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Abstract. We consider the design of a substrate {eed rate controller for a class of biotechnical
processes in stirred tank reactors characterized by growth/production decoupling, for the
most common case of monotonic specific growth rate and non-monotonic specific production
rate. With the volumetric substrate feed rate as the manipulated variable, this yields a
singular optimal control problem. Due to state inequality constraints complete solutions are
especially hard to obtain and almost nonexistent in the literature, However, the techniques
proposed in the literature to convert the problem into a non-singular one all suffer from
problems with respect to practical implementation, Therefore, we adopt the traditional
singular control viewpoint, The algorithm presented has some marked advantages over
algorithms reporied in the literature. In addition, we present a complete general solution in
the realistic case of input and state ineguality constraints. This approach leads in a natural
way to the design of robust optimal adaptive control strategies {Van Impe 1993},
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1. MOTIVATION

Optimization of fed-batch fermentations has been
traditionally sought with respect to the volumet-
ric substrate feed rate while keeping the substrate
concentration in the feed fixed. Formulating the
problem with the feed rate as the control variable
yields a singular optimal control problem.

A number of techniques have been proposed
to convert the singular control problem into a
nonsingular one, by taking variables other than
the feed flow rate as the control variable [for an
overview see Van Impe (1993)]. As an example,
San and Stephanopoulos (1989) proposed a pro-
cedure in two steps. First, the optimal control
preblem with the fermentor substrate concentra-
tion as the control variable is solved to yield an
optimal substrate trajectory. State inequalities
on both substrate and biomass concentration can
be included with relative ease. In a second step
the optimal reactor substraie profile must be real-
ized by manipulating the substrate concentration
in the feed while keeping the volumetric feed rate
fixed. However, they do not solve this step.

These methods all suffer from problems with
respect to practical implementation. Therefore,
we adopt the traditional point of view, i.e., singu-
lar optimal control with the volumetric substrate
feed rate as the manipuiated variable. As a case
study, we consider processes with a decoupling
between biomass growth and product formation,
characterized by a monotonic specific growth rate
and a non-monotonic specific production rate.
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Figure 1: Specific rates p and «

2. PROBLEM STATEMENT

Consider the class of fed-batch fermentations de-
scribed by a model of the form:

ds , dX
g = —oX + Csint E = pX (1)
E = A — th I = U

For an explanation of all symbols used, refer to
the Nomenclature, § is considered the only limit-
ing substrate for cell mass growth and production.
Decay of product is explicitly taken into account:
ky denotes the specific product decay rate. The
shape of the specific rates i and = as function of
substrate concentration Cg is shown in Fig. L: the
enzyme catalyzed production is not essocialed to
the microbial growth. The specific rates o, g and
7 are interrelated by:

c=pulYe, +m+ w/’YP/,

which can represent any metabolism for biomass
survival and product synthesis.

The state vector js defined as x© = [SX PV]
The initia) values for biomass, X, and product,
Py, are fired. The initial substrate value, Sg, is
considered as an additional control parameier in
minimizing some performance index.
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Figure 2: General feed rate profile for low Cg(0)

Vp follows from Vy = Vi + Sp/Cs,in, with V, the
(given) initial volume without substrate. Sub-
strate is added as a solution with concentration
Cs,in. Two general forms for the objective fune-
tion are:

Jift, So] = —7eX(ty) —wP(y) + iy (2)
Jafu, So} [ vz X(4) +vpP(ts) V1t (3)

with yz, yp the unit ‘prices’ associated with cell
mass and metabolite product respectively, and 1,
the unit ‘operating cost’. The optimization prob-
lem is then to defermine for the sel of differen-
tial equations (1} the optimal initial value S§ -or,
equivalently, C3(0)- and volumeiric substrate feed
rate profile u*(t) thal minimize the performance
indez {2) or (3), subject 1o

» the final time £; is free

a the total substrate amount available, o, is fired:

z1(0) + fy/ Csimu(t) dt = o (4)

Y
za(ly) = V(ty) = Vy, Vy fixed (5)

1

If we neglect the unit operating cost vy, then mini-
mizing {2) is equivalent to maximizing the average
yield Y. Minimizing (3) is equivalent to maximiz-
ing the average productivily P.

3. GPTIMAL CONTROL
3.1. Optimal Control Sequence

A detailed analysis of this problem can be found
in Van Impe ¢f al. {1992a), and Van Impe (1993},
Initial work along the same lines has been re-
ported by Modak ef al. (1986). In practice, the
feeding pump capacity u(t) is bounded:
0= Umin S u(t) < Umax, Umax given

Fixed initial state xg. Obviously, the optimal se-
quence depends on the initial substrate concentra-
tion Cs(0) = £1(0)/z4(0). Furthermore, we tac-
itly assume that the initial biomass amount z9(0)
is fow, If the initial substrate concentration is
fixed at a low value, the optimal feed rate profile is
as shown in Fig. 2. Due to the decoupling between
growth and production, the fermentation behaves
as a biphasic process. If the initial substrate con-
centration is high enough, the first interval [0,1)]
of feeding at the maximum rate should be omit-
ted. The growth phase [0,15] is then a complete
batch phase, until at time ¢ = 1, singular feeding
starts the production phase. Finally, if the ini-
tial conditions are on the singular hyperplane, the

growth phase can be omitted completely, while
singular feeding starts from ¢ = 0 on.

Free initial substrate concentration C5(0). The
growth phase is again a batch phase, while all sub-
strate consumed during growth, ayrowen, is added
at time { = (.

3.2. Computational Algorithm

The optimal switching {imes can be obtained us-
ing the following straightforward algorithm. We
consider the generic case shown in Fig, 2.

Step 1: Guess {;, or equivalently, determine the
amount of substrate ageoun consumed during
growth. Integrate equations (1} from { = 0 teo
1 = {; with u(t) =Uprax.

Step 2: Guess ;. Integrate (1) with u(t) = 0
until ¢ = {3. This completes the growth phase.
Step 3: Integrate (1) using a singular conirel un-
til all substrate available o (4} is added, or equiv-
alently, until the bioreactor is filled (5) at ¢ = {3.
Step 4: Complete the integration with u(t) = 0
until the stopping condition ~depending on the
cost index-— is satisfied at time ¢ = t;. This com-
pletes the producifon phase.

Step 5: Repeat Steps 2 to 4, by iterating on tg,
until J {2) or (3) reaches its minimum,

Step 6: Repeat Steps 1 to 5 with a new guess of
t; in order to minimize J.

3.3. Remarks

1. For the other cases considered in Section 3.1,
some minor modifications are required. However,
the problem is always reduced to a 2-dimensional
optimization of t; (or equivalently Cs(0)), and {5,
2. An appropriate initial guess for ¢; and {5 can
be found in Van Impe (1993).

3. In Van Impe (1993), we prove that in all cases
caleulation of the singular control (Step 3) (and
thus of the complete optimal control) can be done
withou! an ezplicil need for eny costale variable,
which are introduced via Pontryagin’s Minimum
Principle [see, e.g., Bryson and Ho (1975)]. We
can distinguish between the following cases,

(i) The performance indez is independent of final
time {7, e.g., % = 0 in (2). Then the singular
control is a nonlinear feedback law of the state x.
(it) The performance indez depends on final {ime
ty. If J has the form (2), then the singular feed
rate is a nonfinear feedback law of the stale x and
the final time 1y, If J has the form (3), the sin-
gular feed rate is a nonlinear feedback law of the
state x and the unknowns ty, X(t;) end P(t).
ty, and possibly X(¢;) and P(t;}, must be deter-
mined iteratively.

4, The last phase {13,1;) (Step 4) is terminated if
the following condition is met [Van Impe (1993)).
Performance indez of the form (2):

dX dP
Tz "&?(11) +%p “g{(tf) =

The fermentation is stopped when the average
gain of producing an additional unit of biomass
and product (i.e., weighted by their unit prices)
has become equal to the unit operational cost.
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Performance indez of the form (3):

dx dP .z X{ty) + mwP(y)
Ye g (L) +vp—r(ty) = 7

The fermentation is stopped when the average
gain of producing an additional unit of biomass
and product has become equal to the average pro-
ductivity P,

5. The algorithm proposed by Lim ef al. (1986)
makes explicitly use of the costates. The advan-
tages of the algorithm presented here are the fol-
lowing. First, an integration of costate equations
forwards in time -which can cause (numerical)
instabilities— is not required. Second, there is no
need for an initial guess of some costates —which
have no clear physical interpretation- at the be-
ginning of the singular are. If needed, an appro-
priate initial guess fort;, X(¢;), and P(¢;) can be
obtained, e.g., from knowledge about the process
before optimization, [ |

4. STATE INEQUALITY CONSTRAINTS
4.1. Substrate concentration constraint

Too high values for substrate concentration Cjg
can lead to a lot of undesired effects, such as a
solubility problem, an inkibition problem, unpro-
duclive side-reactions, ... This suggests the intro-
duction of an upper limit on the substrate con-
centration during process optimization:

Ve [0,4y] © Cs(t) £ Cs,max
For the type of fermentations under study, this
constraint can be violated only during the growth
phase. As a general result, if Cs reaches its upper
limit Cs arax, we use a control of the form

X
ucs(t) = Cs,fﬂ — CS (6)

which keeps Cjs constant at its upper bound Cg =
CsMAx. As an example, consider the case of a
free initial substrate concentration Cg(0). X the
optimization as described above results in an op-
timal initial concentration higher than the upper
boundary Cg arax, the control sequence must be
modified as follows. In order to ensure the highest
possible growth rate without violating the con-
straint we start with Cs(0) = Cs arax and apply
controller (6). This control is shut off when all
substrate for growth ayrewin has been added at
time ¢ = {;, whereafter the fermentation contin-
ues as described higher. If u(t) is bounded and the
contro] (6) should exceed the upper limit Uprax
before 1 = {;, obviously u(f) must be set equal
to Usax until { = 1,, resulting in a substrate
concentration decrease.

4.2, Biomass concentration constraint

Under certain conditions the optimal control se-
quence as described may result in high biomass
concentrations in the bioreactor. The oxygen
transfer capacity of the reactor will drop sub-
stantially as biomass builds up. Hence, very of-
ten these fermentations can be continued only to
a limit dictated by the oxygen transfer capacity.

Since at present accurate oxygen limitation kinet-
ics models are not available, we impose an upper
limit Cz prax on Cz!
Vi e [0,ty) : Cz(t) < Comax.

At first sight, we could adopt a similar line of rea-
soning as presented for bounded substrate concen-
tration. By using (1) we deduce the control law
which keeps Cyz constant:

ue, (1) = pv {7)

However, we now show that the epiimal conirol
sequence under biomass conceniration limitalion
is characterized by a biomass conceniration profile
Cr which is tangent {o the upper bound Cy pax
al al mosi one {ime inslant. In other words, Cyx =
Cz aax for at most one value of time ¢,

As an example, consider again the case of a
free initial substrate concentration Cs{0). For an-
other case a similar argumentation can be given,
Suppose that, without taking the constraint into
account, the optimal control sequence is charac-
terized by the couple (C3(0),t3). We can distin-
guish between the following 4 cases.

(f) The consiraini is not violafed. The optimal
control sequence characterized by {C§(0),13) re-
mains optimal under biomass limitation.

(11) The constraint is violated during the baich
growth phase. As a result, for some value of ¢
within the interval [0, ;) the control must switch
{rom zero to a positive value given by (7). De-
pending on the specific rates, Cs will decrease at
a lower rate or may even start increasing. As a re-
sult, the singular conditions will either be reached
only at some time {3 > ¢}, or will never be reached
at all. More substrate will be added during the
growth phase, in the first place to keep Cyx con-
stant due to dilution, which is then lost for the
production phase, resulting in a higher value of
the performance index to be minimized.

(ii1) The constraint is violated during the singular
production phase. During the production phase,
a singular control keeps Cs within the region of
optimal productivity. If Cy is decreasing, there
is no problem. However, if Cy increases, the up-
per bound may be viclated. At this time the feed
rate should switch from the singular control to
the control (7). As a generic result, the input
(7) required to keep biomass concentration con-
stant is larger than the singular control [Van Impe
(1993)). As a result, the substrate concentration
will move away from the singular hyperplane, re-
sulting in a decreasing performance.

(fv) The constraint is violated during the {ermi-
nalting baich phase. Obviously, this situation must
be avoided also since there is no dubstrate avail-
able anymore to dilute the liquid phase.

The procedure to obtain the optimal sequence
under biomass limitation can be summarized as
foliows. Tirst, we determine the optimal couple
{C5(0),13) without taking the constraint into ac-
count. Second, we verify if the constraint is vio-
lated for some value of t. If so, the optimal sub-
strate concentration C§(0) must be decreased to
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such a level that the resulting biomass concen-
tration profile and the constraint are tangent to
each other for at most one value of t. Then the
control (7) will never become active. Of course,
the corresponding optimal switching time t§ will
decrease accordingly.
b. EXAMPLE

Consider the penicillin G fermentation process as
modeled by Bajpai and Reu8 {1981):

= '——-'-———CS T=T7 Ca
A me g e+ G~ "" K, 1 Ca + CIRK,

The model parameters are: pipq, = 0.11 [1/h],
Kz = 0.006 [g/g DW], 7, = 0.004 [g/g DW h),
K, = 0.0001 {g/L}, K; = 0.1 [g/L], k» = 0.01
(1/h], Yz, = 047 3 DW/g], Yp/: = 1.2 [g/g],
and m = 0.029 [g/g DW h]. We used the following
initial and operational conditions: X = 10.5 [g
DW}, P = 0 [g}, V. = 7 [L}, Csn = 500 [g/L],
and o = 1500 [g].

In the case of an unbounded input u and state
x with free initial substrate concentration Cs(0),
optimization of P(1;) [which is a performance in-
dex of type (2)] yields: Sp = 528 g, 1, = 28.271
h, 1 = 132.033 h, ¥ = P(t,) = 63.846 g. Lim et
al. (1986) obtain with their algorithm: Sg = 561.2
g iy = 124.8 h and P(i;) = 86.99 g; which also
contradicts the findings of Reuf (1992).

If Ustax = 0.05 L/h, Csprax = 4 g/L, and
Caamax = 23 g/L, then the optimal results are:
Ogrowth = 339 g, 17 = 24.668 h, {y = 181.407
h and P(l;} = 61.015 g; the yield ¥ decreases
with 4.43 %, while the productivity P = P(t,)/t;
decreases from P = 0.484 g/h to P = 0.336 g/h,
i.e., —30.445 %.

Optimization of P(t;)/1; [which is of type (3))
without constraints yields: S, = 950 g, £, =
33.430 h, t; = 71.414 h and P(t;) = 49.721 g.
The corresponding optimal productivity is P =
0.696. Clearly, the optimal values of yield and
productivity do not occur at the same value of
Sp. This is an illustration of the yield-productivity
conflict in fed-batch reactors. A realistic process
optimization strategy should consist of searching
for the optimal initial substrate amount Sg, which
results in the best frade off between yield and
productivily. This represents also a trade off be-
tween yield and fofal fermentation time.

6. CONCLYSION

We have analyzed the optimization of fed-batch
bioreactors with respect to the volumetric sub-
strate feeding rate, for processes with monotonic
growth rate and non-monotonic production rate,
Performance indices of both the yield type and
the productivity type, as well as the optimization
of the initial substrate concentration have been
considered. The resulting straightforward com-
putational algorithm has some advantages over
the algorithms proposed in the literature,

In addition, we have presented for the first
time a complete solution in the realistic case of
both substraie and biomass inequalily constrainis.

‘The optimal solution can be computed using ba-
sically the same algorithm.

In [Van Impe ef al. (1992b), Van Impe (1993))
it is shown how a detailed analysis of this sin-
gular control solution leads in a natural way to
the design of model-independent control strate-
gies which combine nearly optimal performance
with excellent robustness properties: optimal
adaptive conirel,

NOMENCLATURE
t time fh)
X amount of cell mass g DW
P amount of product (g
8 amount of substrate g
Vv fermentor volume fL)
Cx cell mass concentration {g/L)
Cs substrate concentration [g/L
Cs,in substr. cone. in feed [g/L
u input substrate feed rate fL/h
m maintenance constant  [g/g DW h
Yo/, product on substr. yield ig/g
Y:;,  cell mass on substrate yield g DW/g
T specific growth rate {1/k
n specific production rate [gfg DW h
g sp. substr, consumption rate [g/g DW h}
o amount of substr, available (g}
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