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Abstract

In recent papers El Ghaoui introduced the g¢-
parameter stability margin and the g-parameter per-
formance measure for parameter dependent systems.
For the Euclidean norm, a quadratically convergent
scheme was proposed too, for systems with only two
real parameters. In this paper, we describe how
the Fuclidean parameter stability margin and the
Euclidean parameter performance measure can be
computed, when more than two real parameters are
present. A new method to solve structured total
least squares problems is used.

Keywords: linear systems, robustness analysis,
real parameter perturbations, [, approximation
problems, inverse iteration.

1 Introduction

Robustness of dynamic systems against parameter
variations is a major research topic. In this paper
only real parameter variations are considered. In
{2], Fl Ghaoui introduced the g-parameter stabil-
ity margin for parameter dependent linear dynanic
systems. This is the largest norm of the parame-
ter vector, such that stability is ensured. The norm
of the parameter is measured in the g-norm, Nor-
mally only the Euclidean or the infinity norm are
used (¢ = 2 or 00). In {3}, El Ghaoui also introduces
a parameter performance measure for the H,-norm
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of linear dynamic systems.

The two margins can be computed in the same way.
In {4] a quadratically convergent algorithm is de-
scribed for computing the margins. However, it can
only be used when there two real parameters. In this
paper, we propose an iterative way to compute the
Euclidean parameter margins without restriction on
the number of parameters. The method was intro-
duced in {1). It was first used to solve Structured
Total Least Square problems. The computation of
the Euclidean parameter margin can be written as
a similar problem. The convergence of the iterative
scheme is not guaranteed, but in practice it gives
good results.

The structure of the paper is as follow: In section 2,
the definition of the ¢g-parameter stability margin is
stated again, The definition and calculation of the ¢-
parameter performance margins are summarized in
section 3. In section 4, we show how the calculation
of the Euclidean parameter margins can be reduced
to an iterative scheme. In section 5, these concepts
are illustrated with an example. The conclusions are
summarized in section 6.

2 The g-parameter stability mar-
gin

In this section, the basic definitions are recapitulated
for the g-parameter stability margin {g-PSM). This
section is based on [4].

Consider a linear, time-invariant closed-loop system
of order p

i = Ala)z

where z is the state and A(a) is the p x p dynamic
matrix of the plant. The entries of A(a) are poly-
nomially dependent on the parameter vector ¢ with
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length 7. The nominal value of ¢ is assumed to be
0. This is not a restriction.
The ¢-PSM of A(a) is defined as
R (A):= ggixr}‘{ﬂa“q | A(a)is unstable} (1)
In this paper only the Euclidean norm (g = 2) will
be considered. Problems as (1), e.g. p-analysis are
often solved by looking at the following problem:
min {{lall2 | 3w : det(A(a) - jwl) = 0} (2)
To avoid the problem of having to perform a fre-
quency sweep, the method proposed in [4] (also in
[6]) is to express the critical constraint (A(a) having
an eigenvalue jw) as a determinantal equation

min (il | det[A(a)] = 0)

(3)
A{a) is real, polynomial matrix of order E(P;—l-)-,
called a Lyapunov matrix. An algorithm to con-
struct A(a) can be found in [5).

If A(a) has terms of higher degree in 4, it is possible
to rewrite {3) as

n
det [A + 2 a,-A,] =90

=1

(4)

where A, A; (i = 1...n) are constant augmented
matrices,

In {2] it has been shown that (4) can eventually be
formulated as:

R‘Z(M,T)
Ala)

min {llall2| det[7 + MA(a)] = 0)

anlr, | (5)

block-diag | a1,

In [4], it is explained how this size of the matrix M
can even be reduced further. r is a vector of length
n, of which the elements are the sizes of the blocks
of Afa).

3 The g-parameter performance
margin
This section is based on [3]). It is explained how

an I, performance measure can be calculated, with
respect to real parameter variations.

3.1 The calculation of the H;-norm

In this paper, we restrict ourselves to the continuous
case. For a stable plant with transfer matrix G(s),
the Hy-norm is defined as

1 oo e ) 1/2
161k = (5 [ Trace(G(ju)Glsw)] do)
-00
For a given state space realization of G
G(s)=C(sI -~ A)"'B

The Hy-norm of the transfer function can be com-
puted as

|GI? = trace(LC'C)
where L is the controllability gramian of (4, B). L
is the solution of a Lyapunov equation:

AL+ LA'+ BB =0 (6)

Before continuing, a new operator is defined. Given
a symmetric p X p matrix @, vec(Q) denotes a vector
of length p(p + 1)/2 consisting of the elements of Q
on and above the diagonal.

Equation (6) can then be rewritten as

Al=1b

where { := vee(L), b = vee(—BB') and A is a real
matrix of order n{n+1)/2, whose elements are linear
combinations of the entries of A. A is called the
Lyapunov matrix, An algorithm to construct A is
given in [5]. If the algorithm is used, vec(.) has to
store the upper triangle of the matrix column by
column:

11
d11 q12 Q13 g::
qiz 422 423
vee 413 923 ¢33 = | @3
. ] , q23
33

The H3 norm of a transfer function can thus be writ-
ten as:

HGIE = cA™%
where ¢' = vee(C*'C. + H). ‘.’ denotes the element-
wise product of two matrices. H is defined as

[1 2 2 2

-

1 2
2 2
2 1
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8.2 The minimum distance to singularity

If G is perturbed by n real parameters, our perfor-
mance index becomes

J(a) = |Gl = c(a)A(a)""b(a)

The entries of A, B and C are assumed to be poly-
nomial in the parameters ;. Given a scalar Jy.z,
a measure for the robustness in Hy performance is
defined as:

PPM(Jres) = minfllall | J(@) 2 Jrer)

We look for the minimum Euclidean norm (g = 2)
of the parameter vector which increases the perfor-
mance index J{a) up to a certain level above the
reference value Jy.f.

Using the identity

det(I + uv') = 1 + v'u

yields

1
T(a) = Jrey < det(A = 57—

be)=0

Therefore, the performance margin can be written
as!

. i
PPM = min {"a”z | det{A(a) - j::;b(a)c(a)) = 0% |
7

Expression (7) has the same form as (3). It can
be solved in the same way. When Jy.y — oo, the
parameter stability margin is obtained.

4 The calculation of the Eu-

clidean parameter margin

To solve the Buclidean parameter margin, a new
method, described in [1] is used. This method is iter-
ative, It is not guaranteed to converge to the global
optimum. In most cases, however, the method works
well and fast.

In the previous sections it is shown that the cal-
culation of the Euclidean PSM and PPM, can be
transformed to the following problem:

min {llall2 | det[T + MA(a)] = 0}

where A(a) = block-diag [ ay Iy, It is
obvious that this problem can be reformulated as

M{a)y=0

vy =1

where M(a) = Mo+as My +as My 4 ... +a, M, and
My = 1.

This problem can easily be solved using Lagrange
multipliers:

L = |lalif + 21'M(a)y + My'y - 1)

where ! is a vector of Lagrange multipliers and A
is a scalar Lagrange multiplier. Differentiation with
respect to the different unknowns yields necessary
conditions for the solution

anly, ]

min ||af|3 subject to

g—i ax +1'Myy =0 (8)
% M(a) 492 =0 )
O+ yy=1 (10)
% . Maw=0 (11)

After some manipulations the following ‘non-linear
generalized singular value problem’ comes up:

Iy = Dyzo (12)
Iz = Dgyo (13)
where
D, = SMlaXMi) (1)
=1
D, = S (Ma)(Ma) (15)
i=1

and y'y =1, 2'z = 1 and | = zo.

The ‘non-linear generalized singular value problem’,
is solved using an inverse iteration algorithm ([1]).
Until now, convergence is not guaranteed. However,
in practice, most problems converge fast and accu-
rately.

5 Example

In this section we will show an example. The exam-
ple has only 2 parameters to make graphical repre-
sentation easier. However, as explained in the pre-
vious section, the method used is not restricted to

382




2 parameters, The example of [3] is used, slightly
modified. Consider the following state feedback
problem

. _[-1 0 T+a —8+4a
e [ S]] )

T+ay -8+ a
S
- x
7= | V10w
vy = Z

The LQR controller is:

e K ( 0.1413  0.07358 )x

~0.1604 -~0.0872

In figure 1, the H; norm of the closed loop transfer
function is shown as function of the parameters a;
and az. The levels shown are J,.y = yJ(0), for
v = 1,3,10,00. The level Jyy = oo is also the
border between the stable and the unstable region.
The Euclidean parameter performance margin for
Jrey = 3J(0) is 14.6019. In the parameter space,
the region bounded by the Buclidean PPM is rep-
resented by the dotted circle. For all the points
within that cirele, it is guaranteed that the corre-
sponding closed loop has a H,-norm smaller than'3
times the nominal one. The circle touches the level
Jrer = 3J(0) at (ay, ap) = (—14.4567 , ~2.0543).

For comparison the 0c0-PPM for J;.y = 3J(0) is also
computed. The computation is based on {3]. The
parameter region bounded by this margin is a square
with edges of length 2 10.9439. The square touches
the level Jyoy = 3J(0) at its upper left hand corner,
Remark: The Euclidean parameter margin {circle}
is not necessarily more conservative than the oco-
parameter margin (box). This can clearly be ob-
served on the plots. Which region is more conserva-
tive only depends on the location of the constraint,
In figure 2, the logarithm of the singular values of
M{a) are plotted, as the iteration proceeds. We
started from random vectors z and y (both with
norm 1). The stop criterion used was: [[M(a)yll2 <
le — 8. It can be clearly observed from the plot that
the smallest singular value decreases until the matrix
is singular enough. It is not sure that the method
will converge to the global optimum or that it will
converge at all. Therefore, it is safe to start form
different random vectors. E.g. in the above example

the iterations sometimes converged to a point with
Euclidean norm 14.7342. This is larger than the
performance margin mentioned above. The smallest
value is taken as the parameter performance margin,

6 Conclusions

In this paper we showed how the Euclidean SPM
and PPM can be computed by solving a ‘non-linear
generalized singular value’ problem., This can be
solved iteratively, This method can be used for any
number of real parameters. This is an advantage
over the method proposed in [4], that is restricted
to 2 parameters. The iterative method can also be
extended to compute complex parameter margins.
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Figure 1: The Hj-norm of the closed loop system for varying a; and a;. The levels J,.; = 4J(0), for
v = 1,3,10, 00 are shown. The dotted circle and box are the regions bounded by the Euclidean PPM and

" the 00-PPM for the level J;.; = 3J(0). These regions touch the level J..; = 3J(0).
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Figure 2: The logarithm of the singular values of the matrix M(a) as a function of the number of iterations.
The smallest singular value becomes small, implying that M(a) becomes singular.
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