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1 Introduction

In this paper, we consider the approximation of a given n-dimensional discrete linear time

invariant (LTI) single-input single-output (SISO) system with proper transfer function

Wz)  bna2" '+ ...t bz b
o(z) "+ ...twmzta

by an LTI SISO system of order ¢ < n

b(z)  bp1a® ...+ byz + b
a(z) 204+ di1z+ o

such that 21 9(h; — k;)? is minimized. Here h;,i = 1,...,p+q are the first p-+¢ Markov pa-
rameters (impulse response samples)_of the given system while h; are the impulse response
samples of the approximating system. The number p is a user specified time horizon, which
may be co. The H,-criterion is particularly relevant in a statistical sense for p — oo: The
obtained optimal reduced model delivers an output that will be closest in a least mean
squares sense to the output of the original given system when the applied input is white
noise. Earlier references are [2] [3] [19), all the references included in [15] and more recently,
the work in [16] {17) [14]. A numerical analysis approach can be found in {12]. The case
of noisy data (for which our time domain iteration also applies) is treated in [1] [6] [22]
[23] (24). From a differential geometry point of view, the H, model reduction problem is
analysed in [4] [5].

2 Derivation in the time domain

Let H be a px (g+1) Hankel matrix that contains the approximating impulse responses hi
up to sample p-+g. The fact that the approximating system is of order ¢ may be expressed
in the form of p + 1 constraints as Hy = 0 and y'y = 1. The first constraint requires the
existence of a vector in the null space of the matrix H, which should be non-trivial. This
is ensured by the second constraint. We will also use the vectors h and b, which contain
the first p -+ ¢ impulse response samples of the original system and the approximating one.
Introducing p Lagrange multipliers I;,¢ = 1,...,p for the first p constraints (which will be

collected in a vector ) and a Lagrange multiplier A for the last constraint, we can write the
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Lagrangean L of the optimization problem as £(,y,1) = S0 (hi — k)P + 1 Hy+ A(zty—1).
Setting all derivatives to zero results in the set of equations (a convolution is denoted by
a 'x'):

h—h=lxy , Hil=yx , y'y=1 , Hy=0

There are 2p + 2g + 1 unknowns (the elements of £,l, ¥ and A) and exactly 2p —i— 2¢+1
equations. It is straightforward to find that A = 0 because I'Hy = X = 0.

It is a tedious though straightforward exercise to write out the difference of the two Hankel
matrices H — H as a function of the components of the vectors ! and 3. One can then elim-
inate H by post multiplying this expression with y to get Hy = D,l. Post multiplication
of Ht — H* with I results in H* = Dyy. Here, D, and D; are positive definite symmetric
Toeplitz matrices, the elements of which are quadratic functions of the elements of y resp.
l. Actually, the element at position |t — 7] is just the |i — 7]-th element of the autocorrelation
of the sequences y resp, | (appropriately padded with zeros) (see [9] for more details). If

we normalize ! so that I/||{]| = = and ||!]| = o, we have the equations

Hy = Dyzo e =1
H'z = D yo vy =1 (1)

It can be verified that the object function is given by S23f(h; — ki)? = I'Hy = @' Hyo =
ztDyxo = ytDyyo.

3 A ’non-linear’ generalized singular value problem

Note that, if D, is invertible, we can eliminate the vector ¢ = DJ;'Hy/o and write
(H'D;'H)y = Dyo? which is a generalized eigenvalue problem in which the weights
D, and D, are quadratic functions of the elements of the cigenvectors. If D; is invertible,
we might even convert this generalized eigenvalue problem into a symmetric eigenvalue
problem as [Ty,)[DY%y) = [D;Y/2H'D; HD;'/*)|DY%y] = [DY*y)e®. If D, and D, would
be constant matrices, the equations (1) would be very much related to a singular value

decomposition, with positive definite weights in the column and row space. Let us explore



this connection in some more detail. Suppose u,v and 7 are solutions of the problem

Hv = Dyur wDau=1
H'y = D,vr v' Dy =1 (2)

The only difference is here that we use another normalization for both v and v. If D,
and D, would be constant, we would have a singular value decomposition with different
inner products in column and row space (see e.g.[8]). We can scale these equations as
Higr = (Do/ o)) ggrliulllivll) and Hegig = (Do/ Il pig(7 ludllivll). I we now put
z = u/l|ull, y = v/|[v]l and o = 7lulffjv]], then . |

Hyo = 2 B2 (rlallol) = o 22l fell)? = 72

This implies that the minimum we are after is exactly equal to the minimal singular value
squared of the weighted SVD problem (2). The conclusion is that the only difference be-
tween (1) and (2) lies in the normalization of the vectors and one can always go from a

solution of (1) to one of (2) and the other way around.

4  Analysis using the QR-decomposition

Let the QR decomposition of H be:

R
——

H:( & @ ) (g+1)x(g+1) (3)
px{g+1}) px{p—g-1) 0

Then we can decompose { = o as | = Qv + Qyw for certain vectors v and w. Hence,
from (1) (recall that | = zo), we find

R 0 0 v Dy
QD@1 QDyQ. 0 || w =] O (4)
QD0 QiDyQ: —R Y 0



5 Algorithms

We will present two algorithms to solve the set of nonlinear equations as in (1), which
represents the necessary conditions for a triplet z, o,y to be the minimizing solution. The

iteration number is indexed between square brackets.

5.1  An algorithm based on the generalized eigenvalue problem

The formulation of the problem as a generalized eigenvalue problem naturally lends itself
towards implementation in an iterative algorithm as follows:

Iteratively reweighted generalized eigenvalue problem :

Initialization: Choose initial guesses /% and v/ and construct Do and D g,

For k =1 till convergence;:

0 H ul¥l | Detr-y 0 ul#l
g o0 J\o® [\ 0 Dy /| oW
value 78 with () D p-yultl = 1, (oD peyol® = 1,

Solve 78 for the smallest eigen-

Results: After convergence, set ¢ = u/||ull,y = v/|jv|| and ¢ = 7|[u|||v||.

There are several possible convergence tests. A natural one is to measure the difference
between two iterates as |[v¥! — v/*=U|| and then stop when decreases below a prespecified

tolerance. We will however not discuss this in detail,

5.2 Inverse iteration

A possible algorithm to calculate the smallest eigenvalue and corresponding eigenvector
of a symmetric matrix is by inverse iteration. Instead however of calculating the minimal
eigenvalue in each step, we could also perform only one step of an inverse iteration scheme
and then update the weighting matrices D, and D,. This is achieved in the following
iteration which is nothing else than an iterative way of solving equation (4) !

Inverse iteration algorithm :

!1As a matter of fact, there are several other possibilities of solving this set of equations iteratively (like

"Gauss-Seidel™-like or 'SOR’-like variants}, but we only analyse one particular version here...




Initialization: Choose 2y, ! and normalize {|=l}| = 1, Iy = 1.

For k = 1 till convergence: 1. vl = Rt D u-nyl1,

2. wh = —(Q4D,u-uQ2) (@5 Dy-n Qa0
3. 2 = Qo + Quuwl,

4. gl = W/,

5. ¥ = R_lQiDyu—x}m[k}.

6. ot = |jz1).
7. 4 = /o1,

8. Convergence test using oMyl ol¥],

Result: The approximating model can be obtained from z,y and o using the formulas

of section 2.

The asymptotic convergence rate of this algorithm, which is linear, is discussed in Figure
1 below. The matrix Q, is a p X (p — ¢— 1) matrix, Hence as pis usually much larger than
¢, using Q- is quite time consuming. It is however possible to eliminate @, (and also @
completely) when for p — oo the z-transform is used, as will be shown below. For finite p,
a good initial guess might be provided by the singular triplet corresponding to the smallest
singular value of H. Other initial estimates might be provided by a balanced realization or
o realization based on Kabamba's balanced gains {15}, But, as we will see below, starting
from an initial guess which is good with respect to the initial H; error, does not necessarily
imply that convergence to the global minimum will occur. A natural convergence test is

to monitor the difference between two consecutive iterates, as e.g i)yl

6 Properties in the z-domain

Since the residual signal k — 7, is a convolution of the sequences ! and y, we easily find
that? h(z) — k(2) = I(2)y(#). I p — o0, we put h{z) = b(z)/a(%) and h(z) = b(z)/a(z) so

+ 00

-k
ror o kz . Fora causal sequence,

2The z-transform of a sequence a is denoted by Zle] = a{z) =

we have a(z) = 352 axz~*. The inverse z-transform is 2 -1, The causal part of a sequence is indicated

6



that

o) " i(z) z)y(z) (5)

Denote by @,(z) the reverse polynomial of a(z): @,(z)} = @02 + @12%"' +... + 1. Let the
components of y be y = (¥ ¥ ... ¥, )t From the fact that Hy = 0 and y'y = 1, it
follows easily that y(z) = na.(2)/2% = na(2z~") where 7 is a normalization constant which
ensures that y'y = 1. It also follows from (5) that in the optimum, {(z) will be rational
with poles given by the zeros of a(z)a(z).

The inverse iteration algorithm of the previous section becomes inefficient as p — oo, It
is however possible to transform the iterative solution of the set of equations (4) using
z-transforms into an iteration in the z-domain with a finite number of parameters. Instead
of using the QR-decomposition of X, we will use the QR-decomposition of the p x n Hankel

matrix H, (p — oo}

51
~
o= (& & | o
px{(n} px(p-n) 0
S S12
heat S
7 , z (g+1)x(g+1)  (g+1)x(n—g—1)
px(g+1) px(n—g-1) px(p-n) ~—

(n—q—l}x(n—q-;l)
0 0
Observe that ¢, = Z1, and R = §;; because H is given by the first ¢ + 1 columns of H,.
Let v, € R™*! and w, € RP=")*! be defined by decomposing ! as [ = Z1v, + Zow, (Recall
that also [ = Qv + Qaw = Zv + ( Z12 Z2 )w ). Using this new QR-decomposition, we

can rewrite equation (4) as

R | o o |o Dy
24Dy 00 | BDyBe 25Dz | 0 || | | o
2D, 7 | 28D,2m 20,7, | 0 || | | o
24.D,Z, | 24D, 2%, 24,D,Z, | -R Y 0

as [.}+ while the causal part of the z-transform a(z) is denoted by {a{z)]+. All sequences are considered to
be zero where ever they are not explicitly defined. When we only want to retain the first g+ 1 components

of & sequence, this is denoted by [o,....c




Changing the order of the block rows from 1—2—3 —4 to 1 —3 — 4 — 2, allows us to write

H'Z, 0 0 v, Dy
ZiD,Z, ZiD,Z, 0 wo [ =] 0 (8)
2tD,2, Z'D,Z: —Z'H y 0

which implies that (v* w* )* = (% w! )'. The conclusion is that an iteration with the set
of equations (8) delivers in each iteration step the same results as an iteration with the set
of equations (4). While the dimensions of the blocks in (4) permit to solve the system by
backsubstitution, this is not the case for (8). The difference is however that the iterative
solution of (8) can be converted to the z-domain. Let’s now do just that. First note that

in each iteration, y*(z) = a2~y = nalfl(2) /2"

Lemma 1 The z-transform of I8 is of the form Z[IM) = 1W(z) = —zq—fgﬂf,)—j where f(2)

= (el

is a polynomial of degree n — 1.

Proof: Since Z{,Dygk}lf"} = 0, it follows that Dyml“‘] is in the column space of H,, so that
its z-transform must be of the form £(z)/a(z) (£(#) denotes an unknown polynomial). So
we find [Z{Dyn-ni(k))]+ = [72at-(z)alb-(2)l(2)/ 2%+ = &(2)/a(z). It follows that I(z)
must cancel the poles at 0. Now recall that in the equilibrium I(z) contains a(z) and &(z)
in the denominator and that it is stable. Hence, in iteration step k, we include at—1(z)
in the denominator of I(z). Furthermore, it must contain the poles in a{#). This implies

the Lemma. a

Lemma 2 The z-transform of I%(z) can be written as Z{IM] = %l + 2 ad oy where

cM(z) is a polynomial of degree n — 1 and el¥)(z) is a polynomidl of degree ¢ — 1.

‘Proof: Obviously, 7,0 is a finite dimensional signal since it is generated by a linear
combination of the columns of H,. Hence Z[Zlvw] is of the form c¥(z)/a(#) for a certain
polynomial c/¥(z). Therefore, because il = ZoM 4z, 2 [Zgwik}] must have in its
denominator a(z)*1(z). The form of its numerator follows from H tZwl® = 0. Indeed,
the null space of H® is spanned by the columns of a band Toeplitz matrix in which each
column of the band is just the vector a which contains the coefficients of a(z). Hence, Zpl

can be written as a linear combination of the columns of this matrix. This matrix-vector



multiplication can be interpreted as a convolution of a FIR filter (the coefficients of @) with
an infinite signal (the weights of the linear combination) so that with z-transforms we find

that the numerator of Z(Zzwik]) should contain a factor a,{z). o.

Lemma 3 There exists a polynomial s(z) of degree n with so = 0 so that

b(z) (") N sMz) () (1) n&‘,"‘“‘(z)-]
a(z) a(z71) T T a(2)alb-2(z) T ' a(2)a-A(z) a(e-V)ak-2(z-1) 29 *

Proof: The z-transform of the equation HZ0M = Dyu—yyl*~1 results in

[Z'l[gi(%gl-:—(l:(}__,—)l]]g, =2 [k'll(z)l[k“”(z"l)y[k'll(z)]}o,_,,,q. The fact that the first ¢ 4 1

coeflicients are equal, does not imply that the causal parts of z-transforms are equal.

Therefore, one needs to introduce a polynomial s(z) of degree n. Let’s now show that

b{z)e{z

so = 0. Define g(z) = gnz" + ...+ go via [;-%;%;%;—:;%]Jr = a—((;% and m(z) of degree n + ¢ via
{2 zNy(2))s = a(z)a(z) We can now show that g = 0 and mp = 0 by introducing also
the anfi-causal parts 2(: Z(’;_l,) = a—% + ;(zg-_l,-)- where h(z) is a polynomial of degree n — 1.
If we equate equal powers in the numerator, we find that go = 0. A similar trick works for

mo = 0. That sp = 0 now follows directly from 42 4 2 _ - _m(z) o

a(z) ' a{z)alz) T el2)a(z)"

Lemma 4

2 A1) (),

(S, = ()

az)" a(z)

Proof: This equality follows directly by taking z-transforms of the time-domain equation
. P - oy - . [kl z2)z

Hy"*=Y = D u-yl™, For instance, Z[DymilHl] = alt-1(z)al-1(; 1)7]20(:)& _,‘(z). o

7 Interpolation conditions

Starting from Lemma 1-4, we can now derive interpolation conditions in the roots a;,i =

I,...,n of a(z) and the roots a! ], i = 1,...,q of @*(z). These will give us a set of
equations to be solved in each iteration. First, we consider Lemma 3 in the n roots of a(2),

ie. Yi=1,...,n

f[k_ll(ai)f[k_”(1/0“)7]&[::-1}(1/%.)

ba)a* (o )M(1/a;) + a(1/a;)sM(a;) = =211/ o)




These n equations in 2n unknowns will be written as M}k]c‘k} + Mfz[k}s{k] = Fl{k]. Now apply
Lemma 3 with the ¢ zeros of al*—?h:

feal 16
atk-2i(1/al ™)

a(1/al " D)sM(al?) = gabtayalty  i=1,...,
These ¢ equations in n unknowns are denoted by M;[,k]s““} = Fz[k]. Next we combine Lemma
1-2. Since there must be g zeros at zero, we have ¢ linear equations for the coefficients
of ¢ and e as Mlk]c[k} + Mék]e{"‘] = 0. From equating the remaining n coefficients in that
expression, we find also an expression for the coefficients of f(z) as Mék]c[k]—}-M;k]e“‘] = fl¥,

Finally, we evaluate Lemma 4 in the n roots of a(z) to find

b(a;)&{k](a;) = ﬂ&ik—l}(ai)f[k](ai) 1=1,...,n

which will be denoted as Mék]&{"’} = Mék} fI], Together these equations form a set of

(3n + 2g) equations in (3n + 2¢) unknowns which can be written as

o i )
(, My, 0 0 0 Y {c) [ F, )

0 Ma 0 0 0 8 Fz
M4 0 Mr, 0 0 ¢ - 0 (9)
My 0 M, =I, 0 f 0

j=1]

\ooo;MgMB/ \ & ) \ 0 )

which is the z-domain version of equation (8). The iteration with this set of equations, will

converge linearly towards an equilibrium point. The approximating system can be easily

reconstructed from these results,

8 Some more properties of the minimum

In this section, we derive some additional properties.

Theorem 1 The z-transform of the residual signal h — b satisfies

bz) Bz _ L))
o) ) T @2)e®)

where r(z) = rn,.q_lz“'q'l 4 rpg—22 i LAzt 0 is 0 non-monic polynomial.
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Proof: Another way of stating it, is that I(z) = % This structure follows directly
from the orthogonality H*l = 0 in the optimum. Indeed, a null space of H* is generated by
the columns of a band Toeplitz matrix, of which each column of the band is the vector v,
Hence, the vector ! can be written as a linear combination of the columns of this Toeplitz
matrix, Because of the Toeplitz structure, this gives a convolution in the time domain
of a FIR filter (the coefficients of y) with an infinite signal ¢ (the weights of the linear
combinations). In the z-domain we then have I(z) = &,(2)t(z)n/2? The structure of I(7)
now follows directly from b(z)/a(z) — b{(2)/&(z) = U{z)y(2). o
The equation in Theorem 1 can be rewritten as b(z)a(z) — b(2)a(z) = [a(2)]*r(z). The
same equation in continuous time is found in {16} where it directly follows from certain
interpola;tion conditions, which come from [19]. Note that the residual contains an all-pass
transfer function &,(2)/a(z). It was recently observed in [21] that judicious applications
of Beurling’s theorem allow to conclude that the residual k(2) — A(z) must contain an
all-pass (inner) factor, which is exactly what we find here. Note that if ¢ = n — 1, the
polynomial 7(z) reduces to a scalar o, which is also a special case considered in [16].
Let us now show that solving the equation of Theorem 1 is equivalent with solving a set
of multivariate polynomials, Note that the coefficients of b and » appear linearly in the
equation. Hence we can write fi;( bt ot )= A, where the elements of A; € Rvta)xn gng
A, € R(OX1 516 linear and quadratic functions of the elements of @. We can eliminate b
and 7 by requiring that this overdetermined set of equations is consistent, so that we find
rank[A1) = rank[A; A;) = n. This is only satisfied when at least gof the (n+1)x (n+1)
minors vanish, which leads to a set of multivariate polynomials in the coefficients of . For
the special case that ¢ = 1, we find just that the (n + 1) x (n + 1) determinant of (4, A,
should vanish. Since there is only one unknown coefficient g, this leads to a polynomial.
. As an example, for n = 2 and ¢ = 1, we find a 3rd order polynomial and hence three
solutions of our non-linear generalized SVD problem.

Let’s finally mention that the error is always orthogonal to the approximant. Indeed, for
finite p, Y0, hi(hi—h:) = 0 which implies that the vector of residuals {which represents the
gradient of the object function) is orthogonal with respect to the approximating impulse

response. For p — oo, one can use z transforms to find that § A(2)(h(z) — I-z(z))%’-" =0,

11



This orthogonality in the z-domain is exploited in [21] to observe that the residual E(z) =

h(z)—h(z) should contain an all-pass transfer function, which is confirmed by our Theorem
1

9 An example

We consider the four disk system of [18]. The transfer function is

0.04482° 4 0.23682* + 0.00132° + 0.02112% + 0.2250z + 0.0219
26 — 1.202425% 4 2.367521 — 2.00392° 4 2.23372% — 1.0420z + 0.8513

The results of the time domain iteration with p = 100, ¢ = 4 are shown in Figure 1 and 2

h(z) =

for 30 iterations. The reduced system is:

0.17472° + 0.10612% — 0.21462 + 0.3144
24— 1,71002% + 2.330522 — 1.6201z + 0.9148

with an error of 0.4793. Next the z-domain iteration is applied {which is equivalent to

h(z) =

the time domain iteration for p = 100). Different initial values are considered: With the

balanced truncation as initial system (initial error of 0.6898), we find:

0.18212° + 0.09332% — 0.2022z + 0.3065
7%~ 1.71392°% + 2.33332% — 1.6241z + 0.9148

with an error of 0.4779, This system is very similar to the one we found with the time

H(z) =

domain iteration (for p = 100). With the balanced gains ({15]) as initial system (initial
error 0.8082), we find:

—0.01672% + 0.18652% + 0.1458z + 0.0069
z4 4+ 0.22052% + 1.711922 4 0.21252 + 0.8793

with an error of 0.2847. The conclusion is that with an initial model that has a larger L,

H(z) =

error, we converge to an L, solution with a lower error,

The error as a function of the reduced order is as follows

Order 5 4 3 2 1
Error | 0.2644 | 0.2847 | 0.7424 | 0.7537 | 1.6340

Since the original plant has 3 complex conjugated pole-pairs (resonances), every time the
number of pole pairs is reduced, a big jump in the minimal error is visible (between 3 and
4, and between 1 and 2). On the other hand, when a decaying exponential is deleted, the

error stays almost constant (between 4 and 5, and between 2 and 3).

12
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Figure 1: The interpretation as an inverse iteration scheme allows us to estimate the
asymptotic convergence rate, which will be governed by the two largest eigénva,iues of the
matrix T}, The smallest singular value Tmin(H) (shown left) will decrease linearly on a
semi-logarithmic scale (asymptotically as the number of iterations k — o0), with a slope
determined by AE,"‘/A?‘". This ratio is shown on the right. Observe that already after 5
iterations, we have reached the asymptotic regime. One can also show that asymptotically,

the angle between two consecutive iterates y* =1 and y!*! will be governed by the equation
OO logio( (sH) 1) = Logiol (y+11)'y W)’
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Figure 2: Comparison of the impulse responses. Full line = the original, *’ is the ap-

proximant, Top left=balanced, bottom left= L;. Also the Bode diagrams are compared.

Full line = the original, dotted line = balanced, dashed line = L;. Top right=magnitude,

bottom right = phase.
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