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A multidimensional realization algorithm for parametric uncertainty
modelling and multiparameter margin problems

YI CHENG*# and BART DEMOOR{§

The parametric uncertainty modelling problem arises in robustness analysis
with the structured singular value (), or in parametric margin problems. In
this paper, it is shown that parametric uncertainty modelling can be cast as
a realization problem for a multidimensional system, which is defined in
the framework of linear fractional transformations (LFTs). The main result of
this paper is an algorithm to solve systematically the multidimensional realiza-
tion problem.

{. Introduction

The multidimensional realization problem is the problem of realizing a
state-space model for a multidimensional system transfer function (Bose 1977).
In recent years, however, the same problem appears in robust control, To
analyse closed-loop robustness properties, the system transfer function matrix or
state-space matrix M, which contains the structured model uncertainties, is
represented as a linear fractional transformation (LFT) (Doyle ef ai. 1991)

M(A) = F(L, 4) (1
where F(L,A) = Ly + LyA(J — LyA) 'Ly, L is the coefficient matrix and is

partitioned as
L L
7 =| Lu 12]
I:LEI Ly

and A contains the structured model uncertainties. This procedure is called
uncertainty modelling (Steinbuch er a/. 1992). The structured singular value (or
1)analysis method is based on such a LFT framework. When only parametric
uncertainties exist, A is diagonal with the structure

A(p) = blockdiag {p11,, .. ., pef,, }

where p is the parameter vector. Consider the case where p; % 0Vi, then (1} can
be written as

M(p)= Ly + Luy(A™'(p) — Lp) 'Ly (2)

If the entries of M(p) are rational functions, the problem of finding the
coefficient matrix L and block structure bs = [ry, rp, ..., 7] such that (2) holds
is clearly a multidimensional realization problem. This is obvious when each
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parameter p; is replaced by an integrator or a delay operator, in which case the
coefficient matrices Ly, Ly, Ly and L,; are state-space matrices A, B, C and
D respectively.

A lot of work has been done for one and two-dimensional realization
problems in systems theory (Kailath 1980, Kung et al. 1977). For the case where
the entries of M(p) are linear or affine in the components of parameter vector
p, the realization algorithm was given by Doyle er al. (1991). In general,
Fowever, there is no systematic way to solve this problem when the entries of
AM(p) are rational functions.

Here, we will describe a systematic multidimensional realization algorithm,
"The algorithm will not necessarily provide a minimal realization from the system
point of view, but it does solve the parametric uncertainty modelling problems
and also the multiparameter margin formulation problems (El Ghaoui 1990) (see
later).

This paper is organized as follows. Section 2 gives the definition of the
multidimensional realization problem. Two examples are given to show how
rnultidimensional realization problems are related to parametric uncertainty
miodelling and multiparameter margin problems. Section 3, the main part of the
paper, describes the algorithm for multidimensional realization, the data struc-
ture for rational matrices and also the size reduction. Section 4 gives two
examples to show in some detail how the algorithm works. Section 5 gives the
conclusions of the paper.

2. Problem definition

We first give a definition of the realization problem, which is based on the
concept of the linear fractional transformation (LFT). Then two examples of
parametric uncertainty modelling and multiparameter margin formulation based
on this definition will be discussed.

2.1. Definition

Given a multivariable rational matrix (or a multidimensional system transfer
matrix) M(p) with dimension n X m, where p contains g parameters p; ... p,,
the multidimensional realization problem is to find a LFT with F(L, A(p)),
such that

M(p) = F(L, A(p)) (3)
where A(p) :=diag(pil,, ..., pql,.q), which can also be expressed by a block
structure vector bs = [ryr, ... r,], #; being the dimension of the identity matrix

I,, and
F(L, A(p)) = Ly + Ly A(p)(I — LyA(p))~' Ly
L e Clrtnxmtn) - = X4 | p. is a coefficient matrix and partitioned as
Ly L12:J
L o
[Lu Ly
The dimensions of Ly, Ly, Ly and Ly are # X r, r X m, n X r and n X m

respectively. If we take M(p) as a system transfer function matrix, then (3)
shows that it is equivalent to (or realized by) a system with a feedback matrix
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Figure . Description of a linear fractional transformation.

A(p) and a coefficient matrix L, see Fig. 1, where w and z are exogenous
inputs and outputs, v and y are the feedback inputs and outputs which are
connected by the feedback diagonal matrix A(p), and

yl_|Ln Ln||u _ .
[Z] _|:L21 LZJ [“’:|’u APy

Note that the elements of the vector p can be integrator {or delay) operators or
uncertainty parameters or both. The realization problem is merely to find the
coefficient matrix L and block structure bs such that (3) holds. The following
two examples will show in detail how parametric uncertainty modelling and
multiparameter margin formulation problems can be phrased as multidimen-
sional realization problems.

I the rest of this paper, for the case where the dimensions of the matrices
are not mentioned, we assume they can be inferred from the context.

2.2, Example 1: state-space parametric uncertainty modelling

Consider a vector p=|[p; ... p,] € R?, containing g scalar uncertainty
parameters. Let the model of the perturbed system be given as a state-space
realization in which the entries of the state-space matrices are multidimensional
rational functions of the parameter vector p

B 28 |

To analyse the robustness of such systems by the i analysis method (Doyle ef al.
1991, Steinbuch et al. 1992) one should first solve the parametric uncertainty
modelling problem. That is, the system of (4) must be presented by a LFT. To

do that, define the matrix
_ | Alp)  B(p)
M) =] 0 o)

‘The nominal part of the state-space model is given by M., ‘= M(0). The
uacertainty part of the state-space model is defined as M,(p) with entries
[Madi(p) = Mi{p) — [Muomly- By such uncertainty extraction, the perturbed
state-space model (4) can be written as

HEZHEZCH )

Define a new input u, and a new output y,, and let the output y, be fed back
to the input u, through a diagonal perturbation A(p) = blockdiag(pi/,,, .. .,
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Pqu.,)- Furthermore, construct matrices B, C, and Dy, such that the following

equations hold
X X
) s — Mnom BA
[ ) J = C, Dy " (6)
Ya Ha

B, Cy and D, contain information about how the uncertainties affect the
nominal model. Obviously it must be possible to reduce (6) to (4). Therefore
eliminating u, and y, in (6), we have

B} = M.D] + BAA()T - DAA(P)]*CAB] .

Equation (7) is equivalent to {4), if the following equation holds
M(p) = Muom + BAA(P)IT — DAA(P)}—iCA (8)

If we let Lyp= My Lyy= By, Lp=Cy and Ly = D,, Equation (8),
compared with (3), shows that the state-space parametric uncertainty modelling
problem coincides with a multidimensional realization problem. 0

2.3, Example 2: formulation of the multiparameter margin problem
Consider a linear, time-invariant closed-loop system of order n

xr = F(p)x

where v is the state and F(p) is an # X » rational matrix of a parameter vector
p of length g, whose nominal value can always be reset to zero. The
k-parameter margin of F(p) is

Ry(F) = min {lplL F(p) is unstable) ©)
pel
where ||p||x is the k-norm of the vector p. Equation (9) can be converted to the

following equation in the assumption that the system is stable when p =0 (Tesi
and Vicino 1990)

!
det[] + Zﬁ(p)B,-] = 0} (10)

i=1

Ri(F) = min {”P”k

where f(p) is a rational function of the vector p. The problem now is how to
write (10) as

Ry(M, bs) = min {{[pleldet (I + MpA(p)] = 0} (1

A(p) = blockdiag (p1.s . . ., pgl;)

and with M a constant matrix, bs and [, as defined before. For the case where
the f(p) are linear in p, the algorithm for constructing M, and bs in (11) from
(10) is given by El Ghaoui (1990). He also gave an example to show how to
construct M, and bs when f{p) are polynomials in the elements of vector p.
However, the problem of constructing M, and bs in (11) frem (10) is
actually nothing more than a multidimensional realization problem, which can
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be completely solved by the algorithm to be deseribed below. To see this,
assume that the following realization problem be solved

!
2HPYBi = Ly + LyA(p)[I — LyA(p)) 'Ly, (12}

i=1
Then, the determinant in (10) becomes

det{/ + Ly + LnA(PIT — LyA(p)] 'Ly} =0 (13
If det{(/+ Ly)#0 from what follows, it will be clear that Ly =0 and
det[I — Ly A(p)] #0 {(which must be checked after the parameter margin is

obtained), and by manipulating the matrices in (13) and using the equality:
det{/ + AB) = det{/ + BA), Equation {13) is equivalent to

det {7 + (=Ly + L[l + L] ' La)A(p)} = 0
The problem is clearly solved if we let
My=—Lu+ Lp(I + Ly) 'Ly (14)

2.4, Preliminary condition for mairix M(p)
In the rest of the paper, we assume that each entry [M (p)] of the rational
matrix M(p) satisfies the following condition

(M)l = ¢z + fi(p) (15)

with ¢; a constant and f(p) of the form

k(p) — 1(0) =
1+!(p),k(0) 1(0) = 0

This assumption is based on the following facts. For the elements in p which are

integrator operators (s™') or delay operators (z~'), (15) means that the

“corresponding system is physically causal (the transfer function is proper). For
the elements in p which are parametric uncertainties, (15) shows that the
uncertainty part of M(p) diminishes when the uncertainty parameters are equal
to zero.

3. Algorithm

The main idea of the algorithm for the multidimensional realization is to
realize the affine part of a rational matrix at first, then the rational function part
in the second step. The two realizations are finally ‘cascaded’ via the Redheffer
Star Product.

It is obvious that M(p) can be written as an affine combination in rational
functions

I
M(p) = My + Zlﬁ(P)M; (16)
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where

Mg e C™"  constant matrix with entries [M]; = c; (see (15))

f(p), i=1, ..., 1 multivariable rational functions, each of fi(p) is just one of
fi(p) in (15), 1 (== nm) is the number of the rational functions f;(p) which are
different

M;eC™™ i=1, ..., I constant matrices, which tell how the f(p) enter
matrix M(p)

The first step of the algorithm is to find a coefficient matrix L, and a block
structure bs, such that

M(p) = Lap + Lan AT — LonA(H] Lo (17)

L L
L = all (112],
“ |:Lr.‘21 La22
A(f) = d]ag [fI(P)Iru,, P ﬁ(P)Irde and bsa = [rrzlﬁ fevy rarI}

The second step is to find a coefficient matrix L, and a block structure bs such
that

where

A(f) = Lym + L AT — LynA(p) ™ Ly (18)
where

_1 Lenn Len — a4 — Ty .
Lb ”_|:Lb21 Lb22 ’ A(p) ”dlag(]—’ilria vy Pquq) and bs = [’1) vty ’q}
Based on the coefficient matrices L, and L, the coefficient matrix L, the final
realization of (3), can be easily constructed by the Redheffer Star-Product
(Doyle et al. 1991): L = S(Ly, L,), where S(Ly, L,) is the star product of L,
and [, defined as

S(Lb’ La) =
[Lbu + LpppLan(I — Lb221;a}1)m11—‘621 Lyn(d — LallLb22)~l.Lﬂ1241 :|
Lot — LigaLatn) ™ Lpm Lo + Lo Lpe(d — Loy Lpz)  Lanz

(19)

The corresponding block structure vector bs for L is the same as that obtained
in the second step. This two-step procedure is depicted in Fig. 2.

3.1. Realization: L, and bs,

The first realization step is just to realize the affine part of M(p), taking
f{p) as independent variables or parameters. Because the entries of M(p) =
M(f(p)) are linear in the vector f(p) ={fi(p), .. ., filp)], we can usc the same
method as that used in the case where the entries in M(p) are linear in the
vector p. For this linear case, the algorithm is based on Safonov and Athans’
Internal Feedback Loop (IFL) parameter representation (Safopov and Athans
1977, El Ghaoui 1990). To do that, first, take the LR decomposition for each
n X m matrix of M;, i =1, ..., I, from its singular value decomposition
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< M(p) fa—— ] A(f} ta—
¥ ¥
- A(p)
P —— La bt - Ly ft—

The fiest step Y  The second step

E R

Ly

L
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Redheffer Star Product

Figure 2. Description of the two-step realization algorithm. First M{p) is realized as a LFT
with a diagonal rational A(f). A(f) is then realized as a LFT with 2 block diagonal
A{p). The two realizations are then ‘cascaded’ via a Redheffer Star produet,

M, = US,V (20)

where U; and V; are n X ry; and 7,; X m matrices respectively, r,; = rank (M,). 3,
is a ry X ry positive detinite diagonal matrix, Then let

L= Uzi?, R =zVv (1)
such that M; = L;R; or fi(p)M; = L{f(p)], |R;. Finally construct
Us=[Ly,..., L] and V =[R, ..., R]) (22)

Now (3) becomes
i

where A(f) is defined in (17). Comparing this equation with (17), it is easy to
find that

Loy =0, Lop = VI (23)
Lot =U, Lgm=M,

The corresponding block structure is bs, = [ryy, . . ., ry] with r,; found as above,
Note that L in (19) can be simplified significantly as a result of L,;; = 0

Ly Lyiadan ]
L = “ 24
|:Ln21Lb21 Lin + Lo Londan 24)

3.2. Realization: L, and bs

The second step is to realize the rational function part. This step is not so
trivial as the first one. The algorithm for this step consists of three substeps.
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Before going into detail, we define a permutation matrix which is related to
another integer matrix and will be frequently used later. Let B be an /1 X g
matrix with integer entries by, and

{i-1) q i
5 = 221)‘“4‘zb;;,f—_—l,...,h;jzl,...,q
k=11=1 =1

$i0 = S(i-1yg> i=2,..., ’!, Sip = o
and s, X (555 = 8z;j-1)) matrices
Ej=leg yts--ne ) i=hL oo hj=1...,4q

where ¢; is a column vector with zero entries except that the ith entry is 1. Now
define a permutation matrix Py as follows

Pg=[En...Ep...... Eiq v th] (25)

Obviously, the matrix Py depends on the matrix B, the rows of which are the
block structure vectors (see later). The following example is given to show
clearly how the permutation matrix Py is formed.

Example 3.1: Let a 2 X 3 matrix B be given as

o2 3
B‘[e;sa]

Then from the definition above
sw=0 sy=1 sp=3 s3=6
S0 =6 591 = 10 sy =15 593 = 21
and
by = [esw-i-l’ el =
Ep = [eg 1y - 5,1 = [z €3]
Epy = [e5 01 - 0 s} = [es €5 eg]
Egi = [egyats - -5 €] = [e7 €5 €5 eyo)
Eyp = [eg,4tr - -1 05,] = [y en ey ey eis)
Eyy = {eg a1, - s 85,1 = e1s €17 e1s e e enl
Finally, we can form the corresponding permutation matrix as
Pp=1e, e7 eg eg eyn €2 €3 €11 €12 €13 €4 €15 €5 €5 €6 €15 €17 €18 €19 €20 €]
G
3.2.1. L, and bs for A(f). Assume that the rational functions fi(p), i=1,... 1,
have their LFTs with corresponding coefficient matrices Ly, and block structure
vectors bsy respectively. Assume also that the block structure vector bs, is
already known from the last section. Then we can form the LFT for A(f) by

lumping all LFTs for the fi(p), each repeated bs,(i) times, see Fig. 3. First, we
write the aggregate system consisting of the appended LFTs as
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Ap (») Ay (P)
¥ Uyg ¥ Uy
Z11 Ly, Wiy iy Ly, wn
A (p) Aglp)

Yibsa(z) Usbsa() Yibaa(l) Uphsa (1)

zlbs“l! Ly, Wibsa(1) zlbsam Ly, Wb, {1y

Figure 3. The LFT for A(f} by lumping all LFTs for rational functions (f).

Y My

211 Wiy
ylbs,,(l) Ulbs,,(l)
Zfbs,,(l} Wu;sﬂ(i)

: -

Yir i

1 Wi
Vibs (1) Hips (1)

| Lbs(h | | Wibs,(y |

i = APy, 1=1,..,10 j=1,..., bsa (i)
~~where Aj;(p) has the block structure bs; and -
Lf, = blOCRdlBg (Ibsd(i) ® Lfl’ Ve Ibsu(l‘) ® Lf,) (26)

where & denotes the Kronecker Product, However, L} is not equal to L, as its
rows (and columns) corresponding to the repeated feedback inputs (outputs) and
exogenous inputs (outputs) are mixed together. But L, can be obtained by a
permutation as follows. Define an 7 X (g + 1) integer matrix

b[ be'_ 1
B=| i | withh =| ! : bs, (i) rows 27
b; bei 1
Then
Ly = PRL,Pg (28)

Pp is defined in (25) with B in (27). Note that permuting L} by Py is nothing
more than putting together rows (columns) which correspond to the repeated
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feedback inputs (outputs) or exogenous inputs (outputs). It is easy to construct
the block structure vector bs

!
bs = 3 bsa(i)bsy, (29)
=t

Note that from the preliminary condition on the matrix M(p), £(0)=0, so
A(f)p=o = 0, this leads to Lyy; =0, see (18). Then the coefficient matrix L can
be further simplified from (24) to

Ly LmzLa]z]
I = 30
|:Ln2t Loy Loz (30)

3.2.2. Ly and bsy for one rational function. The coefficient matrix Ly and block
structure vector bs; of the LFT for one rational function f(p) are constructed
here in the assumption that all LFTs of monomials in its numerator and
denominator polynomiais k(p) and /(p) are known. First, the coefficient matrix
L, and block structure vector bsy for k(p) will be constructed. Let the
monomials of k(p) be my(p), j=1, ... s, s is the number of the monomials in
k(p), that is

k(p) = _E]m,-(p)
=

and L, and bs,, j=1, ... s be the coefficlent matrices and the block
structure vectors of LFTs for the corresponding monomials #7,(p). So what we
try to do now is to find a LFT with L; and bs; for the linear combination of all
LFTs for my(p), see Fig. 4. Tt is easy to verify

Y1 iy
H — L ,‘ .
Ys A g
z W

yi= Ak, i=1

» Aml(p
! 1
Z1 Lml - Wy
Z w
———
Ams(p)
Ys Uy
Zs Lms w’

Figure 4. A polynomial LFT as a linear combination of monomial LFTs.
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where
(L O R 0 (L)1
L T e T 0 31
0 e 0 (Lm,)li (LmJ)IZ
_(Lml)ﬂ e (Lm,)Zi E;:I(Lmj)ﬂ_

and A;(p) has the block structure vector bs,, . The next step is to permute L}
such that the repeated feedback inputs (outputs) are arranged together. Define
the s X (g + 1} inteper matrix

B=(by,....,b) with b;=[bs, 0,j=1...,(s~1) and
by = [bs,, 1]  (32)

Using the permutation matrix Pp defined in (25) with B in (32), we have
Ly = P3L}Py (33)

It is trivial to get the block structure vector bs;

bsk = Ebs"”j (34)
j=1

We can use the same method to construct the coefficient matrix L; and the
block structure vector bs; of the LFT for the polynomiat {(p).

Now the LFT of L; and bsy can be constructed as a linear combination of
LFTs of Ly, bsy, L; and bs;, see Fig. 5, for f(p) is the product of two rational
functions

1
= kg1
f(p) (p)[1 " [(p)]
Cand 1/(1 + H{p)) is just a closed loop function with the feedback gain —{(p) and
forward gain 1. It is easy to verify that the coefficient matrix of the LFT for

/(L + I(p)) is

fo| L — LinELpy Lk - -1
L[ —[ _Eszi E 3 E = (] + lez) (35)

Ak(P'::‘
Ug

Ly Wg  w

Figure 5. A rational function LFT is a linecar combination of two polynomial LFTs.




800 Yi Cheng and B. DeMoor

and the corresponding block structure vector is just bs;. For the series connec-
tion of the two LFTs, we have

i )
Yo | = Ly g
z W

= NPy e = Ap(p)yr
where

Ll LiaLin  Liplis
L= (} kan fL“Z (36)
Liyy  LimLipn Ll

Again, permutation is needed to arrange the repeated feedback inputs (outputs)
together. This time, the integer matrix B is defined as

=l 1] <

Ly = PgL}Pg (38)

Then

The block structure vector bsy is
bs; = bs; + bsy (39)

3.2.3. L,, and bs,, for one monomial. Let a monomial have the form: ap fl, ce
péq, where a is the coefficient of the monomial and k; (=1, ..., q) is the
degree of the monomial with respect to p;. The total degree of the monomial is

k: k,‘

™Me

1

7

This monomial, as a transfer function, is depicted as a series of blocks in Fig. 6.
By pulling all variables or parameters out (see the dashed line}, it is trivial to
construct the {k -+ 1) X {k + 1} coefficient matrix I, and the block structure
vector bs,, of the LFT for the monomial as

Figure 6. A monomial LFT as a linear combination of its variables,
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0. - 0 a
1. 0
0., " T ;
b= | O 0
0 010
and
bsy, = [ky ... kq] (41)

The coefficient a and the degrees k; of a monomial can be directly obtained
from the input data. The second realization step for Ly and bs is completed
here, for we can construct L,, and bs,, for each monomial from the input data
(a, k;, Vi) first, then Ly and bsy for each rational function from the correspond-
ing L,, and bs,,, and finally L, and bs, for A(f) from all Ly and bsy.

3.3. Data structure and program code

In order to make a computer program for the realization problem with the
above algorithm, the data structure for representation of the multivariable
rational matrix M(p) has to be decided first. Here, we give as an example the
data structure with two matrices. The first one is the # X im matrix M defined

as (see §3)
M={M0 M] M{}

The matrix M tells how each rational function f£(p) enters the matrix M(p).
The second one, which tells the structures of ali rational functions, is defined as

t ¢
N =1{ny, ..., np}
with each row including all data for one monomial
n, = {’; j’ Qikes bsmik]’ r=1,...,h

where

i integer, denoles that the monomial is in the ith rational function fi(p)
j integer, denotes if the monomial is numerator (j = 0) or denominator
(j=1)
k integer, denotes that the monomial is in the kth position
ay € C, the coefficient of the monomial
by integer vector, the elements of it denote the degrees of corresponding
variables. It is equal to the block structure vector for the monomial.
it integer, total number of the monomials

An example is given next to show how the input matrices are formed.

Example 3.2:  Assume that a 2 X 2 rational matrix M(p) is

L4 P Spip
M( ) 1+ 2p1 1+ 6p1p2
P)=
Spipe - 3m

1+ 6[);[)2 1+ 4[)2
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the input matrix M =[Me M, M, M;], where

i 0 1 0 0 0 0 1
1‘40 = |:0 1:] ) ]M] = |:0 0] ’ 1142 = |:0 1:] 5 M3 = |:1 U:I

and the corresponding rational functions are

P2 3ps Spipe
)= gy = P and fy =
Sitp) 1+ 2p ? 1+ 4p; /a L+ 6pipr

Therefore, the input matrix N is

(SIS
b= D = O e D
[= WAV R R L S
— Y e
— = b O DD

With the input data M and N defined above, we can now summarize the
algorithm (the code is available in MATLAB as a function file) as

Step 1. Input data, M and N,

Step 2. Compute L, and bs, from M, using (20)-(23).

Step 3. Compute L, and bs, from N and bs,.

Step 3.1. Compute L, and bs,, from N using (40) and (41).

Step 3.2. Compute Ly, Ly, bs, and bs, from L,, and bs,, using (31)-(34).
Step 3.3. Compute Ly and bsy from Ly, bsy and Ly, bsy using (35)-(39).
Step 3.4. Compute Ly, and bs from L((s), bs/(s) and bs, using (26)-(29).

Step 4. Compute L from (30).

3.4, Size reduction
As mentioned already, the algorithm does, in general, not give the minimal

realization, that is, the size of the result A(p) is not minimal. If we take each
rational function entry in M(p) as a fi(p), then the rank r,; of M; is 1 and the
atgorithm will give a block structure vector

h

bs = > ni(4: g + 3)
i=1

and the size of A(p) is
q
> bs(d)
i=1

Clearly this size is larger then the minimal one in the case j=1. But the
minimal realization problem for multidimensional systems (j > 1) is known as a
very difficult problem in system theory even for two-dimensional systems (Kung
et al. 1977).
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However, there are some methods which can lead to a reduction (not
minimum) of the dimension of A(p), Here we modify the algorithm to reduce
the dimension of A(p), when solving the parametric modelling problem in §2.3.
To solve the realization problem of (12), let the program input matrices be

1“40 = O, M’,- = B,‘

After finishing Step 1 and Step 2 of the algorithm, we obtained L,i, L, and
bs, and have L, =0 and L,»p = My=0. Before going to Step 3, we can
reduce the dimension of A(f). As L, =0 and L, = Mg =0, (13) is equiva-
lent to det[I + Lo A(f) Ljn] = 0, which is further equivalent to

det{l + M,A(f)] =0, M, = LaaLon (42)

Now the reduction algorithm based on Singular Value Decomposition (see
Algorithm 3.1 of Fan and Tits 1986 for detail} can be used to reduce the size of
A(F) such that (42) is equivalent to

det [1 + MorAr(f)] =0

where A, (f) has a reduced block structure vector bs,,, and each ‘block row’ and
‘block column’ of M, (partitioned conformally to bs,,) is of full rank. After the
size of A(p) is reduced, we can go to Step 3 with new L, and bs,

Loyt =0, Lypp = 1, Ly = Mgy, Ly = 0 and bs, = bs,,

Then from Steps 3 and 4, we obtain L and Ds. By constructing M, with {14), we
have

det[T + MyA(p)] = 0 (43)

Again, the same reduction procedure can be used to reduce the size of A(p). By
this double reduction, the final size of A{p) is reduced significantly as demon-
strated in the example in the next section. Note that such a reduction procedure
may not be used for the general realization problem as S f(p)Bi # MyA(p).

4. Examples
In this section, we give two examples to show how the algorithm and the size
reduction works.

Example 3.2 (continued): The first example here is to solve a general realiza-
tion problem with the rational matrix M(p) the same as in Example 3.2, Using
the input matrices M and N obtained in Example 3.2, we can obtain, from the
program, the following LFT coefficient matrices and block structure vectors

0O 0 0 0 |1 O
0 0 0 0 |0 1
0o 0 0 0 1 0
L,={0 0 0 0 (0 1 and bs, =[1 1 2]
1 0 0 t 11 0
o1 1 0 {0 1]

for the affine realization part and
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2 o o0 0 0 0 1 0 0 0 0 0 0 0 0 07
o 0 ¢ o 0 0 o 0 0 0 ¢ 0 0o + 0 0
0 0 0 0o 0 0 0 0 0 0 ¢ 0 o o 1 0
¢c 0 o 0 0 0 0@ 0 5 -6 0 0 0 0o 0 0
¢ 0 0 0 0 0 ¢ 0 0 0 0 0 0 0 0 1
0O 0 0 0 0 0 0 0 0 0 5 -6 o o 0 0
6 0 0 0 0 0 0O 0 0 0 0 G 1 o0 0 0
0O 3 0 0 0 0 0 —4 @ 0 0 G g 0 0 0
Ly = 0 0 1 9 0 0 0 0 0 6 0 t] 0 0 0 0
0 o 0 1 o 0 0 0 0 o 0 0 0o 0 ¢ 0
o 0 O 0 I 6 0 o 0 0 0 0 g 0 ¢ 4
6 0 0 o 0 1 0 ¢ 0 0 90 0 0 0 0 0
-2 0 0 0 0 0 1 0 0 0 0 0 c 0 0 0
0O 3 0 ¢ 0 0 6 -4 0 0 0 0 6 0 0o 0
0O 0 0o O 06 0 ¢ 0 5 -6 0 0 0O o0 0 0

. 0 6 0 0 0 0 0 0 0 0 5 ~6 0O 06 0 0]

bs = [6 6]

for the rational realization part. After the Redheffer Star Product of L, and L,
the final realization has the coefficient matrix as depicted in Fig. 7 with the
block structure vector bs = [6 6]. o

Example4.1: The second example is, from El Ghaoui (1990), to sclve the
realization probiem for the formulation of the muitiparameter margin, see § 2.3
Given the open loop transfer function for a three mass/spring system as

(pr + D{(p2 + /6
s7s* + Cpy +3p2 + 3 + (p1 + D(py + 1)]

5
: 14 2 Smp
<J YT T e | [ W
Spip2 i + 3zt
1+6psp2 1+44p2
» | Pls
p2ls
2 0 0o 0o 0 0ot 06 6 oo oloe o]
o o 6 0o o ¢ ¢ o 06 o 0 olo 1
¢ ¢ 6 0 6 @ 6 0 ©6 0 0 Sii 0
y ¢ 6 6 0 ¢ 0 6 0 5 -6 ¢ 0i0 0 u
¢ o o 0 0 6 O ¢ ¢ 0 ¢ 1] 0 1
¢ o6 o 6 06 ¢ 0 G ¢ 0 5 -€|0 0
o 00 ¢ ¢ © 0O ¢ O6 6 O O0fi o
o 3 0 ¢ © b 0 —4 0 o6 o oo o
o o 1 6 0 0 0 © o © 0o o¢fe o
0 0 0 F 0 0 9 ©6 0 ©0 0 Q{06 O
» 6 0 9 6 1 0 ¢ 0 06 o0 0 6io o w
6 0 0 0 0o 1 0 06 8 0o o 6106 o
< |2 %% ¢ 0 ¢ 10 o o 5 —sii 0| [
| 0 3 0 0 0 0 0 - 5 -6 & o0jo 1|

Figure 7. The LFT for the realization problem in Example 3.2.
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and the compensator’s transfer function as

0-7466s> — 0:1132s2 + 0-5385s + 0-0416
57 4+ 0:823352 + 1-2384s + 03330

the closed loop system matrix F(p) has the following form

F(p) = Ag + prpaAy + prAy + prAs

where
0 1 6 0 0 0 0 0 0 N
0 0 1 0 0 0 0 0 0
0 0 0 1 0 G 0 0 0
0 0 0 0 1 0 0 ¢ 0
Ay = 0 0 0 0 0 1 0 0 0
-0-124 0 -1 0 =233 0 0-121 0-0643 0-0345
i 0 0 0 ] 0 -0-83 —-0-124 —0-333
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 N
[0 0 ¢ 0 ¢ 0 0 0 0 N
0 0 6 0 0 0 0 0 0
0 0 0 0 0 0o 0 0 0
0 0 O o0 0 0 o 0 0
Ay e 0 0 c 0 0 1 0 0 0
-0124 0 -1 0 0 0 0121 00643 0-0345
0 0 O 0 ¢ 0 0 0 0
0 0 ¢ 0 0 0 0 0 0
0 0 0 0 0 0 o0 0 0 ]
e 0 6 o 0 C 0 0 0 ]
0 0 0 9 0 0 0 0 0
0 0 0 © 0 0 0 0 0
¢ ¢ 0 0 0 ¢ o 0 ¢
A= 0 0 00" 0 1 0 0 0
-0124 0 -1 0 0833 0 0121 00643 0-0345
0 0 6 0 0 0 o 0 0
0 0 0 9 0 0 0 0 0
0 0 0 0 0 0 0 0 0o |
[0 0 0 0 0 G 0 0 0 ]
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 o 0 G
Ay = 0 0 0 0 0 1 0 0 0
~0-124 0 -1 0 =15 0 0121 00643 00345
¢ 0 0 0 0 G o 0 ¢
0 0 0 o 0 0 90 0 0
0 0 6 0 0 0 0 0 0 ]

In order to solve the parameter margin problem of (9), we convert (9) to (10)
by the algorithm of Tesi and Vicino (1990), with
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fulpy = pip2, L(pY=po H0) =P

and obtain 45 X 45 matrices B;, B; and B; (which are obviously too large to
write here). Now start our algorithm with inputs

it 01 1 1
M= [045)(45 Bl 32 B3] and N =12 0 1 1 0
3 0 1 0 1

After Step 2, we can form M, from L, by (42) with M,, a 27 X 27 matrix and
bs, = [9 9 9). The first reduction gives M, a 18 X 18 matrix and bs,, = [6 6 6].
The coefficient matrix L, and the block structure bs are obtained from Step 3
with Lj, a 42 % 42 matrix and bs =[12 12]. The matrix M, in (43) is con-
structed from L given by Step 4 with M;, a 24 X 24 matrix (conformal to
bs = [12 12]). Finally, by the second reduction, M, and bs are

1-9929  —0-2391 0-0747 0-1245  —0-0838 —0-1007
—9-5041 1-1344 0-1896 0-4209 0-1793 0-0069
1-7670 0-4742 09628 —0:1175 00902  —0-0457
15-3116 17784 ~-0:3696 0-0746 0-2095 —0-1161
10-1655  —2-6222 0-0265 0-0984 0-1719  —-0-0678
189315 0-5319 0-2194 0-0654 —0-2201 0-1460
—0-0671 —0-0419 0-0054 00259 —0-01i2 —0-0106
—1-1655 —0-1205 —0:2577 0-1151  —0-0387 0-0133
0-0472 —0-1152  —0-6470 0-1433 —0-0927 —0-0002
-0-3916  —0-0731  —0-2299 00749 ~0-0355 00026
12426 —0-0007 —0-4926 0-0432 —0-0653 —0-0105
—1-4522  —0-1311  —0:7770 0-1830 —0-0823 0-0467

37298 16699 —0-8111 —0-3755 0-0991 (-5748 |
—27:5936 2-1338 —1.9431 —0-4148 0-7559  —0-1398
6-1184 19612 0-5615 —1.7542 —0-1803 —0:0402
48-4273 5-5715 (-3985 0-2696 0-6219 0-1086
242354 —9-4436 0-7867 —0-1839 0:4058 —0-0602
53.4500 —0.9555 —1-8426 ~0:0551 —0:4325 = —0-1086"
15411 —0-0981 -0-0474 —0-0314 0-0058 0-0619
—1-9742 1-6895 0-1627 03244 0:0620 ~0-2106
12129  —0-3618 0-9928 07967 —0-1273 —0:2007
—0-3014 0-1342 0-0450 12813 —0-:0066 —0-1051
3.2295 —1.0823 —0-1579 0-6067 0-7888  —0-0390
—3.4990 10193 0-3525 10321 —0-0049 0-4138 |

bs = [6 6}

But in El Ghaoui (1990), bs =[7 7). The corresponding euclidean parameter
margin obtained by the structured total least square (STLS) method (DeMoor
1993} is 050171 at point p; = —0-49953 and p, = ~0-046697. (In El Ghaoui
1990, the parameter margin is 0-5036 at point p, = —(-498 and p, = —0:0938.)

Mb =

5. Conclusions

Tirst, it was shown that the parametric uncertainty modelling can be cast as
the realization of a multidimensional system, which is defined in the framework
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of linear fractional transformations (LFTs}). An algorithm to solve the multidi-
mensional realization problem systematically was given, which is the main
contribution of this paper. The trick we used is to realize the affine part of a
rational matrix at first, then the polynomial part second. The disadvantage of
the algorithm is clearly the large size of the resulting matrix. Consequently, a
size reduction is introduced in each realization step for the problem of the
formulation of the multiparameter margin. However, such a problem-dependent
size reduction may not be generally used for realization problems. Further
research work to investigate the minimality issue is definitely required,
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