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Abstract 
The parametric uncertainty modeling problem arises in ro- 
bustness analysis, and it can be cast as a realization prob- 
lem for a multidimensional system, which is defined in the 
framework of Linear Ractional transformations (LFTs). 
The main result of this paper is an algorithm to system- 
atically solve the multidimensional realization problem. 

1 Introduction 
The multidimensional realization problem is the problem 
of realizing a state space model for a multidimensional 
system transfer function [l]. In recent years, however, the 
same problem appears in robust control[2,3]. A lot of work 
has been done for one and two dimensional realization 
problems in systems theory, see [l] and the references there 
in. In general, however, there is no systematic way to solve 
this problem when the dimension is large than 2. Here 
we will describe a systematic multidimensional realization 
algorithm. 

2 Problem definition 
Given a multivariable rational matrix M@) with dimen- 
sion n x m, where p contains q parameters p1 - e  p c ,  the 
multidimensional realization problem is to find a LFT with 
a block structure vector bs = [r1 rz . - rq] with Ti being 
integer and a coefficient matrix L E @“‘r)x(mtr), r = 
EL1 ri, partitioned as: 
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where A @ )  := diag(plIr, , - * * ,p&,),  and F ( L ,  A@)) = 
L22 + LzlA@)(I  - LllA(p))-lL12. The dimensions of 
L11, L I Z ,  Lz1 and L22 are r x r ,  r x m, n x r and n x m 
respectively. 

In robust control, the state space parametric uncer- 
tainty modeling problem [2,3]is as follows: Given a system 
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with the entries being multidimensional functions of the 
uncertainty parameter vector p, find constant matrices 
Mnom, BA, CA and DA such that the following equation 
holds: 

M(P)  = Mnom BAA(p)[I  - A(P)DAI-’CA (2) 

If we let L2z = Mnom, Lz1 = BA,  Liz = CA a d  
L11 = DA,  Eq.(2), compared with Eq.(l), shows that the 
state space parametric uncertainty modeling problem co- 
incides with a multidimensional realization problem. 
h the rest of the paper, we assume that each entry 
[M@)]ij of the rational matrix M(p) satiafiea the following 
preliminary condition: 

[M(~)li j  = cij + fij (P) (3) 

with cj a constant and fij(p) of the form: 

k(p )  
1 + I @ ) ’  

k(0)  = I(0) = 0 

3 Algorithm 
The main idea of the algorithm for the multidimensional 
realization is to realize the affine part of a rational ma- 
trix at firat, then the rational function part in the second 
step. The two realization8 are finally ”cascaded” via the 
Redheffer Star Product. 

It is obvious that M @ )  can  be written as an affine com- 
bination in rational functions: 

I 



where MO E Pxm: constant matrix with entries [Mlij = 
cjj (see Eq.(3)); fi((p), i = 1, , I :  multivariable rational 
functions (see Eq.(3)) and Mi E @Ixm, i = 1, , I :  con- 
stant matrices, which tell how the f i (p)  enter the matrix 

The first step of the algorithm is to find a coefficient 
M(P)* 

matrix La and a block structure bs,, such that: 

where 

where Li = blockdiag(lb,,(i)@Lj,, * * lb , , ( f )@Lj , ) ,  @ de- 
noting the Kronecker Product, pb is a permutation matrix. 
Note that from the preliminary condition on the matrix 
M(p) ,  f i (0)  = 0 ,  so A(&o = 0, this leads to Lb22=0. 

Finally the coefficient matrix L can be easily con- 
structed by the Redheffer Star-Product [2]: 

with bs = bsb. 

4 Conclusion La [ La22 ] , bsa = [ r a l ,  ,rail 

N f )  = diag[ fdp)L 9 * * - 9 f d P ) L l  
It can be proved (see [4])  thatla11 = 0 ,  La12 = VTJ 
L.21 = U and La22 = MO where U and V are from the 

V = [C?V:, and Ci are from singular 
value decomposition: Mi = ViCjKT, and rai = Rank(&). 

The second step is to find a coefficient matrix La and a 
block structure bsa such that: 

LR decompositions of Mi: U = [UiC?, * - * ,  UlC, t ] and 

- ,  X?V;T] ,  Vi ,  

A ( / )  = La22 4- &21A(p)[I - LbllA(p)]-'Lbl~ 

where 

An algorithm to systematically solve the multidimensional 
realization problem was given, which is the main contri- 
bution of this paper. The trick we used is to realize the 
&ne part of a rational matrix at first, then the polyno- 
mial part in second step. The algorithm does in general 
not give the minimal realization, that is, the size of the 
result A(p) is not minimal. But the minimal realization 
problem for multidimensional systems ( j  > 1) is known 
as a very difficult problem in system theory even for 2D 
systems. The work for reducing the size is still under in- 
vestigation. Here we give some preliminary results on the 
issue. Suppose that for a LFT, we can find a symmetric 
matrix P (or Q) which commutes with A(p) such that 

PLl l  = LTIP and PL12LT2P = LTlL21 (4) 

A(p)  = diag@lh,, ,P&,) (or Li iQ = QLTi and L12LTz = QL~iL21Q)  
This step is to realize the rational function part and is Then it can be easily proved that the size of the LFT can 
not so trivial as the first one, The algorithm for this step be reduced to the rank Of p (or &). SO the Problem now 
consists of two parts. is to find a symmetric matrix P (or Q )  with a minimal 
1. one rational function: F~~ each monomial ap:i . . . &, rank such that Eq. 4 holds. However the solution of this 
where a is the coefficient of the monomial and ki is the de- minimal rank problem is still not solved yet. 
gree of the monomial with respect to p i ,  we can construct a 
LFT with a coefficient matrix Lm and the structure vector 
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