that

R Q-IPQi.

This completes the construction.
We now repeatedly apply Lemma 5.2 on the full rank blocks in the matrices Ti

in (9) and (10). First, we apply Lemma 5.2 to the sequence of k subblocks

Next, we apply it to the sequence of the k 1 subblocks

In general, we apply Lemma 5.2 k times to the k sequences of subblocks

Tj,j,Tj+I,j,...,Tk,j for j 1,...,k.

In applying Lemma 5.2 to the jth of these sequences, we can find a sequence of unitary
matrices QJ] QJ] [J] and matrices Ri,j such thatUdk-j+l

Ti,j o[J] Ri,j’i-j+li-j i=j,...,k,

where

or

We now define the unitary matrices (i for 0,..., k, which are block diagonal with
blocks

(i- diag(Qll], Q2_] 1, Qi] ’00[i-t-1] )’ 0,...,k,
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with

Qk+l] I.

Next we define

Qi_ TiOi, i=O,...,k.

Then, it can be verified that for the lower triangular case we obtain

2 r+lr r r

ri_l ,1 0 0 0
2 Ri,2 0 0I’i_

ri_l * * Ri,i 0

and for the upper triangular case we find that

(18)

i--1 r+lr r r

ri_l ,1 * * 0
9. R,9. 0ri_

0 0 R, 0ri_

If we now combine (9)-(17) and (10)-(18), we obtain a combined factorization of the
form

Hence, we have proved the following theorem.
THEOREM 5.3 (generalized URVDs). Given k complex matrices A1 (no x nl), A2

(n, x n9), Ak (nk- x nk), there always exist unitary matrices Qo,Q,...,Qk
such that

where is a lower triangular or upper triangular matrix (both cases are always
possible) with the following structures:

--Lower triangular (denoted by a superscript l)"

where

2 r+lr r r

11 Ri,1 0 0 0
2

,li ri-1 * Ri,2 0 0

ri_l * * Ri,i 0
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and R,j is a square nonsingular lower triangular matrix.
--Upper triangular (denoted by a superscript u)"

i--1 ri+lr r r

ri_l ,1 * * 0
2 Ri,2 0ri_

0 0 Ri,i 0ri_

where

and R is a square nonsingular upper triangular matrix. The block dimensions co-
incide with those of Theorem 4.1.

As for the nomenclature of these generalized URVDs, we propose the following
definition.

DEFINITION 5.4 (nomenclature for generalized URV). The name of a generalized
URVD of k matrices of compatible dimensions is generated by enumerating the letters
L (for lower) and U (for upper), according to the lower or upper triangularity of the
matrices T, 1,..., k in the decomposition of Theorem 5.3.

For k matrices, there are 2k different sequences with two letters. For instance, for
k 3, there are eight generalized URVD (LLL, LLU, LUL, LUU, ULL, ULU, UUL,
VVV).

Remarks. The decompositions in Theorems 5.1 and 5.3 both use column and
row compressions of a matrix as a cornerstone for the rank determination of the
individual blocks. As already pointed out in 2, the rank determination can be done
via an ordinary SVD (OSVD), but a more economical method uses the QRD as initial
step, since typically the matrices involved here have many more columns than rows
or vice versa. A further alternative would be to replace the OSVD of the triangular
matrix resulting from the initial QRD by a rank-revealing QRD. Since the time of
the initial paper drawing attention to this [5], much progress has been made in this
area, and we only want to stress here that such alternatives can only benefit our
decomposition.

The overall complexity of this GQRD is easily seen to be comparable to that of
performing two QRDs of each matrix A involved. For each A we indeed apply the
left transformation Q-I derived from the previous matrix and then apply a "special"
compression Q of the resulting matrix while respecting its block structure. Both
steps have a complexity comparable to a QRD of a matrix of the same dimensions.
For parallel machines we can check that the "block" algorithms [18] for one-sided
orthogonal transformations such as the QRD can also be applied to the present de-
composition, and that they will yield satisfactory speedups. The main reason for this
is that the two-sided orthogonal transforms applied to each Ai are done separately,
and hence they can essentially be considered one-sided for parallellization purposes.

6. On the structure of the GSVD and the GQRD. In this section, we
first point out how for each GSVD there are two generalized URVDs, and we clarify
the correspondence between the two types of generalized decompositions. Next, we

J in Theorems 4.1 and 5.1give a summary of expressions for the block dimensions r
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in terms of the ranks of the matrices A1,..., Ak and concatenations and products
thereof. These expressions were derived in [10].

Recall the nomenclature for the generalized URVDs (Definition 5.4) and the
GSVDs (Definition 4.2). The relationship between these two definitions is as follows.
A pair of identical letters, i.e., L-L or U-U, that occurs in the factorization of Ai, Ai+l
corresponds to a P-type factorization of the pair. A pair of alternating letters, i.e.,
L-U or U-L, that occurs in the factorization of A, Ai+l corresponds to a Q-type fac-
torization of the pair. As an example, for a PQP-SVD of four matrices, there are
two possible corresponding generalized URVDs, namely an LLUL-decomposition and
a UULU-decomposition. As with the GSVD, we can also introduce the convention to
use powers of (a sequence of) letters. For instance, for a p3Q2-SVD, there are two
GURVs, namely, an LnUL-URV and a U4LU-URV.

j 4 Let us first consider theWe now derive expressions for the block dimensions r.
case of a GSVD that consists only of P-type factorizations. Denote the rank of the
product of the matrices A,A+I,..., Aj with _< j by

ri(i+l)...(j-1)j rank(AA+l Aj_IAj).

THEOREM 6.1 (on the structure of Pk-I-SVD, Lk-URV, and Uk-URV). Con-
sider any of the factorizations above for the matrices A1, A2,..., Ak. Then, the block
dimensions rji that appear in Theorems 4.1, 5.1, and 5.3 are given by:

(19)
(20)

--r(rj 1)(2)...(j),

rj ri(i+l)...(j r(i-1)(i)...(j),

with rj ri if j.
Next, consider the case of a GSVD that only consists of Q-type factorizations.

Denote the rank of the block bidiagonal matrix

(21)

A 0 0 0 0 0

Ai*+l A+e 0 0 0 0
0 Ai*+3 Ai+4 0 0 0
0 0
0 A_3 Aj_2 0
0 0 A_ Aj

(by rili+ll...lj_llj).
THEOREM 6.2 (on the structure of Qk-I-SVD, (LU)k/2-URV (k even), (UL)k/2-

URV (k even), (UL)(k-1)/2U-URV (k odd), and (LU)(k-1)/2L-URV (k odd)). Con-
sider any of the above factorizations for the matrices A1, Ae,..., Ak. Then,

Ifj-iiseven,

2 it}+2 r}+4 j--2 j
ril...Ij ril...Ij-1 -t- (r + rj +... + rj) -t- -t- -t- + rj -t- rj;

Ifj-i is odd,

4 Recall that the subscript refers to the ith matrix, while the superscript j refers to the jth
block in that matrix.
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For the general case, we need a mixture of the two preceding notations for block
bidiagonal matrices, the blocks of which can be products of matrices, such as

(A A. ..A3_1 0 0
(A3 Ai4-1) Ai4 A-I 0

0 A, Aj

where 1 _< io < il < i2 < i3 < < it _< j _< k. Their rank is denoted by

For instance, the rank of the matrix

A2A3 0 0
A? A5A6A7 0
0 (A8A9)* AlO

is represented by r(2)(3)141(5)(6)(7)1(8)(9)l(10).
THEOREM 6.3 (on the structure of a GSVD and a GURV).

r(io)(io+l)...(i-l)li...(i.-1)l...li...j can be derived as follows:
i=1,2,., l+l"1. Calculate the following + 1 integers By,

The rank

2 r}Osj rj -[-rj
2 ro+l rO+2 rlsj + +...+

2. Depending on even or odd there are two cases:
--I even:

t odd:

Observe that Theorems 6.1 and 6.2 are special cases of Theorem 6.3. While
in terms of differencesTheorem 6.1 provides a direct expression of the dimensions rj

of ranks of products, Theorems 6.2 and 6.3 do so only implicitly. This is illustrated
in the following examples.

Example. Let us determine the block dimensions of the quasi-diagonal matrix $4
in a QPP-SVD of the matrices A1, A2, A3, A4 (which are also the block dimensions of
an LUUU- or a ULLL-decomposition). From Theorem 6.2 we find that

From Theorem 6.3, we find that
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and

r(1)1(2)(3)(4 rl + s42,

so that

r42 r11(2)(3)(4 rl.

Finally, since r4 r + r + r4
3 + r44, we find that

r rl + r(2)(3)(4) r11(2)(3)(4).

Observe that this last relation can be interpreted geometrically as the dimension of
the intersection between the row spaces of A1 and A2A3A4:

r41 dim spanrow(A1) + dim spanrow(A2A3A4 dim spanro A2A3A3

Example. Consider the determination of r, r, r53, r, r in a PQ3-SVD of five
matrices A1,A2, A3, A4, A5 with Theorem 6.3, which coincides with the structure of
a UULUL-URV or an LLULU-URV (see Table 1).

TABLE

r415

r2J314[5

r(1)(2)J3J4J5

8 r 4+r +r +r
8 r55
8 =-r5 + r5 + r5

85 r5
1+}_28 r r

82 r3

3 __r485
8 r55

3s --r + r5

These relations can be used to set up a set of equations for the unknowns r, r,
r53, r5, r55, using Theorem 6.3 as

1 1 1 1 1 r r5
0 0 0 0 1 r52 r415 r4
1 1 1 0 1 r53 r3j4j 5 r3] 4
0 0 1 0 1 r54 r2131415 r2J314
0 1 1 0 1 r55 r(1)(2)J3J4J5 r(1)(2)J3J4

the solution of which is

r T314] 5 r3l4 -}- T(1)(2)13[4 r(1)(2)1314]5



1010 BART DE MOOR AND PAUL VAN DOOREN

r r(1)(2)131415 r(1)(2)1314 r2131415 -- r21314,

r r2131415 r21314 r415 + ra,

r54 r5 r31415 - r314,

r55 r415 r4.

7. A further block diagonalization of the GQRD. In this section, we note
that a further block diagonalization of a GQRD can be interpreted as a preliminary
step towards the corresponding GSVD. We proceed in two stages. First, we observe
that each upper or lower triangular matrix in the generalized URVD of Theorem
5.3 can be block diagonalized. Next, we show how these block diagonalizations can
be propagated backward through the GQRD. The first step is the factorization of
the upper and lower triangular matrices Ti of Theorem 5.3 into an upper or lower
triangular matrix and a block diagonal matrix. For lower triangular matrices i /,
we can obtain a factorization of the form

where
2 i--1

ri_l ri_l ri_ ri_l

I 0 0 0ri_
2

ri_ * I 0 0

?i-1 * * * I

2 r+l/’i /’i

ri_l ,1 0 0 0
2 Ri 2 0 0

0 0 Ri,i 0i--

Since the diagonal blocks Ri,j are of full column rank, such a factorization is al-
ways possible. In a similar way, for upper iangular matrices i /u, we find a
factorization of the form

with Ui an upper triangular block matrix with identity matrices on the block diagonal:
2 i--1

ri--1 i--1 ri--1 i--1
Iri_

2 0 Iri_

0 0 0 Iri_

2 r+lri ?i l’i

ri-1 ,1 0 0 0
Ri,2 0 0

r_ 0 0 Ri,i 0
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Now suppose that we have done this for all matrices i, 1,..., k in a GQRD
of Theorem 5.3. We show how we can propagate a further block diagonalization
backward through the GQRD, in a way that is completely consistent with the corre-
sponding GSVD of Theorem 4.1. To simplify the notation, we simply replace Ti by
Ti and Di by D in the following.

First, assume that Tk is lower block triangular. It then follows from the previous
section that we can factorize Tk as

Tk LD.
Depending on whether T-I is upper or lower triangular, we have two cases"

.T-I T_ lower triangular. In this case, the product Tk_ILk is lower trian-
gular as well, and we can obtain a similar decomposition

Tkt-lLa La_Da_,

where La_ is again lower triangular and D_ has the same diagonal blocks Ri, as

Tk-1 Tkl upper triangular. In this case, the product T%L* is upper
triangular, and we can obtain a factorization

-Uk-lDkT_IL;*
where U-I is upper triangular and Dk-1 has the same diagonal blocks R,y as Tkl.

It is easily verified that when Tk is upper triangular, similar conclusions can be
obtained.

In generM, let T be lower triangular and assume that it is factorized as

T LDZ.
Assume that T_ is lower triangular. Then T-I can be fctored as

T_ L_D_L1.

If T_ is upper triangular, it can be factored as

TiL U_ D_1Li,

where U-I is upper triangular. The cases with T upper triangular are similar. Table
2 summarizes all possibilities.

Ti Lower triangular
Ti LiDZ
T Upper triangular

T UiDZ

TABLE 2

Ti- Lower triangular
Ti-1 Upper triangular

Ti-1 Lower triangular
Ti_ Upper triangular

Ti-1 Li-1 Di-1U
Ti-i Vi-1 Di_U-1

Example. Let us apply this result to a sequence of four matrices A1,A2,A3,A4
with compatible dimensions. If the required sequence is ULUU, then

A1 QoTQ* Qo(UD1L:)Q (QoU1)DI(QIL2)*
A: QIT2Q QI(L:DU)Q (QIL2)D2(Q2Ua)*,
A3 Q2TQ Q2(U3D3ui)Q (Q2U3)D3(Q3U4) -1

A4 Q3TQ Q3(U4D4)Q* *.4 (Q3U4)D4Q4
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Note that U1 Ino. This follows immediately from the block structure of U for 1.
Observe that the relationships between the common factors in the left-hand side of
these expressions conform with the requirements for a QQP-SVD. Only the middle
factors D, 1, 2, 3, 4 are not quasi-diagonal.

8. Conclusions. In this paper, a constructive proof was given of a multimatrix
generalization of the concept of rank factorization. The connection of this new de-
composition with the analogous GSVD was also shown. The block structure of both
generalizations and the ranks of the individual diagonal blocks in both decompositions
were indeed shown to be identical. As is shown in a forthcoming paper, the spaces
spanned by certain block columns of the orthogonal transformation matrices Q are,
in fact, identical to those of the GSVD. The difference lies only in a particular choice
of basis vectors for these spaces. The consequences of these connections are still under
investigation. We mention the following results here:

Updating the above decomposition to yield the GSVD requires nonorthogonal
transformation. These updating transformations can be chosen block triangular with
diagonal block sizes compatible with the index sets derived in Theorem 4.1.

A modified orthogonal decomposition can be defined where the compound
matrix is not triangularized but diagonalized. This new factorization is a variant of
the above decomposition where now a special coordinate system is chosen for each
of the individual orthogonal transformations Q. The result is an orthogonal decom-
position of the type of Theorem 5.3 where now the generalized singular values can
be extracted from the diagonal elements of some triangular blocks. The orthogo-
hal updating needed to obtain this new decomposition can be done with techniques
described in [2].

A geometric interpretation can be given of the bases obtained from the trans-
formation matrices Q in Theorem 5.1. As particular examples of these spaces we
retrieve the following well-known concepts.
(a) For the case A (A-I) the GQRD in fact reconstructs the nested null spaces

of the matrices (A aI), which reveal the Jordan structure of the matrix A at
the eigenvalue a (see also the example in 2).

(b) For the cases A2 (A-aB) and A2+1 B the decomposition reconstructs the
nested null spaces of the sequences [B-.I(A aB)] and [(A aB)B-1], which
reveal the Kronecker structure of the pencil AB- A at the generalized eigenvalue
c (see [30] and [31]).

(c) For the cases A D and A C. A-. B,i 1,..., the decomposition
reconstructs the invertibility subspaces of the discrete time system

Xk+l Axk + Buk,

Yk Cxk + Duk.

These are in fact also the spaces constructed by the structure algorithm of Sil-
verman [29], and they play a role in several key problems of geometrical systems
theory [34].
Other applications of GSVDs have been described in [7], [8], [11], [13], and [35],

while applications of the generalized QR-decompositions are described in [25] and
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