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Abstract. In this paper, we provide a state-of-the-art survey of a recently discovered set of generalizations of the ordinary 
singular value decomposition, which contains all existing generalizations for 2 matrices (such as the product SVD and the 
quotient SVD) and for 3 matrices (such as the restricted SVD), as special cases. We present the main theorem and a discussion 
on the structural properties of these generalized singular value decompositions. A proposal for a standardized nomenclature 
is made as well. At the same time, we summarize some recent results on a corresponding generalization for any number of 
matrices of the QR (or URV) decomposition. 

Zusammenfassung. In dieser Arbeit wird eine Ubersicht fiber kiirzlich entdeckte Verallgemeinerungen der gewrhnlichen Singu- 
larwertzerlegung (SVD) gegeben, die alle vorhandenen Verallgemeinerungen f~ir zwei Matrizen (wie die Produkt SVD und die 
Quotienten SVD) und f/ir drei Matrizen (wie die eingeschr/inkte SVD) als Spezialf/ille enth/ilt. Wir geben den Hauptsatz an 
und eine Diskussion der strukturellen Eigenschaften dieser verallgemeinerten SVD. Ein Vorschlag fiir eine standardisierte 
Bezeichnungsweise wird ebenfalls gemacht. Gleichzeitig fassen wir einige neue Ergebnisse entsprechender Verallgemeinerungen 
auf eine beliebige Anzahl von Matrizen der QR (oder URV) Zerlegung zusammen. 

Rrsumr. Nous faisons dans cet article le point sur un ensemble rrcemment drcouvert de grn6ralisations de la drcomposition 
en valeurs singulirres (SVD) ordinaire, ensemble contenant toutes les grnrralisations existantes ~t deux matrices (telle que la 
SVD produit et la SVD quotient) et h trois matrices (telle que la SVD restreinte) comme cas particuliers. Nous prrsentons le 
throrrme central et une discussion sur les propribtrs structurales de ces drcompositions eu valeurs singulirres grnrralisres. 
Nous raisons 6galement une proposition de nomenclature standardisre. Dans le m~me temps nous rrsumons certains rrsultats 
rrcents concernant une gbnrralisation correspondante pour la drcomposition QR (ou URV) d'un nombre arbitraire de matrices. 

Keywords. Ordinary, product, quotient, restricted singular value decomposition, QR decomposition, URV decomposition, 
complete orthogonal factorization. 

1. Introduction 

A complete orthogonal factorization of  an m x n 
matrix A is any factorization of the form 

A = U  0 

* Part of this research was supported by the Belgian Program 
on lnteruniversity Attraction Poles initiated by the Belgian 
State Science Policy Programming (Prime Minister's Office) and 
the European Community Research Program ESPRIT, Basic 
Research Action nr.3280. 

where T is ro × ra square nonsingular and ra = 

rank(A). One particular case is the singular value 
decomposition (SVD), which has become an 
important tool in the analysis and numerical solu- 
tion of numerous problems, especially since the 
development of numerically robust algorithms by 
Gene Golub and his coworkers [3, 18, 19]. The 
SVD is a complete orthogonal factorization where 
the matrix T is diagonal with positive diagonal ele- 
ments, which are the singular values. In applica- 
tions where m>>n,  it is often a good idea to use 
the QR-decomposition (QRD) of the matrix as a 
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preliminary step in the computation of its SVD. 
The SVD of A is obtained via the SVD of its triang- 
ular factor as 

A = Q R  = Q( UrY, r v * )  = (Q ur)z , ,  v * .  

This idea of combining the QRD and the SVD of 
the triangular matrix, in order to compute the SVD 
of the full matrix, is mentioned in [21, p. 119] and 
was more fully analyzed in [5]. In [20] the method 
is referred to as R-bidiagonalization. Its flop count 
is mn 2 + n 3 as compared to 2mn 2 - 2 / 3 n  3 for a bidi- 
agonalization of the full matrix. Hence, whenever 
m>~5/3n,  it is more advantageous to use the 
R-bidiagonalization algorithm. 

There exist still other complete orthogonal fac- 
torizations of the form (1) where T is required to 
be triangular (upper or lower) (see e.g. [20]). Such 
a factorization has been called an URV-decompos- 
iton in [31]. Here 

w i t h  U e C  m x m, VE c n  × n a r e  unitary m a t r i c e s  a n d  

R e C  r°×r° is square nonsingular upper triangular. 
The ordinary singular value decomposition 

(OSVD) has become an important tool in the 
analysis and numerical solution of numerous prob- 
lems (see e.g. [7, 20, 34] for properties and applica- 
tions.) Not only does it allow for an elegant 
problem formulation, but at the same time it pro- 
vides geometrical and algebraic insight together 
with an immediate numerically robust implementa- 
tion [20]. In [24, p. 78], credit for the first proofs 
of the OSVD is given to Beltrami [2], Jordan [23], 
Sylvester [33] and Autonne [1]. 

In the last decade or so, several generalizations 
for the SVD have been derived. The motivation is 
basically the necessity to avoid the explicit forma- 
tion of products and matrix quotients in the com- 
putation of the SVD of products and quotients 
of matrices. Let A and B be nonsingular square 
matrices and assume that we need the SVD of 
Signal Processing 

A B - *  = U S V * .  ~ It is well known that the explicit 
calculation of B-  J followed by the computation of 
the product may result in loss of numerical preci- 
sion (digit cancellation), even before any factoriza- 
tion is attempted! The reason is the finite machine 
precision of any calculator (see the numerical 
examples in Section 5). Therefore, it seems more 
appropriate to come up with an implicit combined 
factorization of A and B separately, such as 

A =  U D j X  - l ,  B = X - * D 2 V * ,  (2) 

where U and V are unitary and X nonsingular. The 
matrices D~ and D2 are real but 'sparse' (quasi- 

diagonal as we will call them), and the product 
D1D ~-v is diagonal with positive diagonal elements. 
Then we find 

A B -  * = UD1X - 1 X D 2  x V* = U ( D I D 2  T) V*. 

A factorization as in (2) is always possible for two 
square non-singular matrices. As a matter of fact, 
it is always possible for two matrices A ~ C m×" and 
B ~ C  n×p (as long as the number of columns of A 
is the same as the number of rows of B, which 
we will refer to as a compatibility condition). In 
general, the matrices A and B may even be rank 
deficient. The combined factorization (2) is called 
the quotient singular value decomposition (QSVD) 
and was first suggested in [37] and refined in [28] 
(originally it was called the generalized SVD but 
we have suggested a standardized nomenclature in 
[10]). 

A similar idea might be exploited for the SVD 
of the product of two matrices A B =  U S V * ,  via 
the so-called product singular value decomposition 
(PSVD) : 

A = UD1X -1, B = X D 2 V * ,  (3) 

so that 

A B  = U(D1D2) V*,  

which is an SVD of AB.  The combined factoriza- 
tion (3) was proposed in [16] as a formalization of 

The notation B-*  refers to the complex conjugate trans- 
pose of the inverse of the matrix B. 
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ideas in [22]. In the general case, for two compat- 
ible matrices A and B (that may be rank deficient), 
the PSVD as in (3) always exists and provides the 
SVD of A B without the explicit construction of the 
product. Similarly, if A and B are compatible, the 
QSVD always exists. However, it does not always 
deliver the SVD of A B  t when B is rank deficient 
(B t is the pseudo-inverse of B). 

Another generalization, this time for three matri- 
ces, is the restricted singular value decomposition 
(RSVD). It was proposed in [39] while numerous 
applications are reviewed in [ 11 ]. Soon after this it 
was found that all of these generalized SVDs for 
two or three matrices are special cases of a general 
theorem, presented in [14]. The main result is that 
there exist generalized singular value decomposi- 
tions (GSVD) for any number of matrices 
A l, A2 . . . . .  Ak of compatible dimensions. The 
general structure of these GSVDs is further ana- 
lysed in [9]. The dimensions of the blocks that 
occur in any GSVD can be expressed as ranks of 
the matrices involved and certain products and 
concatenations of these. We will present a sum- 
mary of the results below. 

As for generalizations of the QRD, it is mainly 
Paige in [27] who pointed out the importance of 
generalized QRDs for two matrices as a basic con- 
ceptual and mathematical tool. The motivation is 
that in some applications one needs the QRD of a 
product of two matrices A B  where AEI~ "×n and 
BE ~n ×p. For general matrices A and B such a com- 
putation avoids forming the product explicitly and 
transforms A and B separately to obtain the desired 
results. Paige [27] refers to such a factorization 
as a product QR factorization. Similarly, in some 
applications one needs the QR-factorization of 
A B -  ~ where B is square and nonsingular. A general 
numerically robust algorithm would not compute 
the inverse of B nor the product explicitly, but 
would transform A and B separately. Paige in [27] 
proposed to call such a combined decomposition 
of two matrices a generalized QR factorization, 
following [16]. We propose here to reserve the 
name generalized QRD for the complete set of gen- 
eralizations of the QR-decompositions, which will 
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be developed in this paper. We will also propose a 
novel nomenclature in a similar way as we have 
done for the generalizations of the SVD in [10]. 

Stoer [30] appears to be the first to have given a 
reliable computation of this type of generalized 
QR-factorization for two matrices (see [17]). Com- 
putational methods for producing the two types of 
generalized QR-factorizations for two matrices as 
described above, have appeared regularly in the 
literature as (intermediate) steps in the solution of 
some problems. A constructive proof of generaliza- 
tions of the QRD for any number of matrices can 
be found in [13]. As we will see below, our gen- 
eralized QRDs can also be considered as the appro- 
priate generalization of the URV-decomposition of 
a matrix. 

This paper is organized as follows. In Section 2, 
we present the main theorem for generalized singu- 
lar value decompositions, while the corresponding 
generalized QR decompositions are explored in 
Section 3. The structural properties are summar- 
ized in Section 4, while in Section 5 we discuss the 
potential numerical advantages of the GSVDs with 
some small examples. We also give a brief survey 
of possible applications. 

2. A tree of generalizations of the OSVD 

In this section, we present a general theorem 
which can be considered as the appropriate gen- 
eralization for any number of matrices of the SVD 
of one matrix. It contains the existing generaliza- 
tions of the SVD for two (i.e. the PSVD and the 
QSVD) and three matrices (i.e. the RSVD) as spe- 
cial cases. A constructive proof can be found in 
[141. 

T H E O R E M  1. Generalized Singular Value Decom- 

positions f o r  k matrices. Consider a set o f  k matrices 

with compatible dimensions: Al(no x nl), 

A2(nl x nz) . . . . .  A k - l ( n k - 2  × nk-t), Ak(nk - i  × nk). 

Then there exist  

Unitary matrices Ul(no × no) and Vk(n~ × nk). 

- Matr ices  Dj,  j = 1, 2 . . . . .  k - 1 o f  the f o r m  
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where the integers rj are the rank o f  

A j ,  sat is fying 
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?1 k - -  rk  

0- 

0 

0 

0 
• ( 6 )  

0 

0 

0 

0 

such that the given matrices can be f ac to r i z ed  as 

Ai  = U1D1X ~ -1, 

A2 = Z 1 D z X  i 1, 

.43 = Z 2 D 3 X  3 1, 

Ai  = Z i -  1DiX7  J, 

A k = Z k - I & V  * .  

Observe that the matrices Dj in (4) and Sk in (6) 
are in general not diagonal. Their only non-zero 
blocks however are diagonal block matrices. We 
propose to label them as quasi-diagonal matrices. 
The matrices Dj,  j = l  . . . . .  k - 1  are quasi- 
diagonal, their only nonzero blocks being identity 
matrices. The matrix Sk is quasi-diagonal and its 
nonzero blocks are diagonal matrices with positive 
diagonal elements. Observe that we always take the 
last factor in every factorization as the inverse of 
a nonsingular matrix, which is only a matter of 
convention (another convention would result in a 
modified definition of the matrices Z~). As to the 
name of  a certain GSVD, we propose to adopt the 
following convention. 

D E F I N I T I O N  1. The nomenclature f o r  G S V D s .  If  
k = 1 in Theorem 1, then the corresponding factori- 
zation of the matrix A1 will be called the ordinary 
singular value decomposition. 

If for a matrix pair Ai, Ai+l, l<~i<~k-1 in 
Theorem 1, we have that 

The rik × rik matrices S~ are diagonal  with pos i t ive  

diagonal elements.  Expressions  f o r  the integers 

r j are given in Sect ion 3. They  are ranks o f  certain 

matrices  in the construct ive p r o o f  o f  this Theorem 

[14].  

- Nonsingular matrices  X j ( n j x n j )  and Z j ,  j =  

1, 2 . . . . .  k - 1  where Z j  is either Z j = X j *  or 

either Z j = X j  (i.e. both choices are always 

possible),  

Z i ~ - . X i  ~ 
a 

then the factorization of  the pair will be said to be 
of P-type. 

If  on the other hand, for a matrix pair Ai, Ai+j, 
1 <~i<~k-1  in Theorem 1, we have that 

Z i = X 7  *, 

the factorization of the pair will be said to be of  
Q-type. 

Signa l  P roces s ing  
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The name of  a GSVD of  the matrices Ai, i=  
1, 2 . . . . .  k > 1 as in Theorem 1 is then obtained 
by simply enumerating the different factorization 
types. 

Let us give some examples. 

E X A M P L E  1. Consider two matrices AI (no × nl) 
and A2 (n~ ×n2). Then, we have two possible 
GSVDs : 

A I  

A2 

P-type Q-type 

U t D j X (  1 UIDIX~ -1 

Xi $2 V~ X ;- *$2 V* " 

The P-type factorization corresponds to the PSVD 
as in [16] (called I-ISVD there) and [8, 10], while 
the Q-type factorization is nothing else than the 
QSVD in [20, 28, 37] (called generalized SVD 
there). This justifies the choice of  names for the 
factorization of pairs: A P-type factorization is 
precisely the kind of transformation that occurs in 
the PSVD while a Q-type factorization occurs in 
the QSVD. 

We also introduce the following notation, using 
powers, which symbolize a certain repetition of  a 
letter or of a sequence of  letters: 

p 3Q Z_SVD = pppQQ_SVD, 
(pQ)2Q3(ppQ)2 SVD = PQPQQQQPPQPPQ 

SVD. 
Despite the fact that there are 2 k- ~ different 

sequences of letters P and Q at level k > 1, not all 
of  these sequences correspond to different GSVDs. 
The reason for this is that for instance the 
QP-SVD of (A 1, A 2, A 3) can be obtained from the 
PQ-SVD of  ((A3) *, (A2) *, (AI)*). Similarly, the 
Pz(QP)3-SVD of (A I . . . . .  A 9) is essentially the 
same as the (PQ)3p2-SVD of ((A9) * . . . . .  (A J)*). 

The following table gives the number of different 
factorizations for k matrices. 

k even k odd 

number of 
different ~(2k-1+2 k/z) ~(2 k J+2 ~k-I)/2) 

GSVDs 

E X A M P L E  2. The RSVD for three matrices 
(A i, A2, A3) as introduced and analyzed in [1 l, 39] 
has the form 

A1 = UISIX1-1, 

A 2 = X ( * S 2 X y  1, 

A 3 = X 2 * S 3 V ~ ,  

where $1, S:, $3 are certain quasi-diagonal matri- 
ces. It can be verified that this RSVD can be rear- 
ranged into a QQ-SVD that is conform with the 
structure of Theorem 1. 

E X A M P L E  3. Let us write down the PQQP-SVD 
for 5 matrices: 

A I = U1D1X ; -1, 

A z = X 1 D 2 X 2  l, 

A 3 = X ~ * D 3 X 3  l, 

A 4 = X 3 * D 4 X 4  l, 

A 5 = X4S5 V*.  

Finally, we shall spend some words on the proof  
of the main Theorem, a detailed exposition of 
which can be found in [14]. It is based on two basic 
ideas: First, there is an inductive argument which 
allows us to construct the GSVD of k matrices 
At . . . .  , Ak from a corresponding one for k - 1  
matrices A~ . . . . .  Ak 1. A key result here is a cer- 
tain block factorization lemma for partitioned 
matrices. Next, the already obtained GSVD of  the 
k - 1  matrices A~ . . . . .  Ak ~ has to be modified 
according to a certain algorithm, which we have 
called the ripple-through-phenomenon in [14]. For  
all details of  the constructive proof, the interested 
reader is referred to [14]. 

3. Generalized QR (URV) decompositions 

In [13], we have derived the following general- 
ization of  the QR-decomposition for a chain of  
k matrices. 
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T H E O R E M  2. Generalized UR V-decomposi- 
tions. Given k complex matrices Ai (n0×nl), A2 
(nt × n2) . . . . .  Ak (nk- t x nk). There always exist 
unitary matrices Q0, Q~ . . . . .  Qk such that 

L = O*-1AiO,, 

where Ti is a lower triangular or upper triangular 
matrix (both cases are always possible) with the 

following structure: 
- Lower triangular (which will be denoted by a 

superscript l) : 

r] d ' r ?  ' 

• . . .  0 

i 
r i -  i L * " " " Rid  

where 

[o] 
R i j  = / 

• R i . j  

and R~.2 is a square nonsingular lower triangular 
matrix. 

- Upper triangular (which will be denoted by a 
superscript u) : 

rl-i 

r 2 

F~- I 

where 

[01 i , j - -  u 
Ri• j  

r +l . . .  r -I rl 

0 Ri ,  I * " ' "  * ] 

0 0 Ri,2 " " " * 1 ' 

. . . .  R 0 0 o . .  0 i,i 

and RU ,q is a square nonsingular upper triangular 
matrix. 

The block dimensions coincide with those of  
Theorem 1. 

As to the nomenclature of  these generalized URV- 
decompositions, we propose the following 
definition. 

DEFINITION 2. Nomenclature for generalized 
UR V. The name of  a generalized URV-decompo- 
sition of k matrices of compatible dimensions is 
generated by enumerating the letters L (for lower) 
and U (for upper), according to the lower or upper 
triangularity of the matrices T~, i=  1 . . . . .  k in the 
decomposition of  Theorem 2. 

For  k matrices, there are 2 k different sequences 
with two letters. For  instance, for k = 3, there are 
8 generalized URV decompositions (LLL, LLU, 
LUL, LLU, ULL, ULU, UUL, UUU).  

4. On the structure of  the G S V D  and the G Q R D  

In this section, we first point out how for each 
GSVD there are two generalized URV-decomposi- 
tions and we clarify the correspondence between 
the two types of generalized decompositions. Next 
we give a summary of  expressions for the block 
dimensions r~ in Theorem 1 and 2, in terms of the 
ranks of the matrices Al . . . . .  At and concatena- 
tions and products thereof• These expressions were 
derived in [9]. 

Recall the nomenclature for the generalized 
URV-decompositions (Definition 2) and the gen- 
eralized singular value decompositions (Definition 
1). The relation between these two definitions is 
the following: 
- A pair of identical letters, i.e. L -L  or U U that 

occurs in the factorization of 'Ai ,  Ai+~ corre- 
sponds to a P-type factorization of the pair. 
A pair of  alternating letters, i.e. L -U  or U L 
that occurs in the factorization of Ai, Ai+~ corre- 
sponds to a Q-type factorization of the pair. 
As an example, for a PQP SVD of  4 matrices, 

there are two possible corresponding generalized 
URV-decompositions, namely an LLUL-decom- 
position and an UULU-decomposition. As with 
the GSVD, we can also introduce the convention 
to use powers of (a sequence of) letters. For  
instance, for a p3Q2-SVD, there are two GURVs, 
namely an LaUL URV and an U 4LU URV. 

Signal Processing 
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We now derive expressions for the block 
dimensions r~.2 

Let us first consider the case of  a GSVD that 
consists only of P-type factorizations. Denote the 

rank of the product of  the matrices A~, 
A~+l . . . . .  A/with i<~j by 

r i ( i +  i ) . . . ( j - 1 ) j  = rank( AiAi+ t " • " A j -  I A /  ) .  

THEOREM 3. On the structure of the pk - t_SVD" 
the Lk-URVand the Uk-URV. Consider any of the 
factorizations above for the matrices AI , 
A2 . . . . .  Ak. Then, the block dimensions r} that 
appear in Theorems 1 and 2 are given by 

r) = r(,,(2,...(/), (7) 

r}= r,i+ i)...(/)- ru I)u).. (j), (8) 

with rl I = ri if  i =j. 

I f  j -  i odd: 

ril...ij ~- ril . . . i j-  I 

+ (r}+' +r~+3+ . . .  + r~-2+ r~). 

For  the general case, we shall need a mixture of  

the two proceding notations for block bidiagonal 

matrices, the blocks of  which can be products of 
matrices, such as 

" A i o A i o +  l " " " A i , -  i 0 

( A l l ' "  " A i 2 - 1 ) *  A i 2 "  " • A i 3 - 1  

0 (A~,' '  " A~, 1)* 

0 

Next, consider the case of  a GSVD that only 
consists of  Q-type factorizations. Denote the rank 

of the block bidiagonal matrix 

A i  0 0 " ' "  0 

A,*+l A,+2 0 " ' "  0 

0 * A i + 3  A i + 4  • • - 0 

. . . . . . . . . . . .  

0 . . . . . . . . . .  Aj*_ 3 

0 . . . . . . . . .  0 

by r i l i+ l { - . . [ j -  I I j .  

0 0 

0 0 

0 0 
(9) 

• " " 0 

&-2 0 

A*_, & 

° ° " 0 

0 . . .  0 

Ai4 " " " A i s -  I " • • 0 

. . . . . .  A # ' ' '  A 

where l < ~ i o < i l < i 2 < i 3 < ' "  <6<<,j<~k. 
rank will be denoted by 

r ( i o ) . . . ( i l  - i ) l i v . . . ( i 2  - I )1" " l i t ' . . ( j l  • 

For  instance, the rank of  the matrix 

Their 

THEOREM 4. On the structure of the Qk - t_SVD ' 
the (LU)k/2-URV (k even), the (UL)k/2-URV 
(k even), the (UL) (k - ° /2U-URV (k odd) and 
the (LU)(k-I) /2L-URV (k odd). Consider any of 
the above factorizations for the matrices 
AI, A2, . . . ,  Ak. Then 

I f  j -  i even: 

r¢..Li=ril...ij_, + (r) +r} + ' ' '  +r)) 

q - r ~ + 2 - k - r ~ + 4 q -  . . .  + r ~ - 2 + r j ;  

2 Recall that the subscript i refers to the/th matrix, while the 
superscript j refers to the jth block in that matrix. 

I 
A2A3 0 ~ ] 

AO A5A6A7 
(A8A9)* Alo 

, will be represented by 

r ( 2 ) ( 3 ) t 4 1 ( 5 ) ( 6 ) ( 7 ) 1 ( 8 ) ( 9 ) 1 ( 1 0 )  • 

THEOREM 5. On the structure of a GSVD and a 
GURV. The rank r(i0)u0+ 1)...(i,- 1)lil....(i 2- I)I...D.-.4 can 
be derived as follows: 
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1. 

. 

Calcu la te  the f o l l o w i n g  1+1 in tegers  s}, i = 

1,2 . . . . .  1+1 :  

s) = r) + r} + . . . + r} °, 

s2=r~o+l +rif+2 + . . . +r~ t, 

i 

sJ + l = r}, , + l + r ~, , + 2 + . . .  +rj'. 

D e p e n d i n g  on l even  or odd  there  are  two cases:  

I even: 

r i o . . . i  I i l i v . . i 2 - 1 1 . . . l i l . . . j =  r i o . . . i l  - i l i t . . . i 2 - 1 1 . . . l i l  i . . . i l -  i 

+ 4  +'  , 

- l o d d :  

r i o . . . i l  - 1 1 i l . - . i 2 -  l ] . . - ] b - j  = rio...it- 1 l i l - . . i 2 -  l I- . . l i t -  i . i t -  I 

+g+s4+.. .+s '+l. 
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Finally, since r4 = r~ + r 2 + r 3 + r 4, we find 

r I ---- rl + r(2)(3)(4) - r11(2)(3)(4). 

Observe that  this last relation can be interpreted 

geometrically as the dimension of  the intersection 

between the row spaces o f  A 1 and A2A3A4:  

f14 = dim spanrow(A1) + dim spanrow(A2A3A4)  

- d i m  spanrow I A~ ] .  
L(A2A3A4)*J  

Observe that  Theorems 3 and 4 are special cases o f  

Theorem 5. 

While Theorem 3 provides a direct expression of  

the dimensions r} in terms of  differences o f  ranks 

o f  products,  Theorems 4 and 5 do so only implic- 

itly. Let us illustrate this with a couple o f  examples. 

E X A M P L E  4. Let us determine the block dimen- 

sions o f  the quasi-diagonal matrix $4 in a QPP 

SVD of  the matrices A1, A2, A3, A4 (which will 
also be the block dimensions o f  an L U U U  or a 

ULLL-decompos i t ion) .  F r o m  Theorem 5 we find 

4 4 r 4 = r 4 - -  r 3 4 ,  ~-~ r 3 4  - -  r 2 3 4 .  

F r o m  Theorem 5, we find 

and 

1 I 2 2 
S 4 - -  r 4 , $ 4  - -  r 4 

r ( l  ) i ( 2 ) ( 3 ) ( 4 )  = rl + s4 2 , 

so that  

2 
r 4 ~ -  r l t ( 2 ) ( 3 ) ( 4  ) - -  E l  . 
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E X A M P L E  5. Consider  the determination o f  r~, 
r52, r 3, r 4, r~ in a PQ3-SVD o f  5 matrices A1, A2, 

A3, A4, A5 with Theorem 5, which will coincide 

with the structure o f  a U U L U L  U R V  or an 

L L U L U  U R V :  

r415 s~ = r~ + r 2 + r~ + r 4 
2 _ _  5 

S 5  - -  r 5  

r314p5 S~ = r~ + r~ + r~ 
2 _ _  4 

S 5 - -  r 5 

1"2131415 -'['- r 2 

r (1)(2)131415 

1 1 
$ 5  z r 5  

2 _  3 
s 5 - -  r 5 

S 3 = r 4 
4 5 

S 5  = r 5  

s I = 

s =r 4 

s 4 = 4  

These relations can be used to set up a set o f  equa- 
tions for the unknowns  r~, r~, r 3 , r~, r 5 , using Theo- 

rem 5 as 

"1 1 1 1 1 

0 0 0 0 1 

1 1 1 0 1 

0 0 1 0 1 

0 1 1 0 1 

• I t  

r~ I 

r~ I 

r~ I 

r~ I 

r~ I 
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r 5  

r415 - -  r 4  

= r31415 - -  r314 , 

r2131415 - -  r213l 4 

r (  1 )(2)131415 - -  r (  1 )(2)1314 

the solution of which is 

r~  = r31415 - -  r314 "-b r(1)(2)1314 - -  r(i)(2)131415, 

r 2 = r ( i  )(2)131415 - -  r (  i )(2)1314 - -  r2131415 "j- r21314, 

r 3 = r2131415 - -  r21314 - -  r415 + r 4 ,  

.4 r 5  _ r31415 .+_ r314 ,  

r 5 = r 4 1 5  - -  r 4 .  

that matrix multiplication on a finite precision 
machine is not associative: 

fl[fl(A,A2)fl(A3A4)]=[O0 001, 

fl[fl(Alfl(A2A3))A4] =I20  2 2;27. 

The first result has rank 0, the second result has 
rank 1 and the third result has rank 2! The correct 
result would be 

0 AIA2A3A4=[t12(P; +2) +2)1 p2(p2 

5.  A p p l i c a t i o n s  

Most of the problems for which the OSVD, 
PSVD, QSVD, etc. provide an answer, can in prin- 
ciple be solved via a (generalized) eigenvalue prob- 
lem. However, this always requires the explicit 
calculation of products or quotients of matrices, 
which can given raise to severe loss of numerical 
accuracy. Even if the eigenvalue algorithms would 
be numerically robust, it is in most cases the explicit 
formation of matrix products (which consists 
essentially of inner products) that causes loss of 
numerical accuracy. As an example, consider the 
computation of the p3 SVD of 4 matrices AI, A2, 
A 3 ,  A 4 ,  where 

Ii 1] ° 1 0 
0 p ' P 

0 ' 

Assume that p2< e,, <p ,  where em is the machine 
precision. Let fl( ) represent the effect of per- 
forming a calculation on a finite precision machine 
so that fl(1 +p2 )=  1. Then, it is easy to illustrate 

and is of rank 2. Obviously, it is only a direct 
explicit factorization of every matrix separately 
that can preserve the fine numerical details that 
otherwise get irreversibly lost in matrix products. 

For another example, suppose we want to com- 
pute the QSVD of a pair of matrices 

[!!1 I: 1 AI= - A2= p 0 
' 0 p ' 

where p2< e , .<p  and e2< e,.< e. The theoreti- 
cally correct QSVD of this matrix pair is 

A1 = U1DIX11 

I E 
0 

x//1 + e 2 

0 -1  0 

e 1 
0 

x / l + s  2 

I 0 

x 2 4  + c2 
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A 2 : X / TS2 VT 

I 
" 1 

= 2 x / ~ +  o e2  

1 

2V, q + e2 

2 

~ / 4 +  2/2 2 

x 0 

i1-ii 4172 o :l 2x/ + J 

x/4 + 2/z 2 

1 1 

1 1 

xf/z 2+2 

Now, in many applications [12,26,29], one is 
interested in the extrema of the so-called oriented 
signal-to-signal ratio of two vector sequences in the 
direction of a vector x, which is defined as 

Ex[AT, A2] = (xTA~A,x)/(xTA2A~x). (10) 

It is easy to verify that the extremal values of this 
quotient for our example, are given by the inverses 
of the diagonal elements of $2S~: 

min(Ex[A~, A2]) - 4(1 + ~2) 
(4 + 2~t 2), 

2 
max(Ex[AT, A2])=~5' 

If the vector sequence in the matrix AT is consid- 
ered to be signal + noise, and the one in A2 contains 
the noise (disturbances), then it can be verified that 
the 'signal energy' [ 12] in the direction x = [ 1 - 1 ]T 

is 1 while the noise energy i s / ~ / ~ .  On the other 
hand, if we would first calculate explicitly the 
matrix products A'~A1 and A2A~ and optimize (10) 
as a generalized eigenvalue problem of the matrix 
pair (A~AI, A2A'~), then the extremal values of 

xT(fI[ATA I])X/(xT(fl[A2AT])x) 

are 1 and ~ !  In this case, the signal energy in the 
direction x = [1 -1]  "r is 1 while the noise energy is 
0. This would lead to the conclusion that this 
direction is noiseless, while in fact it is not! 

The OSVD is so frequently used in signal pro- 
cessing and systems and control theory that we 
shall not even attempt here to give a complete sur- 
vey of all its applications. The interested reader 
may wish to consult [7, 20, 34] in order to get a 
survey of applications and algorithms. A system 
identification application is treated in [25]. It is 
the dynamic counterpart of solving overdetermined 
sets of linear equations via total linear least squares 
using the OSVD [20]. The use of the QSVD is 
advocated in signal processing applications where 
strong 'desired' signals have to be separated from 
weak 'disturbing' signals. Typically, the frequency 
domain spectra are overlapping which complicates 
the use of frequency domain filtering techniques. 
The concept behind this separation technique is the 
oriented signal-to-signal ratio which coincides with 
the concept of prewhitening if noise covariance 
matrices are known [12]. Typical applications can 
be found in [4, 26, 29, 35]. In [26, 32], QSVD based 
system identification algorithms are explored, 
which give unbiased results as compared to the 
OSVD version, when data are first treated prior to 
identification with some filter, as often happens in 
practice. Applications of the PSVD are mentioned 
in [8, 15, 22], including the computation of the 
Kalman decomposition of a linear system. Typi- 
cally, the PSVD can be invoked whenever so-called 
contragredient transformations are involved as is 
the case in open (observability and controllability 
Lyapunov equations) and closed loop balancing 
(via the filter and control algebraic Riccati equa- 
tion). Applications of the RSVD (=QQ-SVD) are 
treated in [11]. A typical problem concerns the 
minimization of the rank of the matrix A + BDC 
where A, B, C are given matrices, over all possible 
matrices D, such that a unitarily invariant norm of 
D is minimal. The answer is given in terms of the 
QQ-SVD of the matrix triplet (B, A, C). Relation- 
ships with the shorted operator, generalized Schur 
complements, generalized Gauss-Markov estima- 
tion problems and a generalization of total linear 
least squares are also pointed out in [11] (see also 
[36]). It is interesting to note that our QQ-SVD 
can be used to calculate the minimal rank matrix 

Signal Processing 
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in a matrix ball, which is the solution set of a com- 
pletion problem [6]. In [38], it is shown how the 
PP-SVD can increase the numerical robustness of 
the solution of matrix approximation problems of 
the form 

min IIA(B-X)CIIF 2, 
rank(X) = r 

where A, B, C are given rectangular and possibly 
rank deficient matrices and X is to be found. The 
closeness of the approximation is measured by the 
semi-matrix norm with row weighting matrix A 
and column weighting matrix C. In [38] not only 
consistency conditions are derived for the problem 
but it is also shown how a subspace can be found 
using the PP-SVD so that the semi-norm becomes 
a matrix norm. 

Finally, let us conclude by pointing out that 
GSVDs might prove useful in designing robust 
algorithms for the stochastic realization problem, 
a subject which is actually under investigation. 

6. Conclusions 

In this paper, we have stated the generalization 
of two well known matrix factorizations for any 
number of matrices: the singular value and the QR 
decomposition. We have also pointed out an inter- 
esting bijection between the two sets of decomposi- 
tions. For each GSVD there is a GQRD and vice 
versa. This opens interesting perspectives for algo- 
rithms. Despite the fact that the proof in [14] is 
constructive, it is probably not the best algorithm 
to compute a certain GSVD. The constructive 
proof of the GQRD [13] is already more elegant 
and uses the SVD as its basic building block. Just 
as the QR-decomposition can be used as a prepro- 
cessing step in computing the SVD of a matrix 
(especially when it is very 'rectangular', e.g. many 
more columns than rows, as occurs in most signal 
processing applications), a GQRD could be used 
as a preprocessing step in the computation of a 
GSVD. In most applications however, we expect 
that the GQRD alone will be sufficient since it 

contains already the complete structure of the 
corresponding GSVD. 
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