3.og %

93-08

pe Lathauwer L., De Moor B., Vandewalle J » A singular value decomposition for
hl‘gher~order tensors”, in Proc. of the ProRISC/IEEE Workshop on Circuits, Systems and
Signal-Processing, Houthalen, Belgium, Mar. 1993, pp. 37-43., Lirias number: 1805 I5.

A Singular Value Decomposition
for Higher-Order Tensors
and

Application to
Independent Component Analysis*

Lieven De Lathauwerf Bart De Moor! Joos Vandewalle

ESAT - E.E. Dept. - K.U. Leuven
Kardinaal Mercierlaan 94
B-3001 Leuven (Heverlee)

Belgium

tel: 32/16/220931  fax: 32/16/221855
email: Lieven.DeLathauwer@esat.kuleuven.ac.be

Extended Summary

1. Introduction

The purpose of this paper is twofold. First, we want to present a new result in multilinear
algebra: a generalization of the Singular Value Decomposition to the case of higher-order
tensors. Secondly, we will show how this new tool can be used to perform the Independent
Component Analysis in Higher-Order Statistics.

For reasons of clarity, the discussion will be restricted to third-order tensors with real
elements. Our results can immediately be generalized to tensors of order higher than
three. The generalization to the complex case is straightforward too.
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2. Tensor Singular Value Decomposition

2.1. The TSVD-model

Let @ be a third-order (/ x J x K)-tensor with real entries, providing a formal way of
expressing a multilinear form on BRY x RV x R¥,

If P, @, R denote the dimension of ®’s “column space”, “row space” and “tube space”,
then the decomposition model is given by

P & R
(I)t'jk = Z Z Z A"ijqurqur (1)
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in which A € RI*F, B € R'*? and ¢ € R¥*R are (column-wise) orthogonal matrices
and the “core tensor” Zpygxpy is “all-orthogonal”. The matrices of Erxgxr) (with one
index fixed) are put in order of non-increasing Frobenius norm.

All-orthogonality means that two matrices in =, corresponding to different fixed values
of p, are always orthogonal with respect to the standard scalar product, e.g.

Q R
EZEPI‘ITEPMT =0 if Pi 7& P2 (2)
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and that a similar orthogonality applies for fixed ¢ and ».

2.2. Relations with second-order SVD

The columns of A, B and C can be considered as “I-mode”, “J-mode” and “K-mode”
“singular vectors”. The core tensor = contains the generalized “singular values”.

If we denote the inner product along a certain mode by X 00 (e.g. Zf SEpgrAip £ EX, A),
we can write down the model equation (1) in a form that provides an easy way to a visual
interpretation as the third-order equivalent of the Singular Value Decomposition:

D(1xixk) = E(PxxRr) Xp A@xpP) Xq Blxg) Xr Crexry (3)
in which A, B, C are (column-wise) orthogonal and = is all-orthogonal.

Equation (3) is visualized in figure 1. It should be compared to the expression for the
SVD of a real (I x J)-matrix F, which is, using the notation defined above:

Fixay = Bpxq) o Aaxry Xy Buxg) (=A% B) (4)
in which A, B are (column-wise) orthogonal and Z is diagonal (see also figure 2).

Clearly, the tensor equation (3) is a formal generalization of the matrix equation (4).
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Figure 1. Third-order Singular Value Decomposition
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Figure 2: Second-order Singular Value Decomposition

Moreover, it can be proved that the Tensor Singular Value Decomposition of a second-
order tensor boils down to its matrix SVD (under the condition that all singular values
are different) [1].

Many properties, like the link with the Eigenvalue Decomposition or the aspects of unicity,

have already been generalized. They all show a strong analogy between the matrix and
the tensor case [2].

2.3. Calculation

The matrices A, B and C' can be calculated as the right singular matrices of the (JIxK),
(KJ x I) and (1K x J) matrix unfoldings of ® (Figure 3).

In general, the Tensor SVD of an Nth-order tensor leads to N matrix Singular Value
Decompositions.

The core tensor follows from the equation:

Epxgxry = Qaxaxicy Xi Auxpy Xj Baxg) Xk Clrexr) (5)




Figure 3: Unfolding of the (I x J x K) tensor ® to the (JI x K) matrix @
3. Application to Independent Component Analysis

3.1. Problem description

Consider the following linear transfer of a K-dimensional zero-mean stochastic “source
vector” X to a zero-mean stochastic “ontput vector” Y:

Y = MX (6)

The matrix M is assumed to be square (for convenience) and regular; the components of
X are statistically independent.

The goal of Independent Component Analysis is the determination of M, given only
realizations of Y. This is done by minimizing the statistical dependence of the components
of the corresponding source vector estimate [3].
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3.2. Solution

Generally, the problem is solved by factorisation of the transfer matrix:

M=TQ (7)

in which T is regular and () is orthogonal.

Second-order statistical independence of the source components can be realized by the
» . . . s
determination of T' from a congruence transformation of the output covariance cY:

cY =771 (8)

One alternative is the computation of the Eigenvalue Decomposition of CY (which is
equivalent to a matrix SVD since C} is symmetric):

Cy = EXEt = (EX)(EX)! (9)




The resulting degree of freedom, the orthogonal factor @, is recovered from the higher-
order statistics of Y,

As a new result, we are able to prove that ) is equal to the singular matrix of the
symmetric tensor Cj, defined as:

C3 £ C?; X1 iﬂm1 Xg :P_1 X3 T_1 (10)

in which C} denotes the third-order cumulant of Y.

Besides the proof, we will give a numerical example in the final paper.

3.3. Discussion

In contrast to the approaches described in literature up till now, the new method guar-
antees the determination of the global optimum of the non-linear higher-order part of the
Independent Component Analysis.

From a computational point of view, the new approach is based on the SVD of matrices:
this means that robust algorithms can be used.

Finally, we want to stress the conceptual importance of the new approach. It reveals
an important symmetry when considering the problems of Principal Component Anal-
ysis (second-order) and Independent Component Analysis (higher-order). In “classical”
second-order statistics, the problem of interest is to remove the correlation from data
measured after linear transfer of independent source signals. The key tool to realize this,
comes from “classical” linear algebra: it is the matrix SVD. More recently, researchers
also aimned at the removal of higher-order dependence, which is a problem of higher-order
statistics. We proved that one can resort to a tool from multilinear algebra, which is
precisely the generalization of the SVD for higher-order tensors.
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