ESAT ~51S8T A
/ufmf yq - 1994

Neural Optimal Control

of Fed-batch Fermentation Processes

Johan Suykens, Jan Van Impe!
Bart De Moor?, Joos Vandewalle

K.U. Leuven - Department Electrical Engineering - ESAT
Kardinaal Mercierlaan 94, B-3001 Leuven, BELGIUM
tel: 32/16/22 09 31 - fax: 32/16/22 18 55
e-mail: suykens@esat.kuleuven.ac.be

or: vanimpe@esat.kuleuven.ac.be

December, 1992

Submitted to
AUTOMATICA

BRIEF PAPER

1Senior research assistant with the N.F.W.O. (Belgian National Fund for Scientific Research)
2Research associate with the N.F.W.O. (Belgian National Fund for Scientific Research)

Abstract

We propose a neural optimal control strategy for a fed-batch fermentation process. The
principle of parameterized nonlinear static state feedback is applied by means of neural con-
trol. Learning of the interconnection weights is done by optimization of a simulation result
of interest. A procedure is proposed of gradually extending the network with hidden layers
in order to improve the performance of the system. To illustrate the method some simulation
results for a penicillin G fed-batch fermentation process are given. As we come very close to
the theoretical optimal control result (in the sense of Pontryagin), this method may be useful

in calculating optimal profiles which are analytically intractable.

Keywords: multilayer feedforward neural networks, nonlinear optimization, bioreactor con-

trol, fed—batch fermentation process

1 Introduction

The design of high performance model based control algorithms for biotechnological processes
is hampered by two major problems which call for adequate engineering solutions. First, the
process kinetics are most often poorly understood nonlinear functions, while the corresponding
parameters are in general time varying. Second, up till now there is a lack of reliable sensors
suited to real time monitoring of process variables which are needed in advanced control
algorithms. Therefore, the earliest attempts at control of a biotechnological process used no
model at all. Successful state trajectories from previous runs which had been stored in the
process computer were tracked using open-loop control. Many industrial fermentations are
still operated using this method.

During the last two decades, two trends for the design of monitoring and control algorithms
for fermentation processes have emerged (Bastin 1991). In a first approach, the difficulties in
obtaining an accurate mathematical process model are ignored. In numerous papers classical
methods (e.g. Kalman filtering, optimal control theory, ...) are applied under the assumption
that the model is perfectly known. Due to this oversimplification, it is very unlikely that a real
life implementation of such controllers —very often this implementation is already hampered
by e.g. monitoring problems— would result in the predicted simulation results. In a second
approach, the aim is to design specific monitoring and control algorithms without the need
for a complete knowledge of the process model, using concepts from e.g. adaptive control and
nonlinear linearizing control. A comprehensive treatment of these ideas can be found in the
textbook by Bastin and Dochain (1990) and the references therein.

Van Impe (1992a and 1993) has shown how to combine the best of both trends into one
unifying methodology for optimization of biotechnological processes : optimal adaptive con-
trol. This is motivated as follows. Model-based optimal control studies provide a theoretical
realizable optimum. However, the real life implementation will fail in the first place due
to modeling uncertainties. On the other hand, model-independent adaptive controllers can
be designed, but there is a priori no guarantee for at least suboptimality of the results ob-
tained. The gap between both approaches is bridged in two steps. First, heuristic control
strategies are developed with near optimal performance under all conditions. These subopti-
mal controllers are based on biochemical knowledge concerning the process and on a careful

mathematical analysis of the optimal control solution. In a second step, implementation of

these profiles in an adaptive model-independent way combines excellent robustness properties
with near optimal performance.

The main contribution of this paper is the following. We illustrate that, as an alternative
to applying Pontryagin’s minimum principle (see e.g. Bryson and Ho 1975) in the first step of
the above procedure, the determination of the theoretical optimal profiles can be done with
an excellent accuracy by using a neural network. In this way, the new methodology of optimal
adaptive control could be easily extended to biotechnological processes which are analytically
intractable. This is for instance the case for fermentation processes involving mixed cultures
(and thus more than one substrate and/or biomass), for which a complete optimal control
solution does not exist up to now.

It is known that multilayer neural networks with one or more hidden layers can approx-
imate any continuous nonlinear function (Funahashi, 1989; Hornik, 1989). This means that
these networks can be used also in order to parameterize the control input to a fermentation
process. The neural network represents then a nonlinear mapping from the state space to
the control space and acts as nonlinear static state feedback. The method for learning of
the interconnection weights is based on a simulation approach, where the simulation result of
interest is to be optimized (see also Suykens and De Moor, 1992). A procedure is proposed
that adds hidden layers to the neural network making use of the previous results in order to
improve the performance.

In this paper the proposed methodology is applied to the optimization of the penicillin G
fed-batch fermentation process, for which a complete optimal control solution is described in
the literature (see e.g. Van Impe et al., 1992b). The paper is organized as follows. In section
2 the penicillin fed-batch fermentation process is briefly described. In section 3 the principle
of parameterized static state feedback by multilayer neural networks is introduced. Section
4 gives a method for learning of the interconnection weights through a simulation approach.

Some simulation results and a comparison with optimal control are given in section 5 and 6.

2 Process model and optimization problem

In this section we introduce a commonly used model for the penicillin G fed-batch fermenta-
tion process, and formulate an optimization problem in order to maximize the final amount

of product.

2.1 Process model

According to Bajpai and ReuB (1981), the penicillin G fed-batch fermentation process can

be described by the following nonlinear mathematical model :

ds dX
w7 = HAtGae o= ad
(1)
dP dv
= —k 2 =
dt B~k dt

where the state variables S, X, P, and V are respectively the amount of substrate (glucose)
in broth [g], the amount of cell mass in broth [g DW] (DW stands for dry weight), the amount
of product (penicillin) in broth [g], and the volume of the liquid phase in the fermentor [L].
Concentrations C,, C and C, are defined as S/V, X/V and P/V. The input u of the system is
the volumetric substrate feed rate [L/h]. C, ;. (expressed in [g/L])is the (constant) substrate
concentration in the feed stream u, while kj [1/h] is the product hydrolysis or degradation
constant. Observe that this model structure is representative for a whole class of fermentation
processes with product formation.

o, and 7 are respectively the specific substrate consumption rate [g/g DW h], the specific

growth rate [1/h] and the specific production rate [g/g DW h]. These are interrelated by :

I
o=——+m+
Ya:[s Y;J/S

with Y/, the biomass on substrate yield coefficient [g DW/g], Y,/, the product on substrate
yield coefficient [g/g], and m the specific maintenance demand [g/g DW h]. In the case of
the penicillin G fed-batch fermentation process, p and 7 are modeled using the following
nonlinear functions of the concentrations C, and C; :

Specific growth rate yu : Contois—kinetics

C

h=lie e T)

with po the maximum specific growth rate [1/h] and K the Contois saturation constant for
substrate limitation of biomass production [g/g DW].

Specific production rate 7 : Haldanekinetics

C

K, +C, +C2/k; (3)

E— o

3

with 7, the specific production constant [g/g DW h], K, the Monod saturation constant
[g/L] and K; the substrate inhibition constant [g/L].

Observe that the process model (1) can be written in the form
x =f(x)+bu (4)

where the state vector x is defined as (! denotes the transpose) x = [z 77 z3 z4]' =

[S X P V), and f = [—0o(x)zo p(x)z; w(x)z2 — kaza 0]', b = [C,in 00 1]

2.2 Optimization problem

The optimization problem considered in this paper is to maximize the final amount of product
P(ty) for a given total amount of substrate, or equivalently, to minimize a performance index
J:

J[u(t), 21(0), 4] = —=a(ts) (5)

under the following set of constraints :

1. The final volume V is fixed :
z4(ty) = Vg (6)

Observe that, due to the fourth model equation, this means that the total amount of

substrate available is fixed a priori.

2. The initial amount of biomass z,(0) and of product z3(0) is given, while the initial
substrate amount z1(0) is free. The initial volume z4(0) follows from :

zu9))

z4(0) = V-:+ Co:

where V, is the (known) initial volume without any substrate. Remember that substrate

is added as a solution with concentration C, ;n.

Observe that the final time ¢y is free and can be used as an additional control variable.
Furthermore, all state variables are assumed to satisfy z;(t) > 0 (V¢,t). We do not include
this condition as a constraint in the optimization problem, but we assume that the model (1)

is modified such that it is automatically fulfilled.

3 Neural controller structure

For the neural controller we apply the principle of parameterization. The control signal u is
the output of a feedforward neural network with a predefined and fixed structure. We will
start with a very simple neural network consisting of one neuron and we will demonstrate
that good results can be obtained with this network. It will also be illustrated how the

performance can be improved by introducing hidden layers.

3.1 Neural network without hidden layers

In the 'one neuron case’ (Fig.1) the control signal u can be parameterized as
u = s[upax - tanh(w'z + 0)] (8)

where z = [z1/24 22/z4]! = [Cs C;)' and w = [wy wy]* is the vector of interconnection
weights. In other words, we assume that the control is a (nonlinear) feedback law of the
concentrations C, and C,. This assumption is inspired by the the analytical structure of the
specific rates u (2) and 7 (3), and by the fact that product P does not explicitly appear at
the right-hand side of the differential equations for S, X and V (1).

We consider a neuron with zero threshold § = 0. The parameter upr4x is the maximum
achievable value of the control signal u. Two nonlinear functions appear in control law (8):
the tangent hyperbolic function tanh(a) = (1 — ezp[—2a])/(1 + ezp[—2a]), and the function
s(a) with s = a if @ > 0 and s = 0 if @ < 0 which guarantees that u(t) > 0 for all ¢ (Fig.2).
Observe that w'z = 0 is a linear switching line that divides the (C,, Cz)-plane into two parts:

a part where u = 0 and another where u = uprax - tanh(w'z).

3.2 Optimization problem after parameterization

With this specified structure for the control signal the optimization problem translates into
minimization of :

J[w, upmax,z1(0),tf] = —z3(ty) (9)

under the same constraints (6) and (7) as for (5). Observe that, as compared to (5), the
number of degrees of freedom has been drastically reduced, because only wy, w2 and uprax

are to be determined instead of the whole input profile u(t) (Vt).

3.3 Neural network with hidden layers

Once an optimal solution is found to (9) we can try to further decrease the value of cost
function J by introducing hidden layers into the network. In the case of one hidden layer

(Fig.1) the control signal becomes then :
u = s{upax - tanh(w'tanh(T z))]

where w (€ R?*1) and T (€ R?*?) contain the interconnection weights of the output neuron

and of the hidden neurons respectively. In the case of m hidden layers this becomes :
u = s[uprax - tanh(witanh(Ty - - -tanh(Tr z)-)]

The increased number of parameters allows to realize a nonlinear switching curve. In the
following section we will show how the results to (9) of the one neuron case can be used for

learning of the weights when the network is extended with hidden layers.

4 Learning algorithm for the interconnection weights

The solution to the optimization problem (5) that we propose here consists of the following

three major steps :

Step 1 Random search for the weights in the one neuron case.

Step 2 Application of a (local) nonlinear optimization method starting from Step 1.
Step 3 Extension of the neural network with hidden layers.

We discuss now each of these steps in detail.

4.1 Step 1 : Random search for the one neuron case

In the one neuron case we have to solve the optimization problem (9). We simplify this

problem first to an unconstrained minimization problem
J[w] = —a3(ty) (10)

by fixing uarax, z(0), ;. The performance index J is calculated from the simulation result

of the differential equations (1) using certain values for w, z(0) and ;. An estimate for

6

uprax can be found from the equation 4 = u combined with the constraint z4(ts) < V; (7).
We propose then random interconnection weights w; and w; : normal distribution with zero
mean and a standard deviation chosen such that O{ E{w'z}} = 1 (see also Fig.2), where E{.}
denotes the expectation operator and O the order cf magnitude. This procedure is repeated

then for some other values of upsax, (0), ty.
For the unconstrained minimization problem (10) other methods like genetic algorithms

can be used. But in our case of two weights random search turns out to work fairly well. In

any case we need a global search procedure because (10) may have many lecal optima.

4.2 Step 2 : Local optimization of the one neuron case

The results of Step 1 can now be used as starting point for a (local) nonlinear optimization
routine (e.g. constr of Matlab, that uses a technique of sequential quadratic programming).

We solve then a constrained minimization problem of the form
J[W,UMAX:II(U)th]:_$3(tf) (11)

with constraint z4(¢;) < Vi (7). The file where the objective function and the constraint are

evaluated consists of the following calculations

[f,g}=xprime(inpar)

% input arguments: inpar: vector containing W, upaax,Z1(0),t5
% output arguments: f: performance index , g: constraint

- compute z4(0) from z;(0)

- apply an integration rule to the system of differential equations
- evaluate the performance index J from the simulation result

- evaluate the constraint from the simulation result

4.3 Step 3 : Extension of the network with hidden layers

Once we have found the optimal linear switching line w'z = 0 in Step 2, we can try to find
a better (nonlinear) switching characteristic by extending the neural network with hidden
layers. It is possible then to use the optimal results of Step 2 as starting point for a constrained

minimization problem. In the case of one hidden layer we have :

J[w, T, upmax,z1(0),t7] = —z3(ty)

under constraint (6). The starting values for the interconnection weights are then :

W= i\"y’
o

T = al

where a is chosen such that O{E{aTz(t)}} << 1. The motivation for this choice is that the
nonlinear switching curve witanh(T z) = 0 tends to the linear switching line wiz = 0 for
@ — 0. This trick can be repeated if one wants to add more hidden layers. An advantage
of this technique is that it is not needed to relearn the weights from the beginning (Step 1).
Instead, one can improve the results of Step 2 by gradually extending the neural network. The

degree of improvement can even be quantified based on the decrease in performance index J.

5 Illustrative case study

5.1 Model

For the model (1) we take the following parameters (in [g,L,h]-units) (see Bajpai and Reuf
1981) : Cyin = 500, ky = 0.01, Yy, = 0.47, m = 0.029, Yp7, = 1.2, pic = 0.11, K, = 0.006,
T = 0.004, K, = 0.0001, K; = 0.1. For the initial state variables we take z,(0) = 10.5,
z3(0) = 0, V. = 7. The final volume is Vy = 10. For numerical reasons we simulate the
system with the state variables z; and z expressed in [kg]. In order to assure that z;(t) > 0

(Vi,t), we modify the set of differential equations (4) as follows :

maz{0, f; + bju} if z; <0
fi+biu if z; >0

5.2 Learning algorithm

Step 1 For the unconstrained optimization problem (10) we fixed uprax, z1(0) and ty to
0.015, 500 and 120. After 100 simulations with random weights, we obtained

w; = —70.10 and wy = 91.01 resulting in a performance index J = —25.43.

8

Step 2 We solved then the constrained optimization problem (11) by means of the constr
function of Matlab. The input parameter inpar for the optimization routine was taken
from Step 1 (inpar = [—70.10 91.01 0.015 500 120]*). After 50 iterations we obtained
as optimal result w; = —69.89, wy = 91.20, uppax = 0.0198, z1(0) = 500.78 and
ty = 126.60 with performance index J = —63.67. The simulation results obtained
with these optimal parameters are shown in Fig.3. For a lower initial state S(0) good
results can be obtained by the same network structure : with initial parameter vector
inpar = [—-70.10 91.01 0.015 20 120)%, we obtained after 50 iterations as optimal result
inpar = [—68.88 117.86 0.019 35.68 171.26]* with J = —62.50 (see Fig.4).

Step 3 If we compare the results of the neural controller with the results of optimal control
theory from Pontryagin’s Minimum Principle, we see that we are very close to the
ultimate performance index J. The optimal results derived from the Minimum Principle
are (see e.g. Van Impe et al. 1992¢c) : P(t;) = 63.846, t; = 132 and z,(0) = 528.
Another observation that can be made is that the performance index J is more sensitive
to changes in upax and ¢; than to changes in z1(0). Because we are so close to the

theoretical optimum, it makes not very much sense to extend the neural network with

a hidden layer.

6 Conclusion

In this paper we considered the optimization of a fed-batch fermentation process. We have
shown that by parameterization of the control signal by neural networks a solution in feedback
form can be obtained for different initial states of the system that are very close to the
ultimate achievable goal derived from Pontryagin’s Maximum Principle even with a simple
network consisting of one neuron and two interconnection weights. A learning algorithm
for the interconnection weights is proposed than can gradually improve the performance of
the system by adding hidden layers and making use of the simpler network. We believe that
neural controllers will become candidate solutions to control even more complicated processes
for getting an idea of the optimal input profile by numerical optimization, especially in the

case where analytical methods become intractable.

9

Acknowledgments

This research work was carried out at the ESAT laboratory of the Katholieke Universiteit Leuven, in
the framework of a Concerted Action Project of the Flemish Community (entitled Applicable Neural
Networks), and of the Belgian National incentive-program on fundamental research in Life Sciences
initiated by the Belgian State — Prime Minister’s Office — Science Policy Programming. The scientific

responsibility is assumed by its authors.

References

« Bajpai, R.K. and M. Reu8 (1981). Evaluation of feeding strategies in carbon-regulated secondary
metabolite production through mathematical modelling, Biotechnol. Bioeng., 23, T17-738

« Bastin, G. and D. Dochain (1990). On-line estimation and adaptive control of bioreactors, Elsevier
Science Publishing Co.

« Bastin, G. (1991). Nonlinear and adaptive control in biotechnology : a tutorial. Proceedings of the
1991 European Control Conference, Grenoble (France), 2001-2012

« Bryson, A.E. Jr and Y.-C. Ho (1975). Applied optimal control, Hemisphere, Washington - New York
- London

« Funahashi, K.I. (1989). On the Approximate Realization of continuous Mappings by Neural Networks,
Neural Networks, 2, 183-192

« Hornik, K. (1989). Multilayer Feedforward Networks are universal approximators, Neural Networks,
2, 359-366

« Miller, W., R. Sutton and P. Werbos (1990). Neural nefworks for control, Cambridge, MA: M.L.T.
Press

« Suykens, J. and B. De Moor (1992). Stabilizing neural controllers with application to control of
inverted pendulum, submitted to JEEE Transactions on Neural Networks

« Van Impe, J.F., G. Bastin, B. De Moor, V. Van Breusegem and J. Vandewalle (1992a). Optimal
adaptive control of fed-batch fermentation processes with growth/production decoupling, Proceed-
ings of the 5th International Conference on Computer Applications in Fermentation Technology and
2nd IFAC Symposium on Modeling and Conirol of Biotechnical Processes, March 29-April 2, 1992,
Keystone (Colorado), in press

« Van Impe, 1.F., B. Nicolai, P. Vanrolleghem, J. Spriet, B. De Moor and J. Vandewalle (1992b).
Optimal control of the penicillin G fed-batch fermentation : an analysis of a modified unstructured
model, Chemical Engineering Commaunications, in press

« Van Impe, J.F. (January 1993). Modeling and optimal adaptive control of biotechnological processes,
PhD thesis, Department of Electrical Engineering, K.U. Leuven, Belgium

10

Figure captions

Figure 1
Parameterization of the control signal u by a neural network

a/ one neuron case b/ neural network with one hidden layer

Figure 2

Nonlinear functions tanh(.) and s(.) appearing in the neural network

Figure 3
Optimal result with neural controller that consists of one neuron and 5(0) = 500.78
a/ substrate and cell mass concentrations b/ amount of product and volume

¢/ optimal control signal from neural network

Figure 4

Optimal result with neural controller that consists of one neuron and S(0) = 35.68
a/ substrate and cell mass concentrations b/ amount of product and volume

¢/ optimal control signal from neural network

11

x2

Figure 1:

12

tank(a)

0.8 |-

0.6 -

0.z

-0.2 -
~0.4}
206

o8&}

T =
4

4

N

N

Figure 2:

13

0.8

0.6 -

0.4 -

0.2+

-0.2 -

~0.4

-0.6 |-

-0.8

-0.5

10

Cs[g], Cx [gl]

70

Plg), V(L

0.018

0.0t6

0.014

0.012

v [LA]
o
2

0.008

0.006

0.004

0.002

Cx

t[b)

140

t[b]

40

t[b]

Figure 3:

14

140

Cs (gL, Cx [gL]

Plgl VL)

=]

70

Figure 4:

15

