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1 Motivation ~

Optimization of fed-batch fermentations has been tradi-
tionally sought with respect to the volumetric substrate
feed rate while keeping the substrate concentration in the
feed fixed. Formulating the problem with the feed rate
as the control variable yields a singular optimal control
problem. A number of techniques have been proposed
to convert the singular control problem into a nonsingu-
lar one. To avoid a singular control problem, variables
other than the feed flow rate may be taken as the control
variable,

As s matter of fact, these methods all suffer from prob-
lems with respect to practical implementation. There-
fore, in this paper we adopt the traditional point of view,
i.e., singular optimal control with the volumetric sub-
strate feed rate as the manipulated variable. As a case
study, we consider processes with a decoupling between
growth and production, characterized by a monotonic
specific growth rate and a non-monotonic specific pro-
duction rate,

The results presented here are in this way general, that
they are written in terms of the specific reaction rates.
In other words, an exact analytical expression for these
rates is not required a priori. In addition, no assumptions
are made concerning the metabolism involved for biomass
survival and product synthesis. The singular arc, which
usually coincides with the production phase, is analyzed
very carefully. The results obtained -summarized in The-
orems 1 and 2- are at the basis of a heuristic optimization
methodology described in detail in (1). These heuristic
controllers can also be motivated from the biochemical
viewpoint. In [1),[2],[3] it is shown how these controllers
then lead in a very natural way to the design of model-
independent control strategies which combine nearly op-
timal performance with excellent robustness properties:
opiimal adaptive conirol.
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2 Problem statement

Consider the class of fed-batch fermentations described
by a mode] of the form:

ds dX
;d}; = —oX + Cs,inu ;{t/— = pX
il X - kWP rry = u

For an explanation of all symbols used, refer to the
Nomenclature, S is considered the only limiting sub-
strate for cell mass growth and production, Note that
decay of product is explicitly taken into account using a
first order model, where k) denotes the specific product
decay rate. At this point we allow the specific rates o,
p and 7 to be arbitrary functions (which may depend on
substrate, cell and product concentrations) interrelated

by:
o=pf/Yops +m+n/Yp (1)

This general model can represent any metabolism (main-
tenance, endogenous, or mixed) for biomass survival and
product synthesis. For more details see [1}. The shape
of the specific rates u(Cs) and 7(Cs) is as depicted in
Figure 1: the enzyme catalyzed production is not associ-
ated to the microbial growth. A practical example is the
penicillin G fed-batch fermentation process (4].

By defining (T denotes the transpose):

T

X
¢T

[SX PV
[~oX uX (71X — knP) 0], bT & [Csin 00 1]

e Iie

we obtain the following state space model linear in the
control input u (i.e., the volumetric substrate feed rate):

9 _ fx)+b u @

dt

The initial values for biomass X, #2(0) = Xy, and prod-
uct P, 23{0) = Py, are fized. However, we assume that
the initial value for substrate S, z1(0), is an additional
control parameler that can be manipulated to minimize
the performance index. The initial values for S and V
are only constrained by:

Van Impe J., De Moor B., Vandewalle J., “*Properties of the optimal singular control of

fedub.atch fermentation processes"”, in Proc. of the European Control Conference (ECC'93)
Groningen, The Nederlands, June.-Jul. 1993, pp. 274-279., Lirias number: 180748, ,




P g~ A

n(C’s) (Cs)

O
(9] Cs 00

Cs

Figure 1: Specific rates p and

24(0) = Vi + 21(0)/Cs,in ()
with V, the given initial volume withou! substrate. Note
that substrate is added as a solution with concentration
Cs,in. The objective function considered here is:

Ju,21(0)] = glx(ts), 1} = —y2 X (4} — 1pP(ty) + ‘rfa')

with vz, yp the unit ‘prices’ associated with cell mass and
metabolite product respectively, and 4; the unit ‘operat-
_ ing cost’, The optimization problem is then to determine
" Jr the set of differential equations (2) the optimal initial
state xo and volumelric substrale feed rate profile u*(t)
that minimize the performance indez (4), subject to:

= The final time ¢; is free

« All variables are non-negative physical quantities:

vte0,ty}: z(t) >0, fori=1,...,4 A u{t)20
s The total amount of substrate available, «, is fized:
21(0) + f3! Cainult) dt = o

4
z4(ty) = V(ty) = Vy, Vg fixed (6)

In order to obtain a well-posed optimal control problem,
we must fix either {; or o. We always fix «, while letting
t; free. This can be motivated as follows:

« By fixing o, (6) can be easily taken into account.

» By letting ¢, free, we can derive more general proper-
ties of the optimal control profile with & clear physical
. ‘nterpretation (see Section 4 and [1}).

"« From an industrial point of view t; is very often the
most important factor. This can be taken into account
in two ways. First, increase v, in {4). Second, use the
additional degree of freedom 2 (0) to calculate a trade-off
between the value of the cost J and {;.

If we neglect the unit operating cost v; and fix the total
substrate amount o, then minimizing performance index
(4) is equivalent to maximizing the average yield .

(5)

3 Optimal control

The two point boundary value problem TPBVP.
Pontryagin’s Minimum Principle (see e.g., [5]) states that
the following Hamiltonian % must be minimized over all
admissible control inputs u(t):

H=AT[f(x)+ by £
¢=Mfitrfatrafs
The adjoint vector A satisfies:

¢+ Yu
‘f" = Cs,inAl + Mg

(7)

a__om_ T
dt~  &x =~  8x

Together with (2), we obtain a system of 8 first order
differential equations, with boundary conditions:

» 22(0), z3(0), and z4(t;) [see (6)) are given; 21(0) and
#4(0) are interrelated by (3)

» Mi(ty), i =1,...,8 are given by (g is the terminal cost):

0
Mi(ty) = ﬁ:{x(tl):t!}
a The boundary condition complementary to {3) is ([1]):
Cs_;n)q(O) + A4(0) = 1,0(0) =

Since H does not depend explicitly on ¢, we have along
an extremal trajectory (see e.g., [6]): H = H*, with H*
a constant, If in addition the cost index is independent
of final time #; [e.g., ¢ = 0 in (4)], we have: H =0,
Extremal controls, In practice, the feeding pump ca-
pacity u(t) is bounded:

0= Unrn Su(t) < Unmax,
Minimization of (7) then leads to:

f ¢<0
if =0 {4 <t<tiq
if v>0

Along a so-called singular interval {t;, ¢i41] the function ¢
remains identically zero, so the Minimum Principle fails
to provide u(t) during this interval, The singular control
U,ing(t) is then obtained by repeatedly differentiating the
function ¢ until u appears explicitly ({1},[2),[3]):
a of
= ab

AT (o1 /0x)d — (8d/8x)f)

AT [ad/ox)b

Ustax given

Usmax

u*(t) = { Yging
0

d

It

taing(t) (8
REMARKS

1. As a generic result, the denominator of (8) is indeed
different from zero. This is a singular problem of order 2.
2, In (8) both the numerator and the denominator are
linear in the costates A. On any singular interval, there
exist three linear algebraic equations between them:
d .

W _ATa=0,4=2Ts=H* (9)
with H* a constant. If the cost index is independent of
final time ¢; [e.g., 7+ = 0 in (4)] then X* = 0. The homo-
geneous system (9) specifies three costates as functions
of the remaining fourth one. Then the singular control
(8) is a nonlinear feedback law of the state x only. [ ]

Optimal control sequence for monotonic x and
non-monotonic . The TPBVP has been reduced
to the determination of the oplimal control sequence
[Umax, Umin, Using) 8nd the corresponding switching
times, Initial work along the same lines has beén re-
ported in [6] and [7]. A more detailed analysis can be
found in [1} and [3}.
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Figure 2: General feed rate profile for low Cs(0)

Obviously, the optimal sequence depends on the initial
substrate concentration Cs{0) = 21{0)/24(0). Further-
more, we tacitly assume that the initial biomass amount
22(0) is low, If the initial substrate concentration is fixed
at & low value, the optimal feed rate profile is as shown
in Figure 2. If on the other hand the initial substrate
concentration is high enough, the first interval [0,¢1) of
feeding at the maximum rate should be omitted. The
growth phase [0,7] is then a complete batch phase, un-
til at time ¢ = ¢, singular feeding starts the production
phase. If the initial substrate concentration is free, the
growth phase is again a batch phase, while all substrate
consumed during growth, aeowa, is added at time? = 0.
In other words, in all cases the TPBVP is reduced to a
two-dimensional oplimization of the swilching time ¢ or
the initial subsirate concentration Cs{0), and the switch-
ing lime t;. An efficient computational algorithm, which
has some marked advantages over the algorithm proposed
in [7], can be found in [1}, [3}, and [8].

4 Physical interpretation

The generic case: maintenance coefficient m > 0

Consider first the following performance index:

Ju} = g[x(s)] = —P(ty) (10)

which is of the form (4) with 4; = 0 and = 0, i.e., max-
imization of the final product amount. The total amount
of substrate o (and thus the final volume) is fixed (5),
while the initial substrate concentration C5(0) and the
final time ¢; are free. We prove the following Theorem,
inspired by a result reported in {6]. Furthermore, the
proof we present here is more rigorous.

Theorem 1 Consider the minimization of (10} subject
1o (2). Suppose that

1. o, p and 7 are funclions of subsiraie concentration
C'g only, with continuous derivatives up to Znd order,

£, the mainienance coefficient m is sirictly positive,
Then during singular conirol

1. the subsiraie conceniralion Cy remains constant if
and only if the specific product decay rafe ky, = 0,

2. this consiant value mazimizes the yield x/o.

PROOF

In the following, a prime denotes derivation with respect
to substrate concentration Cs. The Hamiltonian X is
given by (7), with ¢ = (~A10 + Agp + Aam)zg — Azkpzs,
and ¥ = Cs,inAi + 4. The adjoint equations are:

j\; = (.\10" - /\2;1' - )la?l")mg/z.g

5«2 = Ao —dap — haw = (¢ + Asknzs)/z2
da = Ddokn

5\4 = —(A;o" - )\gp’ - Aaﬂ"):ﬂl.'t:g/::g

with boundary conditions

T
ATy = 38 =00 0 -1 =] ()

On the singular interval, we have ¢ =0, ¢ = 0, ¢ = 0

Mo+ dop+ Az = Azkaza/aa (12)
Csinhi+24 = 0
()\10” - /\2#’ - As?l")(c‘s,m - ﬂ = 0

The case £1/z5 = Cs = Cs,in can be excluded as Cp
is then unrealistic high during production. So the last
equation is equivalent to:

Mo = dop' = dax' =0 (13)

The adjoint equations reduce to (C; is a constant):

AL Ch

Ag ~Askrzsfze = —Agza/fz, (14)
)\3 —Bkh(‘—'!)

Aq Cy

The equation for A3 has been solved using boundary con-
dition Aa(ty) = —1 (11). As we know from the optimal
control sequence that the product $(t)u(t) = 0 for all ¢,
it follows from (7) that ¢ = 0 for all ¢, so {14) holds for
all ¢, with boundary condition A2(t;) = 0 due to (11).

For the complete costate to be constant on the singular
interval, obviously it is necessary and sufficient thai the
specific product decay rate ky = 0.

Evaluating d®t/dt? = 0 on the singular interval yields:

Aa(n'zg — p'2g)
h za(A10" = Agp” — Aam't)

(1)
~eX 4 u“:rw (Cs,in — Cs)

a (16)
the second equality due to (2). We first verify that the
denominator in {15) is different from zero. We give a
demonstration by contradiction. So suppose that:

Cs

A;O’” — )12,“” — )la?l'” — 0

(17)
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Together with (12) and (13) we obtain the linear system:

-0 o m—kpzs/za M ¢
- ' A =10
—a" ] As o

(18)
We know there exists a nontrivial solution A(t) since at
least Ag(t) # 0. So for assumption (17) to be true, a nec-
essary and sufficient condition is that the system matrix
has its determinant equal to zero. We have using (1):

A —ufYo ~m—xfY, B x—knzafza
AL SWlg -Vl W
—u"/Y;I. — “,"/Ypl. p" x”

Obviously, A has no zero rows or columns, nor any iden-
tical rows or columns. The only possibility for det(A)
to be zero is that both kj and m are zero, which is in
contradiction with m > 0,

From (15) we conclude now that a necessary and suf-
ficient condition for Cs to be constanl on the singular
interval is ky = 0. Let us determine that constant value,
Solving the first two equations of (18) for Ay/A3 yields:

2
As

#'o — (7 — kpzsfza)o’
T Wo-pd (19)

From kjy = 0 it follows that Az(f) and As(t) are constant
for all ¢, so from boundary conditions (11) we obtain:

Aa(t) = Aalty)
Aa(t) = As(ty)
As a consequence, equation (19) reduces to: #'c — 76’ =

0, or in other words, the singular control extremizes the
product yield:

0
-1

H

d =«
35;(;) =0 (20)
which completes the proof. [ |

REMARKS

1. The apecific rates o, & and 7 are required to be smooth
functions of Cg, in order to ensure the existence and con-
tinuity of at least the first two derivatives with respect to
Cs, thus enabling the calculation of u,n,(t) from equa-
tions (15) and (16). Note that the singular control is
Hnear in the specific product decay rate kj:

aX knVa(x'z2 — p'zs)
in —Cs * 22(Cs,in — Ce)(ao" — dap' — Ayx)

Using = Cs

2. It follows from the above Theorem that the condi-
tion &y = 0 is also necessary and sufficient to obtein the
complete opiimal control for a given Sp -or equivalently
Cs(0)~ as a closed loop solution: clearly the switch from
baich to singular control is then dictated by the condi-
tion Cs = C}, C} denoting the value of Cs for which 7/o
has its optimum.

3. It has been shown in [1] under which conditions the
above results can be extended to the case of continuous

but non-smooth kinetics, i.e., kinetics which exhibit so-
called corner points at certain values of Cg. [ |

At this point we can generalize the above results to per-
formance indices of the form:

J{u] = gix(¢))) (21)
Following a similar way of reasoning, we obtain that the
singular control keeps the subsirate conceniration al a

constant level if and only if by, = 0, where that constant
level satisfies

Aalty)(p'e — po') 4+ As{ty Y (a'o — ne’) =0
which generalizes {20).

REMARKS
1. As an example, if the performance index is taken to
be & profit function of the form (4) with v = 0:

J[u] = X (1) = % P(t))
the final conditions on Ay and As are, using (11):
As(ty) = —7= Aa(ts) = =%
Substitution in condition (22) yields:

(22)

d u T
E(%; +) =0

which can be interpreted ag that the singular contrel maz-
imizes the average yield, weighted by the unit prices of cell
mass and producl.

2, Let us check whether the results of Theorem 1 can be
extended to a performance index which depends explic-
itly on final time #;:

Juj= glx(ts), 1]
Combining the transversality condition:
0

Hlx(ts), Mty), u(ty)) + Zrlx(ts), 1) = 0

with Vt : H = H* (H* is a constant), leads to:
0

Ve € [0,¢7] : Hix(t), MO), u(t) = -+ $u = ~ 20 [x(ty), 1]
On a singular arc the following conditions hold:

v=0: Csindi+Ai=0
J):O: Ao’ = dap’ = dsx' =0

¢+ 3% =0 (Ao +dap+ Aa7)zz — Moknzs + _%!;_ -0
The adjoint differential equations then become:

A o= 0

Xa = dak

: 0

b= hsbies/z 5,/

Aq = 0

Evaluating d*y/dt? = 0 6n the singular interval yields:

)

knda(n'sz — pas) + SL{x(ty), 14
za(A10 — hop'! — Agmi)

which generalizes (15).

Cs:

277




- S

We conclude that for the results of Theorem 1 to hold an
additional necessary and sufficient condition is that {ke
performance inder is independent of the final time ty:

gt—g[?c(t;),tll =0

Special case: maintenance coefficient m = 0

The results of Theorem 1 have been obtained under the
somewhat artificial condition m > 0. We now consider
the limiting case of negligible energy demands for main-
tenance (m = 0). From the proof of Theorem 1 we know
that only the case where both m and kj, equal zero needs
additional justification. Equation (1) reduces to:

o(Cs) = p(Cs)/Yzps + 7(Cs)/ Yo/ (28)

In this case the dimension of the state x can be reduced
by one. Using state equations (2), {23) can be written as:

Cynudt = dS +dX/Yyy, + dP[Y,;,

Integrating from ¢ = ¢ and using (3) we obtain:

1
7o X(O=Xo)

P(t)—Py = Yp;,[Co,in(V()-Va)-5()-

As P(t) does not appear explicitly in the differential equa-
tions for § and X, we can omit the differential equation
for P, P(t) being determined for all ¢ by the above al-
gebraic equation. Furthermore, as the total amount of
substrate o is limited (5), we have using the last state
equation:

Coin(V} - V) =a

So we obtain at t =1;:
P(t) = PotYpploat Xo/Yey|=Ypra [SAs}+X(4)/ Yas)
24

As a result, maximizing the final amount of product P(t;)
is equivalent to minimizing the performance measure:

J(u) = 8(t) + X(t1)/Yzy,

For reasons of compatibility with the above notations, we
denote the costate vector as:

ATW 2 (M 2 M)
with boundary conditions:

T
2 = (1 1Yy )

x
The Hamiltonian ¥ is given by (7), with:
¢ = (=A10 + Agpt)za Y= Csinhi + A4

The adjoint equations become:

2Ty = (25)

Moo= (Ao’ = dapNaa /24
AQ = )\10' - Agp
).(4 = -—(A10" - Agp')zlzglmﬁ

On the singular interval, we obtain:

Csindi + A4 0
Ao — Az = 0
1\10" — }12#’ = 0

which again results in a consifani costate vector on the
singular interval. We also have from the start of the sin-
gular arc on: Az{t) = Ax(ty) = 1/Y,,. For the above
system to have a non-trivial solution X, it is necessary
and sufficient that ¢’y — op’ = 0, or in other words:

d .o
e

d w
or m(;) = 0

by using relation (23). This determines the constant
value of Cs during singular control. Note that d?y/dt? =
0 leads to: )

()\10’" - /\2}1")03 =0

Clearly, Ayo" — Aapu” cannot be zero, so we obtain indeed:

Cs=0

resulting in
oX
aing(1) = Cs,in — Cs

The final time ¢, for this case is obtained as follows, Dur-
ing the last batch phase, we have u = 0, so from (7) we

obtain:
#(ty) =0 (26}
Using boundary conditions (25) this results in:
—o(ts)+ p(ts)/Yepy = 0
or using equation (23):
w(ty) =0

This is equivalent with:
dP
() =0

as we might expect on physical grounds. Note that for
most analytical expressions for the specific production
rate this means that:

Cs(tf) = 0

Again, we can generalize these results to a more gen-
eral performance measure (21), wherein P(t;) has to be
replaced by expression (24). Note that the analytical
expression for g[x{t;)] does not influence the (constant)
level of Cs during singular control. It only determines
the final time t; through condition (26). |
The above results can be summarized in & more general
Theorem.
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Theorem 2 Consider the minimization of performance
indez J[u) = g[x(t;)], subject o the dynamic consiraini
(2). Suppose that o, p and 7 are functions of subsirate
conceniration Cs only, with continuous derivatives up to
Ind order. Then during singular conirol

1. the subsirale conceniration Cs remains constani if
and only if the specific product decay rate ky =0,

2. this constani value satisfies
. . 39‘ ? t ag ? N =
ifm>0: am(ua pa)-!-aza(?rar—vro)—o
ifm=0:7c—-ms' =0

Purthermore, the optimal feed rate u*(t) is obtained in
closed loop for a given value of So.

5 Concluding remarks

In this paper we have analyzed the optimization of fed-
“atch bioreactors with respect to the volumetric sub-
" strate feeding rate. As a case study, we considered the
optimal control sequence for processes characterized by
growth/production decoupling, with monotonic specific
growth rate and non-monotonic specific production rate.

The singular arc occurring during the production phase
has been analyzed very carefully. Besides the results sum-
marized in Theorems 1 and 2, which are important on
their own, the main contribution is the following.

During the last two decades, two trends for the design
of monitoring and control algorithms for biotechnologi-
cal processes have emerged [9). In a first approach, the
difficulties in obtaining an accurate mathematical process
model are ignored. In numerous papers classical methods
(e.g., Kalman filtering, optimal control theory, ...) are
applied under the assumption that the model is perfectly
known, Due to this oversimplification, it is very unlikely
that a real life implementation of such controllers —very
often this implementation is already hampered by, e.g.,
. nonitoring problems— would result in the predicted simu-
.ation results. In a second approach, the aim is to design
specific monitoring and control algorithms without the
need for a complete knowledge of the process model, us-
ing concepts from, e.g., adaptive control and nonlinear
linearizing control. However, there is no guarantee for at
least suboptimality of the results obtained. A compre-
hensive treatment of these ideas can be found in [10} and
the references therein.

We adopt a rather pragmatic viewpoint: we try to com-
bine the best of both trends into one unifying methodol-
ogy for optimization of biotechnological processes, opli-
mal adaptive conirol. The gap between both approaches
is bridged by the development of heuristic control strate-
gies with nearly optimal performance under all condi-
tions. These suboptimal controllers are based on bio-
chemical knowledge concerning the process and on a care-
ful mathematical analysis of the optimal control solution.
As an example, in [1],[2],[3] it is shown how to design,

based on the analysis of the singular arc reported in this
contribution, model-independent control strategies which
combine nearly optimal performance with excellent ro-
bustness properties: optimal adaptive control,

Nomenclature
! time [b]
14 fermentor volume {L)
X amount of cell mass {g DW)
P amount of product (g]
S amount of substrate (e}
Cs substrate concentration {&/L]
Cs.in substrate concentration in feed [e/L]
u input substrate feed rate fL/h
m maintenance constant (gfg DW h
Y2/, cell mass on substrate yield [g DW/g]
Yota product on substrate yield (/8]
kn product degradation constant [1/h
o total amount of substrate available g
m specific growth rate [1/h
x specific production rate [g/g DW h
o specific substrate consumption rate [g/g DW h]
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