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Abstract

A design method for stabilizing nonlinear systems by feedforward neural networks
is proposed. A switching between equilibrium points can be realized with guaranteed
stabilization around the ’target’ equilibrium point. As a test case control tasks for
an inverted pendulum are considered. First it is shown that one neuron is sufficient
for keeping the pole 'up’ in a relatively large region around the equilibrium point. In
this case all weights are imposed by a linear controller design method, like LQR or
pole placement. One can use a multilayer neural network too, but then there remains
additional freedom in the choice of the weights. This property of redundancy can
be exploited in the swinging up and swinging down problem. Optimization criteria
can be formulated with constraints on the weights that guarantee a stable ’target’

equilibrium point.

Keywords: feedforward neural nets, nonlinear optimization, Linear Quadratic Regulator

(LQR)

1 Introduction

In many important applications the control engineer is confronted with the following prob-
lem: given a multivariable nonlinear plant that may operate around several equilibrium
points. Design a control strategy that not only stabilizes the plant around these equilib-
rium points, but that also is able to switch from one operating point to another.

In this paper we will propose a general design philosophy and then illustrate it on a par-



ticular example.

The general idea is as follows:

e First a nonlinear model is obtained by whatever modelling method that is available

(nonlinear system identification, physical laws, bondgraphs, etc. ..)

o Next the equilibrium points are identified. Around each of these points the system is
linearized and a linear stabilizing controller is calculated for each specific operation

point (e.g. by poleplacement, H,, H,, etc. ...)

o A general parametrized control law is proposed for the switching from one operating
point to another. This control law is overparametrized but the parameter vector is
constrained in the following sense: in the neighborhood of each operating point, the
control law coincides with the linear stabilizing controller around that specific point.
The additional freedom in the parameters is used to enforce the desired switching

from one point to another.

o If there are more than two switching trajectories, one can repeat the whole strategy
for each pair of operating points and design an appropriate switching circuitry that

governs the switchings.

An interesting academic test example for this kind of problem is an inverted pendulum.
Up till now, most of the literature on control of an inverted pendulum is concerned with
the problem of keeping a pole 'up’ [3]. Besides that problem we study in this paper the

difficult control task of swinging the pole from ’down’ to 'up’ and to stabilize it there. A



classical approach to control the inverted pendulum is a combination of two controllers:
a first controller has to swing up the pendulum and a second one keeps it around the
equilibrium point. The proposed neural controller can combine these two phases. Our
approach introduces constraints on the set of weights such that a closed-loop stability in
the neighborhood of the 'target’ equilibrium point is guaranteed. These constraints are the
result of a linear controller design. The swinging up and swinging down problems are then
solved by formulating optimization criteria that have the linear controller design results as
constraints. Finally one single neural controller is constructed that can handle both the
swinging up and down control tasks.

This paper is organized as follows:

Section 2 describes the general design method for stabilizing nonlinear systems by a feed-
forward neural network. In section 3 an inverted pendulum is taken as a test case. Section
4 shows that one neuron is sufficient to keep the pole up’. Sections 5 and 6 exploit the re-
dundancy of multilayer neural networks to solve the switching problems from 'down’ to "up’
and 'up’ to 'down’ by formulating the appropriate optimization problems constrained by
the linear controller design results. In section 8 one neural controller is proposed that com-

bines the two switching tasks with guaranteed stabilization around the target equilibrium

points.



2 Nonlinear parametrized static state feedback by

feedforward neural networks

In this section a general outline is proposed of a method for stabilizing nonlinear systems
by means of feedforward neural networks.

Given a single input nonlinear system
&= f(z,u) (1)

with state vector z € R", input v € R and f a vector field defined on R™. Suppose the
control task is to bring the state z from z(0) to a target equilibrium point z.,. Hence, let

us introduce a nonlinear parametrized static state feedback law
u = g(z,w) (2)

where w € R? is a parameter vector to be determined. In the case of a feedforward neural

network these parameters become the connection weights. For a neural net with one hidden

layer eqn.(2) could be given e.g. by

u = tanh(w'.tanh(V.z)) (3)
with the set of weights {w,V} to be determined.
The design procedure is as follows:

1. Design a linear controller around the target equilibrium point z, based on the lin-
earized model by e.g. LQR or pole placement. The nonlinear control law (2) becomes

the linearized controller around z.,.



2. The parameters (weights) serve to satisfy other performance criteria such as the
transition from z(0) to .. This results into an optimization problem constrained

by the linear controller design results.

Remark that in the case where the nonlinear system (1) has two or more equilibrium points
a control task could be the transition between two of this points. We will solve this problem

for the special case of an inverted pendulum.

3 Test case: inverted pendulum

A state-space model [3] of the inverted pendulum (Fig.1) may be presented in the form
i = () + b(z)u (4)

with state z € R* and input v € R and

L2 0

%mlmisinw;—ﬂzasin(iimg) 4 1

t — 2 g 2
- Fmy—mcos?x; i Fmi—mcosiz;
fz) =  b(z) = (5)

Lyq 0

m;g:ina::;—r%lmisin(%cs) _ cosz3
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In this model friction is not taken into account. The states z,,z,, 3, 4 are position and
velocity of the cart, angle of the pole with the vertical and rate of change of the angle.
The input signal « is the force applied to the cart’s center of mass. The symbols m,m, [, g
mean respectively mass of the pole, total mass of cart and pole, half pole length and the
acceleration due to gravity. The input signal w is constrained as Umin < ¥ < Upqz. Remark
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that in the autonomous case z = [0000]* and = [00 7 0]* are equilibrium points and we

call them respectively eqt and eq™.

4 Stabilization with one neuron

In this section we will investigate the possibilities that one neuron can offer for stabilizing

the inverted pendulum around eq*. We will take the following model for a neuron
u = a.tanh(w'z) (6)
where w € R* is the weight vector and « a positive constant. Remark that u is bounded
by (6) as —a < u < «. In closed-loop (4) and (6) become
¢ = f(z) + b(z).a.tanh(w'z) (7)
Equilibrium points of (7) are given by ¢ = 0. The stability of the equilibrium point z = 0
is determined by the eigenvalues of the Jacobian matrix J(x) evaluated at ¢ = 0
J(z) = fo+ bpatanh(w'z)+b(z).a.(l — tank?(w'z)).w (8)
J(0) = fo+50).aw (9)
Here f, and b, denote matrices that contain the partial derivatives with respect to z;; fo

and b(0) are given by

T i
0 1 0 0 0
0 0 — w—*i—_r::”_m 0 %.r—_m:_m
o= 3 , b(0) = : (10)
0 0 0 1 0
00 ! glrﬂ::—m) 0 1 %m];-m)




The general idea now is that we apply an LQR based design [2] on the linearized model
around z = 0 which will give us values for « and w, which are then applied in the nonlinear

feedback law (6). We search for a linear static state feedback u = —k{ ,.z that can stabilize
the linearized system

& = fo.x + b(0).u (11)
by minimizing the cost function

G = fo ” («'Qx + u'Ru).dt (12)

where @ and R are given positive definite symmetric matrices. The solution to this problem
is given by

ki, = R™'.5(0)".P (13)
where P is the stabilizing solution to the matrix algebraic Riccati equation

O = Pfy+ fiP — Pb(0)R™'b(0)'P + Q (14)

From (9) and (13) it follows that

ki = —ontp! (15)
Hence the choice of « and w is determined by kis. In Fig.2 simulation results are shown
for parameters m, my, [ equal to 0.1,1.1 and 0.5, Furthermore a =10, Q@ = I, and R =1
and initial state z(0) = [00 % 0]".
The weight vector w is equal to [0.1000 0.2303 3.1894 0.8178]*. In all simulations a trape-
zoidal integration rule with constant step length equal to 0.05 was used. The results are
compared with linear static state feedback (LQR) with u = —kf ..z . The region around the
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equilibrium point where the LQR based design strategy can be applied, seems to be rela-

tively large. Simulations indicate that an increasing value « (and from (15) a corresponding
decrease in the elements of w) enlarges the stabilizing region around the equilibrium point.

In Fig.3 state space trajectories are shown for 2* initial states 2(0) = [+2 £0.5 £ Z +0.3]".

5 Extension to multilayer neural networks

In the case of one neuron all weights are completely determined by the LQR design. Now
we will see that for multilayer neural nets the LQR design imposes constraints on the set
of weights and an additional freedom in the choice of weights is left.

We can model a neural net with one hidden layer as

na ny
u = a.tanh(d_ witanh(d_ viz;)) (16)
=1 i=1

where the connections are represented by w = [w;] and V = [v;;]; n; = n the number of

state variables (full state feedback), n, is the number of neurons in the hidden layer. An

obvious extension to ny hidden layers is

Tap+1 Tinp ny
u = a.tanh( Y witanh(d vg”')...tanh(z v_g,lc)a:k))) (17)
=1 7=1 k=1

Remark that one hidden layer is sufficient for approximating a general nonlinear mapping

[4] [5]. In the case of one hidden layer a linearization in closed-loop yields
J(0) = fo+ b(0).aw’.V (18)
A LQR design like in the ’one neuron case’ results into

ke = —aw’,V (19)
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It is clear that w and V are not completely determined by this design. For the nj hidden

layer case this results into
K, = —aat Ve ym-) vy y® (20)

Because of the degree of freedom in the choice of the connections we can combine the LQR

design with some other optimization procedure. One can discretize the closed-loop system
(4)(17) as
Bhss = 2k + by w, VW), ma)) |y y) (21)
where ¢ depends upon f and b and the discretization rule (Euler, trapezoidal, ...) and A
is a constant step length. A quadratic cost function C = ¥V | ztzs or C = zlyzy can be
computed as
C(zo,w, yina) V(”h—l}__.V(z).V(l)) (22)
This unconstrained problem can then be constrained by the LQR design (20), guaranteeing

a stabilizing controller.

In practice, this optimization problem suffers from local minima and can only be solved

by means of global optimization routines.

6 Control task of switching from ’down’ to ’up’

For solving the control task of bringing the pole from ’down’ (eg™ = [007 0]*) to 'up’
(eqt =[0000]"), we formulated the problem as in (22). A neural network with one hidden

layer was proposed (see Fig.4). The neural network consists of one neuron in the output
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layer and two neurons in the hidden layer (n; = 4, n, = 2). The control signal is given by
u = a.tanh(w'.tanh(V.z)) (23)

The 10 parameters for the optimization problem are the elements of w(2 x 1) and V(2 x 4).

We have chosen as penalty function the criterion
C = zyen (24)

which means terminal control. In practice this penalty function can be calculated imme-
diately from the integration of the nonlinear differential equations (4) under the feedback
law (23) starting with initial state eq™ and a certain parameter set. The parameters are
constrained by 4 equations

ki = —awtV (25)
We have chosen for an exhaustive search method combined with an elimination strategy
for solving this optimization problem (of course other global optimization methods like
e.g. genetic algorithms can be used for this problem). Reduction of the dimension of the
search space can be done thanks to the constraints (25). We generated random weights
(according to a Gaussian distribution with variance 2.25) that obey these constraints (25).
This can be done by splitting k. into two parts

Bt
- gt o o] = [V V) (26)

with dimension of s; and s, equal to 2 x 1. Let us introduce a matrix T' which satisfies

the relation Vo = V4.7 and hence s!.T = s{. Two elements of T' may be chosen freely (e.g.
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elements £1; and f12). The other elements are calculated from

_ Sa1— s11.t11

ta1 =
812

822 — S12.t12
by = ——————
S12

Now choose V; according to the same Gaussian distribution and calculate V; from Vo, = V.T
and w' = s4.V; ', In Fig.5 the simulation results are shown for initial state z(0) = [0 0« 0]t
A trapezoidal integration rule was used with constant step length equal to 0.05 (200 steps).
Fig.6 gives the evolution of the pole during the ’swinging up’. The optimal weights (after

100,000 simulations) are

—0.4452 —0.9239 —0.6029 —7.4761 —0.9926
W= 5 ¥ = (27)
—1.0738 0.2899  0.0355  0.1294 —-0.3500
Parameters are chosen ias m = 0L.I,my = L1l = 050 = 10,Q = Iy R = 1 and K, ds
the same as in the ’one-neuron case’ of section 4. The neural network performs this task
only for the given initial state eq”. For other initial states a new set of weights is to be
determined. Nevertheless, with respect to the first initial state variable there exist some
robustness: when ;(0) belongs approximately to the interval [0, 2] the control task remains
performed well. In Fig.7 results are given for initial state z(0) = [207 0]*. Experiments
also show that for & = 10, a may be increased to a* = r.a with 1 < r < 4 (provided that
the elements change into V* = ¥ because of (19)).
In order to test the robustness against process and measurement noise we did some tests
with additive white noise (normal Gaussian distributed) and measurement noise on state

z, both with covariance matrix equal to ¢2.I;. The neural controller performed well for

12



o < 0.15.

7 Control task of switching from ’up’ to down’

Just like in the swinging up problem the control task of bringing the pole from eqt to eq™
can be formulated as a nonlinear constrained optimization problem. Instead of terminal

control (24) we used a quadratic regulation criterion
N
€= Z o}z (28)
k=1

which provides some damping of the oscillations when going from eq* to eq~. Remark that
it is not needed to include terms related to u into expression (28) because  is restricted by
the relation —a < up < . Again a feedforward neural network consisting of three neurons
with two neurons in the hidden layer was proposed (see Fig.4). The feedback law (23) now

changes into

u = a.tanh(w' tanh(V.(z — eq7))) (29)

The constraints to be placed on (28) follow from the linear controller design around eg~.

An LQR design is based on the linearized model around eg™ = [0 07 0]* with

( 0 1 0 0 0
0 0 —-4—9—_?::_m 0 B %'_‘——m:—m
feq‘ == ? ) b(eq ) = ? (30)
0 0 0 1 0
. meg 1
L 0 0 [(me—m) 0 ] L l(;‘m;—m) J
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which results in a ki, according (12), (13) and (14). Constraints on the optimization
criterion (28) are then given by

k., = —aw'V (31)

The same strategy of generating random weights (Gaussian normal distribution with vari-
ance 2.25) that obey these constrained was used. We took @ = Iy, R = 0.01, o = 10. The
result of the LQR design was ky» = [10.0000 13.8413 34.1298 4.9217]°. For the simulations
a trapezoidal integration rule with constant step length equal to 0.02 (300 steps) was used.

As best result after 100,000 runs we obtained

8.5034 —1.2689  0.3497  0.6719  0.1552
8.0219 1.2204 —-0.5432 —-1.1377 —0.2259

In Fig.8 the corresponding state space trajectories and the control signal are given. In

Fig.9 the evolution of the pole during the swinging down is given.

8 Neural controller realizing both ’down’ to ’up’ and
'up’ to ’down’ switching

In Fig.10 a neural controller is proposed that can perform the swinging up problem as well

as the swinging down problem. The control signal u is equal to 3(r).u; + B(—7).uz with

wy = atanh(w),tanh(Vyp.z)) (33)

wy = a.tanh(wh,,,-tanh(Viewn.(z — eq7))) (34)

14



where the reference input r specifies the desired control task and u;,u, correspond respec-
tively to the expressions (23) and (29). The weights wup, Waown, Vup and Vj,wn are the
optimal weights obtained in the previous sections of this text. The function §(r) is the

step function

B(r) = lifr>1 (35)

= 0ifr <0 (36)

If r = 1 that part of the neural network responsible for the switching up is activated and

% = uy. For 7 = —1 the switching down controller is selected and u = us.

9 Conclusion

In this paper we proposed a general method for stabilizing nonlinear systems by means of
feedforward neural networks. This was applied to the special case of an inverted pendulum.
In the ’one neuron case’ the weights are completely determined by this procedure. In the
multilayer case it delivers constraints on them. Due to this degree of freedom in the choice
of the weights one can combine an LQR design with some other optimization method.
That optimization may then lead to the solution of the ’swinging up’ or ’swinging down’
problem, while the LQR design guarantees stability around the target equilibrium point.
The strength of the method lies in the fact that thanks to the nonlinear control, realized
by a neural net, a trajectory passing trough the whole nonlinear region can be generated

together with a guaranteed stabilization around the target equilibrium point. Finally a
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relatively simple controller consisting of six neurons, capable of performing the swinging

up and down problems for the inverted pendulum, was constructed.
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Figure 1: Inverted Pendulum
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Figure 2: Stabilization of inverted pendulum with one neuron based on LQR design (full
line), compared with linear static state feedback (LQR) (dashed line) with initial state

z(0) =[0020)*, (n=0.1,m, =11, =05,a=10,Q =I;,,R=1)
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Figure 3: Stabilization of inverted pendulum with one neuron based on LQR design for 2*

initial states ©(0) = [£2 £ 0.5 £ § £ 0.3]° (see Fig.2 for parameters).
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Figure 4: Inverted pendulum controlled by a neural net with three neurons (one hidden

layer with two neurons)
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Figure 5: Neural net with three neurons (one hidden layer with two neurons) that performs

the swinging up problem (initial state (0) = [007 0]* ; for parameters see Fig.2)
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Figure 6: Evolution of the pole during the ’swinging up’ (initial state z(0) = (00« 0]*)
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Figure 7: Neural net with three neurons (one hidden layer with two neurons) that performs

the swinging up problem (initial state z(0) = [207 0]° ; for parameters see Fig.2)
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Figure 8: Neural net with three neurons (one hidden layer with two neurons) that performs
the swinging down problem (initial state z(0) = [0000]° ; for parameters see Fig.2, but

R=0.01)
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Figure 9: Evolution of the pole during the ’swinging down’ (initial state z(0) = [0000]*)
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Figure 10: Neural net with siz neurons (one hidden layer with four neurons and two neurons
in the output layer) that performs the swinging up and down control tasks. If r = 1 that
part of the neural network responsible for the switching up is activated (v = u;). For

r = —1 the switching down controller is selected (u = uy).
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