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Abstract

In this paper directional aspects of 2 tranafer ma-
trices relative to one another are studied. It is shown Sa =
that the quotient singular value decomposition is the

appropriate tool for it. It is also shown how the rel- Talb TTE Tekre T rap=re m-rop

ative directional gain can be shown graphically using :"f:__r 'f_r g 3 g g
a signal-to-signal plot, The directions of mazimal and g e T Tale 0 o 0 o .
minimal relative gain can easily be computed using the ¢ :
¢ quotient singular value decomposition, They are nor- Sy =
mally not orthogonal, in contrast with the results for Tale =6 Tatre—tal Tap—Ta m—rgs =
one transfer matriz. p—rs 0 0 o 0 i
. ra+ ry = I'ﬂlg 0 Dg 0 0 3
1 Introduction Talp = Fe 0 0 I 0 ) g

It is well known that directional aspects of one
transfer matrix can be studied using the singular value
decomposition (SVD) (see e.g. ﬁi}, as was shown rank | 4 ).
in e.g. {2]). The term directionality refers to the B

where 7y = rank(4), r = rank(B) and rqy =

fact that multivariable systems possess properties that D, and Dy are diagonal matrices with strictly pos- ;
vary spatially as well as with frequency. In this paper, itive elements smaller than 1. Call the diagonal

directional aspects of multiple input—mul(;iple output elements of S,, X1y ooy Omin(l,m) 80d those of S,

systems relative to one another are studied. Therefore i B . The pairs of real numbers (o, B:

tﬁe quotient singular value decomposition (QSVD), s A, +Paa(pm) P (0, 35,

generalization of the SVD, will be used,

In section 2 the definition and some properties of
the QSVD are stated. In section 3 the concepts of al+pi=1
indicator ellipsoid and oriented energy plot are dis- . P
cussed. It will be shown how the oriented energy plot and order the pairs so that

i=1,.. .,min&l, P, m) are called the quotient singular
value pairs and by convention, we put

allows for a better visualization of the directional gain, a _

In section 4 the oriented signal-to-signal ratio is intro- — = ==>...

duced. It will be shown how it can be computed usin B~ P '
‘he QSVD. In section 5 some applications in contro These ratios will be called the guotient singular val- '
are mentioned and the conclusions are summarized. ues. Observe that when A is singular, some of them L

. . will be 0 and when B is singular, some of them will be

2 The quotient singular value decom- infinite. The quotient singular values {or Q-singular
position values) will be denoted as Ogis where oy is the ith Q-
The QSVD states that any pair of complex matri- singular value, Ti.xe.QSVp used to be called the gen-
ces with the same number of columns, say, A € Cxm eralized SVD. Originally it was formulated by Paige i
and B € CPX™ can be Jjointly factorized as and Saunders gﬂ) and \fan L_oan ([9]) The SVD 18 N
only one member of an infinite set of generalizations o

4 = U,8Xx of the SVD as shown in [4].
B = USXx-! 3  The indicator ellipsoid and oriented
Ixt , energy plot
where U, € C ~and U, ¢ Crxp are unitary, X ¢ In this section the definitions of the indicator ellip-
C™*™ is & nonsingular square matrix and S, e Rixm soid and the oriented energy are stated. They are first
and Sy € RP*™ are matrices with the following struc- illustrated on matrices and subsequently their defini- [
ture: tion is extended to transfer matrices. ‘o
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3.1 The indicator ellipsoid
A complete picture of the action of & matrix 4 ¢

C'*™ is provided by the image under A of the unit
sphere of C™:

Theorem 1
A eCixm [y
Let A € C*™ be of rank r and consider the linear
iransformations y = Az, The domain and codomain
transformations induced by its SVD A = UZTV*,
where B = diag(oy) contains the singular values oy,
arez=V{andy=Un. LetSp={z € C™||lz|| =
1 } denote the unit sphere of C™, et A[Sp,] denote
the image under A of Sm. Then the following proper-
ties hold:

Ifr=Il=m A[Sm] = { y € Ct ! y =
Un, 3 (mfei) =1}

Ifr=l<m A[Sm} = { v € Ct i y =
Un, i (o) <1}

Hr=m<lh AlSm] = { y c C [y =
Un, E:zl(nifdi)z = 1,41 :,,,2,"_—_0}

If r <min{l,m) AlSm] = { ¥ € Cly =
Uy, 2;-:1("1'-‘/0',‘)3 Shn=...=n =0}

The matrix A maps the unit sphere S, of C™ onto
an r-dimensional ellipsoid in R(A) with as principal
axes the left singular vectors u; of U that correspond
to nonzero singular values o; > 0. If A is not of full
column rank, the peints in R]}A) interior to the el-
lipsoid have to be included. If A has full row rank,
the ellipsoid has I principal axes with positive length.
Note that the four cases of the theorem are mutually
exclusive,

Let A € C'*™, z € C™ and y = Az. Then

Indicator ellipsoid of a matrix

maz jap=1 Wl = oy
min o=t Wl = Cminftm)

The Frobenius norm of A is defined as {|4)j% =
i 351 lag]®. It is easy to show that |4l% =
trace(A*A) = trace(AA'). VUsing the fact tha
IUA||r = [|AV]|lr = {|Allr for arbitrary unitary ma-
“trices U and V (i.e. the Frobenius norm is unitarily
invariant), we find from the SVD of A that

A = BV |F = |UUSV* VL = |Bi = o?+.. 402

Summarizing, we have [JAll} = Y .7 =
trace(A* A) = trace(AA*). We have also the following
statistical result, which puts the indicator ellipsoid in
a statistical framework,

Theorem 2

Let € C™ be a random vector, which is indepen-
dently and identically normally distributed with mean
zero and covariance matriz I, Then y = Az is nor-
mally distributed with mean zero and covariance ma-

triz AA* and E{ly{|* = (¢ +... + ¢?)m.
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Figure 1; 500 real random points (normal distribution,
zero mean, covariance Ip) are shown in the left plot.
The unit circle is generated by normalizing these ran-
dom points to have norm one. For each random point
#, we compute y = Az and show the obtained points y
in the right plot. The ellipsoid is obtained by plotting
the image under A of the points on the unit circle,
Observe that its principal axes lie in the direction of
the left singular vectors, with half lenghts equal to the
singular values,

Example: Consider the 2 x 2 matrix A with its SVD:
A—-( 2 -o.aea)_( 0.5 —o.see)(4 o)(
T\ 3.464 0.6 J T\ 0.866 0.6 0 1
Figure 1 and 2 show the indicator ellipsoid of the ma-
trix A. Figure 1 illustrates how random unit vectors
z are mapped on the indicator ellipsoid. The princi-
pal axes are in the direction of the left singular vectors
with halflenghts equal to the singular values. Figure 2
shows how on average the points are more attracted

to the left singular vector corresponding to the largest
singular value,

3.2 Oriented energy of a matrices

The geometrical interpretation of the static transfer
performed by a matrix A can also be shown in another
way. Let z be a unit vector in R™ and y = 4z € R'.
An oriented energy plot can be obtained by plotting

the vector
z VztAt Az

in each direction #z. Such a plot tells us how much

a veclor z will get amplified when the matrix A is

applied to it. The quantity {Mzﬂnis called the ori-
ented energy in the direction z. general, there is
on¢ maximum (in the direction of the first right sin-
gular vector) and one minimum (in the direction of
the m-th right singular vector). The other exirema,
which are saddle points, occur at the remaining right
singular vectors. An illustration can be found in gg~
ure 3. There is an important difference between the
indicator ellipsoid and an oriented energy plot: The
indicator ellipsoid is a ‘picture’ in the output space
R' of the vectors y while the oriented energy plotis a
‘picture’ in the domain R™ of the input space.

The oriented energy plot shows the size of the output
generated by the input dizections. If large outputs are
to be avoided, the oriented energy plot shows which
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Figure 2: The small circle is generated by 500 random
points on the unit circle. Also shown are the 500 cor-
responding points on the indicator ellipsoid, some of
which are connected by a line with their correspond-
ing point on the unit circle. The right singular vectors
are in the directions (1,0) for ¢y = 4 and {0,1) for
oz = 1. The directions of the left singular vectors are
given by the long lines, It can be observed that on the
average points are more ‘attracted’ to the left singu-
lar vector corresponding to the largest singular value,
especially in the neighborhood of the right singular
vector corresponding to the smallest singular value.

input directions have to be suppressed, e.g. by con-

troller design. Hence its importance in control.

3.3 Oriented energy of transfer matrices
Let us now consider complex transfer matrices, that

are function of frequency, The SVD of a transfer ma-

trix is defined as:

y(s) = H{s)u(s) = U(s)S(s)V (s)" u(s)

where U S;)(, S(s) and V(&) are such that at each s

U(s)S(s)V(s)* is the SVD of H{s).

Here we are only interested in the frequencies at the
imaginary axis s = jw. If H(s) has no poles on the
imaginary axis, the singular values o‘,-(jwé) are contin-
uous, non-differentiable functions of w., However, the
next theorem relates the singular values on the imag-
inary axis with real analytic functions:

Theorem 3 There are real analylic funclions f; .
®—R,i=1,...,m, such that for allw € R,

{os(H(jwPs -y om(HGw))} = {[f(whhs .o [ fm(w)]}

The functions f(.) form an unsigned singular value
decomnposition (USVD) of the transfer matrix H(s).
Further details can be found in {[1}).

It is also possible to show the oriented energy as a
function of frequency. This is illustrated with an ex-
ample,

Example:

Consider a 2 by 2 transfer function, real on the imag-
inary axis:

5 t—w?
16.6—wd
19—w? $—ir?
165w 1i-u?

318

e b o dr b B = w m A
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Figure 3: Shown is the unit circle obtained by nor-
malizing 500 random points {normal distribution, sero
mean, covariance I») to have norm 1. For each nor-
malized point , the corresponding point zl]Azuis also
plotted, generating the oriented energy plot. The min-
imum and maximum occur at the directions of the
right singular vectors.

Figure 4: The oriented energy plot of a 2 x 2 transfer
function.

In figure 7, the oriented energy plot ul|H (jw)ul is
plotted where u is a unit input vector. In this case
the vector represents the amplitudes and phases of
sinus waves with frequency w at the inputs. Putiing
all these plots one behind the other we obtain the 3-
dimensional plot shown in figure 4.

At w = /8 = 2.828, H has a zero, which is obtained
as a number s € C where-H(s) drops rank. As can
be seen on the corresponding plot, this does not mean
that there cannot be an output. The output is zero
only when the correct input direction is applied. In
all other cases there is still an output signal., This
directional aspect does not occur with SISO {ransfer
functions which themselves become rero at a system
zero,

4  Signal-to-signal ratio

Until now we have been looking at the properties of
only 1 mafrix or transfer function. In this section, we
look at the properties of one matrix relative to another
one,

L.




4.1  The signal-to-signal ratio for matri-
ces

The definition of the signal-to-signal (SSR) is:

Definition 1 The signal-to-signal ratio of 2 malrices
A and B in the direction z is the ratio of the oriented
energics of A and B in the direction z:

Az
ml, )=

Consider two matrices A and B with an equal num-
ber of columns and let their QSVD be:

A=US, X1

B=U,5X"1
Let us now demonstrate how the QSVD provides s
canonical decomposition for the signal-to-signal ratios

Jjust as the SVD does for the oriented energy. Hereto,
consider the QSVD of [4, B]. Then,

A e (2'XY)SES.(X1e)
BBz (2 X-')SESy (X 1z)

RZ[A,B) =

Obviously, when z = #;, the i column of X , then

Re [, B) = 7

Hence the following properties hold:
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A,B] = ==
e,ﬁ?:?i‘x:IRF'[ ] ﬂl
o

in R {A,B] = ™
SR

A signal-to-signal ratio plot is obtained by plotting
the vector 2 g: for cach unit direction z, The SSR-
plot is again a picture in the input space,

Example:
As an example the signal-to—sisuai ratio is ploited for
2 pairs of matrices: [4, By] and |4, B;)

{25 0

4=(% 1)
{1 -15 {1 2
Bi"(o 1.5) Bz“(a 2)

For several unit vectors, R.[A4, Bi]z and R,B[JA,Bz]z
are plotted, the signal-to-signal ratios in the direction
z. The directions of maximal and minimal SSR are
shown and also the circle with radius 5 and 5.

The maximal SSR is given by %ll and the mini-
mal by %:. The directions of maximal and minimal
SSR are given by the columns of the matrix X in the
QSVD-decomposition. These directions are nof or-
thogonal as in the case of the oriented energy., The
direction and size of the maximal SSR is dependent
on the 2 matrices, as can be seen in the figure,
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2 2h .
1 i
o} [
-1t 1
2 \ . . 2 . .
-2 -1 0 t 2 -2 B ] 1 2

Figure 5: The signal to signal ratio of 1 matrix A
and 2 different matrices B. The maximal SSR is &

and the minimal %g- The directions of maximal and

minimal SSR. are not orthogonal, They are given by
the columns of the X in the QSVD decomposition.

H, 2 =,

A 4

‘Hz—z;- -—ulﬂg

Figure 6: Two interpretations of the oriented signal-
to-signal ratio for matrices.

4.2 Signal-to-signal ratio of transfer ma-
trices

Let us now look at the signal-to-signal ratio of 2
transfer matrices as a function of frequency. Two dif-
ferent situations can be considered (see figure 6), ei-

ther 2 systems with the same input
Y1 = Hyu y = Hau
or 2 inputs with the same output
y=Hyu + Hyuy
In the first case the 2 transfer functions have the

same input u but different outputs # and 4, For -

an interpretation assume that H; is a ‘good’ transfer
matrix while H, is a disturbing one, bviously, we
would like the relative influence of % on 31 to be small
compared to its influence on y;. Calculate the QsVvD
at each frequency:

o ns} Y _ { Hife) = Ui{)S1()X"2(s)
ve) = ( 1(s) ) - ( Hy(s) )““’ B ( Ua()S2(s)X (s}
The signal-to-signal ratio will be good if the Q-
singular values are small for all frequencies, The
QSVD shows the size and the direction of the largest
signal-to-signal ratio at each frequency. If in con-
trol application the output of the ‘disturbing’ transfer
function has to be minimized relatively to the out-
put of the ‘good’ transfer function, the contro! en-
gincer has to design a controller that minimizes the

) u(s)




Q-singular values over all frequencies,

In the second situation there are different inputs uy
and u; and one output y. Then we can write that

y=t% +1 = Hu + Hw
using the QSVD this can be rewritlen as

I 0 o0 0 0 0
y=Y g '%1 g U'u1+Y g Dez ? V‘uz
0O 0 0 c 0 0

Put
vy = Uipt + Uzpz + Usps
vy = Vi +Vaqa+ Vags
Then
n
y=(Y1 Y2Dr 0)| p2 |+ 0 YoDq Y }| ¢
D3 qs
or
v = Yipi + Y2(Dip2 + Daga) + Yags

I

P
(i 2 Y )( Dip: + Da2qz )
q3

From this we can conclude that there are directions
in the output space which can only be influenced by
the first input, in these directions ‘—’;? is infinite, Other

directions can only be controlled by the second input.
In these directions §t is 0, Other directions are con-

trolied by both inputs.

Suppose now that the input signal u; is known that
produces an output signal in the direction y, when
uz = 0. Similarly, also the input signal u; that pro-
duces the same output signal, with uy = 0 is known,
Then the SSR in the direction y is here the ratio of
the magnitudes of the input signals u; and u;. The
Q-singular values indicate then the rclative influence
of u; compared to uz. Thus if the output y has to be
influenced primarily by the input u;, the Q-singular
values have to be small.

Example:
As an example, take 2 transfer matrices in the first
configuration (with the same input u):

Hy(s) = ( a’sw '_;?:1-_“3:.5 )
a0 S9id
e o
Hy(s) = 75242.? 7'3:;%
=

;)
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The signal-to-signal 1atio is plotted for different values
of w. The plots are shown in figure 8, The maximal
and minimal signal-to-signal ratio and direction vary
quite drastically with changing w. Notice that when
H, becomes small, the signal-to-signal ratio becomes
large (around w = 1.25), If Hy has a sero on the imag-
inary axis, the SSR becomes sero in one direction.

The directions and sizes of the maximum and min-
imum SSR can be obtained using the QSVD, Notice
ag:lin that these directions are in general not orthog-
onal.

5 Conclusions

In this paper, several ways of presenting directional
aspects of matrices and transfer functions are dis-
cussed, In our opinion the oriented energy is best
suited for studying the directional gains, The exten-
sion to directional aspects of 2 matrices or transfer
matrices is the signal-to-signal ratio. The directions
and gains can ea.sns]y be computed using the QSVD.

In control system design, this can e.g. be used in
cases where not the actual output of a system is impor-
tant but the sizes of 2 outputs relative {o one another.
A co-norm can be defined for the largest ratio over all
frequencies. Controllers that minimize or maximize
certain relative properties might also be developed.
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Figure 8;: The SSR of two the transfer matrices with 2
equal inputs at different frequencies w. The direction
and size of the SSR can change drastically with the
frequency. Notice that the directions of maximal and
minimal SSR are, in general, not orthogonal,




