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Total least squares for affinely structured
matrices and the noisy realization problem

Bart De Moor, Senior Member IEEE

Abstract— Structured rank deficient matrices arise in many
applications in signal processing, system identification and
control theory. We discuss the Structured Total Least
Squares (STLS) problem, which is the problem of approxi-
mating affinely structured matrices (i.e. matrices affine in
the parameters) by similarly structured rank deficient ones,
while minimizing an L,-error criterion. It is shown that the
optimality conditions lead to a nonlinear generalized singu-
lar value decomposition, which can be solved via an algo-
rithm that is inspired by inverse iteration. Next we con-
centrate on the so-called L, -optimal noisy realization prob-
lem, which is equivalent with approximating a given data
sequence by the impulse response of a flnite dimensional,
time invariant linear system of a given order. This can
be solvad as a Structured Total Least Squares problem. It
is shown with some simple counterexamples that ’classical’
algorithms such as Steiglitze-McBride, Iterative Quadratic
Maximum Likelihood and Cadzow’s iteration do not con-
verge to the optimal L, solution, despite misleading claims
in the literature.

Keywords— Hankel matrix, (Restricted) singular value de-
composition, realization theory, (structured) Total Least
Squares, Iterative Quadratic Maximum Likelihood (IQML),
Steiglitz-McBride iteration.

I. INTRODUCTION

THE noisy realization problem is the problem of approx-
imating a given data sequence by the impulse response of a
linear time-invariant (LTI) system, such that the (weighted)
sum of squares of residuals is minimized. Applications oc-
cur in system identification, modal analysis, biomedical sig-
nal processing (such as e.g.NMR), etc...In this paper, we
treat the noisy realization problem in the context of the
so-called Structured Total Least Squares problem (STLS):
Let B(b) = Bo+b1B1+...+by By, € RPX9 be an affine ma-
trix function of the components b; of the parameter vector
b € R™ where B;,i=0,1,...,m are fixed given matrices.
We assume throughout that p > ¢q. Let a € R™ be a data
vector and w be a given vector of weights. The problem is
then to find a rank deficient matrix in the affine set B(b)
such that a given quadratic function [a, b, w]3 of the pa-
rameters b; is minimized.

This problem often occurs in systems and control and we
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refer to [6] for a survey of applications, including total least
squares with relative weightings and fixed elements, linear
system identification, rank deficient Toeplitz matrix ap-
proximation and the calculation of the largest Ly stability
radius of a parametric uncertain system.

In this paper, we will first derive the optimality condi-
tions which have to be satisfied by any Ls-optimal solu-
tion. This will be done in our main Theorem in Section
II, which states that the solution can be constructed from
a nonlinear generalized singular value decomposition. An
algorithm to find a solution, inspired by the power method
of numerical analysis, is proposed in Section III. Its asymp-
totic convergence rate seems to be linear as is suggested by
the numerical experiments in Section VI. In Section IV, we
concentrate on the Ls-optimal noisy realization problem as
a special case of the STLS problem. In Section V we show
that some well known ’classical’ algorithms that have been
proposed to solve the noisy realization problem, such as the
Iterative Quadratic Maximum Likelihood method (IQML)
[2], the Steiglitz-McBride iteration [11] (which in [10] was
shown to be equivalent with IQML for the noisy realization
problem) and Cadzow’s method [3], do not converge to the
Lj-optimal solution. This is shown on a simple numeri-
cal counterexample on which the global optimum can be
calculated explicitly. For Cadzow’s algorithm, formal con-
vergence to a fixed point can be proven, but his method
does not satisfy any optimality criterion. If they converge,
IQML and Steiglitz-McBride do so to a suboptimal solu-
tion. This suboptimality is due to a misinterpretation of
the freedom that one has to manipulate a certain constraint
and is explained in detail in Section V.

We will confine ourselves to real data and real STLS prob-
lems, although all results can be generalized to the complex
field. Qur notation is fairly standard.

STRUCTURED TOTAL LEAST SQUARES

Let us now consider in detail the STLS problem where
we take the quadratic criterion

m

[al bs w]§=2(ai"'bi)2;

i=1

in which, for the moment, we do not consider weights w
(An example with weights is treated in Section IV and is



a straightforward extension of the results obtained in this
section).

Theorem 1 STLS as a non-linear generalized SVD

Consider the STLS problem

B(b)y =0,
vy=1,

(1)
where a;,i = 1,...,m are the components of the data vec-
tor a € R™ and B(b) = By + Biby + ...+ Bybm, with
B;,i=0,1,...,m € RP*! fized given mairices.

The solution is described as follows:
- Find the triplet (u,7,v), u € R?, v € R%, 7 € R corre-
sponding to the smallest scalar T that satisfies

Z(a. —b)? subject to

b Bnu Re
€ER™,y € Rt £~

wDu=1,
U‘Dnv = 1,

Av = Dyur,

A'u = Dyvr, (2)

where A= Bo + Y iv, aiBi. Dy is defined via

m
E B} (u'B;v)u = Dy,
i=1

and is a symmelric posilive or nonnegative definite matriz,
the elements of which are quadratic in the components of
u. D, is defined similarly via

E B;(u'Bsv)v = Dyu,

i=1

and is symmetric positive or nonnegative definite with ele-
ments that are quadratic in the components of v.

- The vector y is given as y = v/||v||.

- The components of b are obtained from

k=1,....,m (3)
Before we present the proof of this Theorem, we will first
spend a few words on its interpretation. First observe that,
if Dy, and D, would be constant positive or nonnegative
definite matrices (i.e. independent of u and v), the equa-
tions of Theorem 1 for a given matrix A would be satisfied
by any triplet (u, 7,v) of the Restricted Singular Value De-
composition (RSVD) of the triplet (4, Di/?, i/?) (where

/2 is a square root of D,). The RSVD is just an SVD
Wlth different positive or nonnegative definite inner prod-
ucts in the column and row space and is extensively studied
in [6]. Observe that, still under the assumption that D,
and D, are constant (2) would be a generalized eigenvalue
problem. The ’non-linear’ aspect however is the explicit
dependence of the weighting matrices D, and D, on the
components of u and v. Still, as we will see, these matrices
are always nonnegative definite (hence correspond to inner
products, which are however ’position dependent’) and the
elements are quadratic functions of the components of u
and v.

br = ap — u' Bpvr,

Proof of Theorem 1: For the proof we will use Lagrange
multipliers and proceed in several steps. The Lagrangean
is given by

E(b, Y, l: A) = E(ai = bs‘)2 + It(Bo + 0B +..
i=l
+bm Bm)y + M1 - ¢'y)

where | € R? is a vector of Lagrange multipliers and A € R
is a scalar Lagrange multiplier.
Step 1: Derivatives: Setting all derivatives to 0 and ab-
sorbing irrelevant constants in the Lagrange multipliers,
gives
VeE>0: ag—by=10'Byy,
(Bo+blB1 +...+mem)y=0,
(BY+ 018} +...+ b BE ) =y,
Yy=1.
From I'B(b) y = 0, it follows directly that A = 0.
Step 2: Elimination of b: Next we eliminate the parameters
b by using by = ax — I*Byy to find

O

((*B1y)B1 + ..
+(I'Bmy)Bm)y )
(PBiy)Bi +..
+(I'Bmy) Byl (5)

Looking at the right hand sides, we observe that the first
right hand side (5) is quadratic in the elements of y and
linear in those of I, while the second right hand side (6) is
quadratic in the elements of ! and linear in those of y.

Let’s now concentrate on one term in the right hand side
of (5). Without loss of generality, we can take the first one.

Define §;; as element (i, ) of B; and let b_;t be the i-th
row of By. Then

(Bo +a1B1+...+ amBm)y

(B} +a1 B! + ...+ anB})l =

Element k of (B1y(I'B1y))

= Eﬁk; Y5 Z z: Bralrys

r=1 =1

I

S G

r=1
Hence,
y:H
Buy@Bw)=| .0 | (&' B
v

Observe that in the right hand side, the matrix preceeding
[ is a rank one matrix and as it is the outer product of a
vector with itself, it is nonnegative definite. Obviously, we
can repeat this for each term of (5) to obtain the result
that the right hand side of (5) can be written as

(B (' B))y = Dyl ™)

i=1



Here, Dy is a symmetric matrix which is a sum of m rank
one nonnegative definite matrices, hence Dy itself is non-
negative or positive definite. Its elements are quadratic
functions of the components of the vector y. A similar
derivation applies for the right hand side (6):

i(B.-‘ ('Biy))l = Dry (8)

i=1

where D; is symmetric nonnegative or positive definite,
with elements that are quadratic functions of the compo-
nents of [.
Step 3: Normalization: Next we define ¢ = I/||l|| and
call ¢ = ||l||]. Let D, be defined in the same way as D,
by replacing every component of ! appearing in D by its
corresponding component in z. Since the elements of D;
are quadratic functions of the components of I, we find
= D,02. Next define A € RP*7as A = Bo+) .=, Bia.
Then we find from (5), (6), (7) and (8):
Ay= Dyzo, 'z =1,
At z = D.yo, vy=1 (9)

Step 4: Evaluation of the object function: From equations
(9) it follows directly that

z'Ay = y'A'z = ' Dyzo = y* D, yo. (10)
Next observe that from (4)
m m
D (ai-b)? = Y (I'Biy)’
i=1 i=1
m m
= Y (#'Biy)*e’ =<' Y (Biy(z'Biy)) o*
i=1 i=1
= z'Dyzo’ =z'Ayo . (11)
The last equality follows from (7) and (10).
Step 5: Equations (2) imply (9) : Let the triplet
(u, T, v) solve (2). Then
uAv = (uv'Dyu)r=r. (12)

Furthermore, by normalizing u and v, and recalling that
D, and D, are quadratic in the components of 4 and v,
we obtain:

r 2 Y clullle
AW (Do/IIvll )” ”(T” (el ,
A‘ﬁ = (Dy /l|u||2)|| ”(T||“||||”||)

If we now put z = u/||u||, y = v/||v|| and & = 7||u]|||v||, we
have shown that equations (2) impIy equations (9) .

Step 6: The object function equals 72: From (11) and (12)
we find

| -

= (ol
= (rllullljol)? = 72

' Ayec =
| ””H
D,

ull [ERIIE]

£

| =

(13)

This shows that we need to find the minimal 7. It also
delivers the result for y = v/||v||. For the components of b
we find from (4)

u'Byur .

bk'_‘ak_ _—0 = 4 —

ut
Tl 2* o FI
Step 7: Equations (9) are equivalent with equations (2) :
Because of Step 5, we only need to show that (9) implies
(2). Let (z,0,y) satisfy (9). Define u and v as u = z/a
and v = y/B for certain scalars o and #. Then from (9):

AvB = D,fuac <= Av = Dyu(capf),
Alua = Dya’foc <= A'u= Dyv(caf).

Call 7 = ocaf. Recall that z*z = y'y = 1. Observe that
z'Dyz = y* D,y (this holds for arbitary vectors z and y,
see Property 4 below). Call ¥? = z'Dyz = y* D,y (Re-
call that D; and D, are nonnegative or positive definite).
Then we find that u'D,u = v*Dyv = ¥2/(a?4?). Hence if
we choose a and # such that v2 = a?3?, we can go from

(9) to (2).

This completes the proof. m]

There are several properties of the solution that we would
like to emphasize:

Property 1: Orthogonality
A useful characterization of the optimal solution can be
obtained from (4) by observing that

m m
F(ZB.'b,' e Bo)y =0 = Z(ai - bt‘)bl‘ + FBDy =0.

f=1 i=1

If By = 0 (as will be the case for the noisy realization
problem, see below), this property says that the vector of
residuals a—b is orthogonal to b. This property will be used
below to establish that certain methods do not deliver an
Ly-optimal solution, since this orthogonality condition is
not satisfied. Obviously, the orthogonality property is nec-
essary, not sufficient for optimality.

Property 2: An equivalent minimization problem
An important observation is that, when Dy, or equivalently
D, is invertible, that

'D;1 Av = Dyvr?, v"Dyv=1, (14)
which implies that
72 = v’ A'D; ! Av (15)
is to be minimized, subject to
D=1, (16)

Property 3: Scaling invariance



Observe that the object function (15) is scaling invariant,
meaning that if we replace v by w = v/a, that

VA'D;  Av = wA'DI Aw .

This is due to the fact that the elements of D, are quadratic
functions of the components of v.

Now compare the optimization problem (15)-(16) with ex-
pression (14) . It turns out that if we would assume that
D, and D, were constant matrices (independent of u and
v), the minimization of (15) subject to (16) would result

in the generalized eigenvalue problem (14) . A nice feature
is of course that now, even with the quadratic dependence
of Dy and D, on the elements of u and v, the same eigen-
value problem applies. It can however not be solved with
’classical linear’ eigenvalue solvers, because the weighting
matrices D, and D, depend on the components of u and v.

Equation (10) seems to suggest that 2'Dyz = y*D,y. As
a matter of fact, we have:

Property 4: Normalization
With Dy and D,, as defined in Theorem 1, we have u* Dyu =

v* Dy v for arbitrary vectors u and v.

Property 5: Non-uniqueness of the vectors u and v
The vectors u and v that belong to the same value of 7 in
(2) are not unique. Indeed, replacing v by v/8 and u by
u/a with af = 1, results in

A(v/B) = (Dy/B*)(u]c)r, (v'/B)(Du/a®)(v/B) = 1,
A'(u/a) = (Du/a®)(v/B)r, (u'/a)(Dy/e®)(u/a) = 1,

showing that the triplet ((u/a), 7, (v/8)) also satisfies equa-
tions (2). The conclusion is that the ’direction’ of u and v
is uniquely determined but not their norm. Therefore, we
have one more degree of freedom in imposing an additional
constraint on the norm of u or v, which will be necessary
in the algorithm to be presented now.

III. AN INVERSE ITERATION ALGORITHM

‘We now present an algorithm to solve the set of nonlinear
equations (2). If Dy and D, would be constant matrices
independent of u and v, then the minimal eigenvalue could
be computed with inverse iteration. This is exactly what
we will do now: For given D, and D,, we perform one
step of inverse iteration, using the QR-decomposition of
the matrix A, in order to obtain new estimates of u and
v. These are then used in updating D, and D,, etc.... In
what follows, the iteration number will be indexed between
square brackets. For the results upon convergence, we will
use the index co. We will use the QR-decomposition of A:

R
Ji= ( 2 L ) ( g ) 17)
pxg  px(p—q) 0

A. Outline of the algorithm

We decompose u as u = @1z + Qow for certain vectors
z € R? and w € R?™% From (2) , we easily find that

J(5)-(7)

This is a set of (p + ¢) equations in (p + ¢) unknowns.
For the algorithm, we assume that D, and D, are con-
stant, and solve the system of linear equations for z, w and
v. The solution is easy because of the block triangular
structure of the system matrix. Next u is computed from
u = @12 + Q3w, which is then used to update D, and D,.
As a convergence test, we will reconstruct the affine ma-
trix B(b) from (3) and monitor the condition number of
B(b) in function of the iteration number. Let $; and S,
be the largest and smallest singular value of B(b). Then

numerical convergence occurs when %‘1’- < €, where ¢, is
the machine precision ( €, = sup { ¢ |fi(1+¢) = 1 } where
fl(.) denotes the floating point result of the expression be-
tween brackets).

R} 0 0
Q%DuQI Q;Dqu 0
QiDy@Qi7 QiDyQ2r -R

Inverse iteration algorithm

Initialization: Choose ul%, (% 79, Construct D101, Dyto)
and normalize such that

() Dy vl = (ul) Dy ul” = 1.

For k =1 till convergence:

28 = R7'Dyf-) plk—117lk-1]

wltl = —(Q4 Dy 1x-1Q3) ™ (Q5 Dy1n-1 Q1) 2]

u[k] = le[k] - sz[kl

ol*l = R-IQiDu[k-I] ul¥]

. olfl = Ul /| lF]]

. '}'[k] = ((u[k])t‘l)”“‘]u[k])lf‘i

u[k] — u[k]/ytk] - y[k] -’ v[k]/-r{]‘]

. Dym = Dya/(Y*1)? ; Dy = Dy /(v1¥)?

. k] = (ulf])t Ayl¥)

. Convergence test: Calculate B! using (3) and
its largest and smallest singular value ﬂik] and
,BE,H. If ﬁgk] /ﬂgﬂ > €m, g0 to 1, else stop.

Remarks:

- One iteration corresponds precisely to solving the set of

linear equations (18) with constant D, and D,, using
the QR-decomposition of A.

- The normalization of v in Step 5 is necessary. With-
out it, the algorithm grows unstable in the sense that
[|of¥)]| = 0 and ||ul*]|| = oo as k — oo while [|ul*]||||v!*]]]
is constant. We can however 'regularize’ the algorithm
by normalizing v in an intermediate step. This is per-
fectly possible because of Property 5 in the previous
section.

nom:qc:cn-hmts:u

—_
o



- A natural choice for the initial guess is the singular
triplet of A, corresponding to the smallest singular
value. This triplet would provide the solution if A were
unstructured. This choice however does not guarantee
convergence to a global minimum as will be shown with
a numerical example below. The initial normalization
of the vectors ul® and v[% is straightforward because
of Property 4.

- A variation of this algorithm could be to perform¢ > 1
steps of inverse iteration with fixed D, and D,. How-
ever here we will only uset = 1.

- The algorithm as presented above is far from efficient.
For instance, if p is much larger that g, the inversion
of the (p— ¢) x (p— ¢) matrix (Q4D,Q2) requires a lot
of work. If A and B(b) are Hankel matrices (as is the
case in this paper), we could apply inverse iteration
to the generalized eigenvalue problem (14) (be careful
with the normalization constraint on v, see below) and
fully exploit the complexity reducing ideas described
in [4], in which DFTs and FFTs are used to obtain
fast inversion of D,. Also, the convergence test could
be replaced by a much more efficient criterion than
the one we propose here. However, we need a precise
convergence criterion as we want to show by a numer-
ical example that ’classical’ algorithms for the same
problem do not converge to the optimal solution.

B. Discussion

We have no formal proof of the convergence of this algo-
rithm. However, as the numerical experiments will demon-
strate, if it convergences, its convergence rate seems to be
linear. Intuitively, this can be understood when we assume
that D, and D, are invertible as follows: Assume that D,
and D, are factorized as D, = C}Cy and D, = C!C, (for
instance via Cholesky factorization). Then, since D, and
D, are invertible, we can replace (2) by

(WC(Cou) =1,
(vCH)(Cur) =1.

(CTTACTY) (Cuv) = (Cou)r,
(CITA'CY) (Cuu) = (Cuv),

Obviously, we now obtain a (nonlinear) (ordinary) singular
value decomposition. We could also eliminate the vector
u = D;!Av/r in (2) and obtain the generalized eigenvalue
problem (14). Using the factorization of Dy and D,, we
find

Ty [Cut) = [CTA DL ACTY[Cur] = [Cuplr?
WCi[Cuv] =1,

with an obvious definition of T, . Note that T, is a sym-
metric positive definite matrix, which implies that all its
eigenvalues are real positive. As we will see in the nu-
merical examples below, D, and D, converge to con-
stant matrices, which implies that also T, is approxi-
mately constant so that we are basically iterating with T);;!
in the inverse iteration algorithm. This observation implies
that, asymptotically, the convergence rate is linear and will
be governed by the two leading eigenvalues )\; and A of

T} (This follows from the well-known convergence prop-
erties of the classical power method). It directly follows
that also log,, ||ul*] — vl¥~1|| decreases linearly as a func-
tion of the iteration number. A third implication is that
log[@min(B™))] will decrease linearly as a function of the

iteration number k, where B*] = By 4+ 31, Bt with
o = a; — (ulk))t B;olFl o]

IV. RANK DEFICIENT HANKEL MATRICES

While the results of the previous section apply to general
affinely structured matrices, from now on, we will concen-
trate on Hankel matrices. In Section IV.A, we describe the
so-called noisy realization problem in terms of rank defi-
cient Hankel matrices. We re-do the general proof with
Lagrange multipliers for this special case to establish the
structure of the weighting matrices D, and D,. When
additional weights are introduced, one has to modify the
structure of Dy and D, as explained in Section IV.B. In
Section IV.C, we show how to solve the approximation
problem when the approximating model is of first order.

A. The noisy realization problem

Consider the problem of approximating a given data se-
quence a € RP*9-1 by b € RP+9~1 50 as to minimize

ptg-1 _
z (a; — b;)* subject to B‘y =1,

vy=1, (19)

i=1
where B is a p x ¢ Hankel matrix constructed from the
elements of b. The rank deficiency of the Hankel matrix
B ensures that b is the impulse response of a finite dimen-
sional linear system of order ¢ — 1 at most. Hence, the
number g of columns of the Hankel matrix B, which can
be chosen by the user, will define the order of the approx-
imating system, which is ¢ — 1 at most. The characteristic
polynomial of the system that models the approximating
sequence b is given by y(2) = Y29  + ...+ y2z + y1. Its
roots are the poles of the approximating system. This im-
plies that the z-transform of the sequence b will be of the

form

b(z) =4(2)/y(2) , (20)
for a certain polynomial(z) of degree smaller than ¢. If the
sequence a is itself the impulse response of a higher dimen-
sional system, our problem corresponds to model reduction.
For p — oo we get model reduction in the Ho-norm, which
is treated in [7], using the z-transform and based on the
insights obtained in [6] and this paper. If the sequence a is
a given data sequence (which is not an impulse response,
but for instance a noise corrupted one), one might consider
this problem as a noisy realization problem.
The Lagrangean function for this problem is £(b,y,1) =
Ef:f'l(a.- —b)2+1I'By+ A(y'y — 1) with B Hankel. Set-
ting all derivatives to zero results in the set of equations (a
convolution is denoted by a 'x’): a — b = I xy, which means

that

ai—=b = hwy



Ly + by
lhiys+ bys + s

ag—bg =
as—ba =

Gp+g-1 —bpte-1 = lpyy

and in addition

Bil=y\ , yy=1 , By=0.

Note that we have 2p + 2¢ unknowns (the elements of &,1,
y and )) and exactly 2p + 2¢ equations. The first equation
is a convolution which represents p+ ¢ — 1 equations. It is
straightforward to find that A = 0 because I'By = A = 0.
Let B be the p x ¢ Hankel matrix formed with the elements

of b. Then

S Y "
la I3 ... ... Ip 0 0
A-B= s & ... lp O 0 0
Ik D aer s 8 B
( Yoy ... Vg \
0 Y1 ... Yg-1
o o o0 o Vg2
0 0 I
0 1 Iz X 0 o n (21)
Y o 0
Ip~2  lp-1 Yg=1 Vg +o» 0
\ 2. ¥3 ... 0 )

which means that the difference A — B is the product of a
Hankel and a Toeplitz matrix (note the ’circulant’ structure
in both matrices). A useful property of this factorization,
when it is postmultiplied with a vector z is illustrated here
for the case p=4,¢=3:

Vi ¥2 Y
i I I3 lg 0 O 0 »n ¥ B
la 13 g 0 0 N 0 0 wn 1
Ila 4 0 0 I3 I 0 0 0 %2
ly 0 0 I3 I I3 yvs O 0 73
v2 va O
y1 O 0 0
z7 2 23 0 0 0 ¥v2 w1 0 0 1
0 2z 22 2.3 0 O v3 2 w1 O Iz
0 0 =z 2z zz3 O 0 ¥ ¥ n I3
0 0 0 2 2zz =z 0 0 wys w2 lg
0 0 0
=T, T, ! (22)

where T, and Ty are banded Toeplitz matrices with the
elements of z and y. It shows that the Hankel-Toeplitz-
vector product is converted into a Toeplitz-Toeplitz-vector
product. We now use this property to elimate the matrix
B. Postmultiplying A— B with y results in By = D, where
Dy is p x p banded symmetric positive definite Toeplitz of
the form Dy, = T,T;. Hence, its elements are quadratic
functions of the components of y. Similarly, we find by
postmultiplying A* — B' with [ that A*l = D;y where D;
is a ¢ x ¢ symmetric positive definite Toeplitz matrix of a
form generated in the same way from the elements of [ as
Dy from the elements of y: D; = TiT}. If we normalize ! so

that I/||l|| = = and ||l|| = ¢, we have exactly the equations
as in (9). Next we can renormalize z and y to finally obtain
the equations as in (2).

B. Weighted rank deficient Hankel approzimation

One might also consider to minimize a weighted error cri-
terion as

p+g-1 By=0
z (@i = b;)?w;  subject to y,z ; 1 ’ (23)
i=1 ’

with B Hankel and w; € R positive weights. Let W =
diag(w;). Then, the solution is generated as in Theorem 1
by the generalized SVD problem (2) with

D =T W4t Dy=5,W15.

The orthogonality property now becomes
(a=0b)Wb=0.

When the time horizon goes to infinity (p — oo) and
when w; = 4,i{ = 1,2, ..., we obtain the so-called Hilbert-
Schmidt-Hankel norm (HSH-norm, which has certain in-

teresting features, see [8] ).

C. A special case: Approzimation by first order systems

There is one special case for which the global optimum
of (23) can be found explicitly: This is when one wants
to approximate a given data sequence a by a first order
LTI impulse response, which can be parametrized as by =
af*-1. We then obtain as a minimization problem (setting
g=2)
p+1
. k—1y2
- wy .
oclihen 201 = o0

(24)

Setting the derivatives with respect to a and f to zero, we
obtain:

L 0 = ;i:l(a —aftDup (=) =0

ba - k=1 * ) o

.- 0 = %(a — afF Hu(—=(k = 1)8¥2) =0
36 3 k k =0.

k=2

Note that the first of these two equations is nothing else
than the orthogonality property (with additional weight-
ings wy). The second equation states that also the sequence
{(k—1)8*~2} is orthogonal to the weighted residual vector.
Eliminating o from the first equation and substituting it
in the second, we get the polynomial in 3:

p+1 p+1

D (k= Darwe 2D %~ 2uw]
k=2 k=1

p+1 p+1

- Do arftw]) (k- w3 =0 (25)
k=1 k=2



This is a polynomial of degree 3(p + 1) — 5 in 5. One has
to select the root which gives the minimum in (24).

V. THREE OTHER ALGORITHMS: IF THEY CONVERGE,
THEY DO S0 TO A SUBOPTIMAL SOLUTION !

In this section, we discuss three well known algorithms that
have been proposed in the literature to solve the noisy re-
alization problem. The main conclusion will be that they
converge to a suboptimal solution.

A. Cadzow’s algorithm

Cadzow’s algorithm [3] obtains a rank deficient Hankel ma-
trix approximation to a given Hankel matrix. It is well
known that the best rank deficient least squares approxi-
mation to a given matrix A can be obtained from the SVD
of A1, If A is structured, for instance Hankel, the rank
deficient approximation, obtained by truncating the dyadic
decomposition of A to ¢ — 1 terms, will typically not have
the required structure, or better, no structure at all. One
could then try to find the best least squares fit to the ob-
tained rank deficient matrix, that has the required struc-
ture. For Hankel matrices, it turns out that this fit is found
by replacing the elements on the anti-diagonals by their av-
erage. This new matrix will however not be rank deficient
anymore. Therefore one could again obtain the SVD, trun-
cate it to find a rank deficient approximation etc.... This
procedure can be summarized as follows:

Cadzow’s algorithm

Initialization: Call B0 = A.

For k =1 till convergence:

1. Truncate the SVD of Bl¥~1 by omitting the dyad cor-
responding to the smallest singular value in the dyadic
decomposition. Call the resulting rank deficient ma-
trix CI¥] &It will not have the Hankel structure).

2. Obtain BU¥], the best least squares fit to C*], which
has Hankel structure (It will not be rank deficient).

3. Convergence test: Let ﬁgk] and ﬁm be the largest
and smallest singular value of Bl*l. Verify whether

ﬁy‘]/ﬁgﬂ < €m. If s0, stop, else, go to 1.

Cadzow in [3] formally proves that this process converges to
a rank deficient Hankel matrix. Our numerical simulations
show that it does so linearly. But nothing is known about
its optimality. One could expect that Cadzow’s algorithm
minimizes ||A— B||% over all rank deficient Hankel matrices
B, but below we will show with a small numerical example
that Cadzow’s method does not converge to the optimal
solution.

1t is interesting to see what happens to our equations (2) when A
has no special structure. Then D, and D, reduce to identity matrices
and the equations become Av = ut, A'u = vr,v'v = 1,u'u = 1 which
can only be satisfled for a singular triplet (u,7,v) of A. The minimum
corresponds to the singular triplet associated with the smallest singular
value of A.

B. Iterative Quadratic Mazimum Likelihood (IQML)

The fact that expression (14) is to be minimized with re-
spect to v, has been observed before in e.g. [2] [4] [9]. In
these papers, a linear constraint on v is used, such as the
requirement that one of its components be 1, e.g.:

(26)

vg=1.

The Iterative Quadratic Maximum Likelihood (IQML)
method then proceeds by minimizing in each step the qua-
dratic form (15), where D, is assumed to be constant, sub-
ject to the linear constraint (26?. We now describe the basic
algorithm of [2]. Define Cl¥-1l g R(s-1)x(s-1) ([k-1] ¢ R¢
and Y%~ € R as

c[k_]-]

cle-1 -
[k—-1]yt [k-1] = yle=1]41 5
N O

and partition v(¥] accordingly as

[¥]
ot = ( 2 ) .

Then the minimization of (15) subject to (26) results in

wl®l = _(CIk—I])—lc[k—-ll :

and
c{k_ll

_ C[k—l]
(A'Dg_ Ayt ((c{k—l]): olk=1]

wlk]
1
_ 0
= =11 _ (clk=1lyiglk=1]olk-1]

If the algorithm converges, then this equation is satisfied
for vlee] ¢l cleo] lo0] guch that
wlee]
1

) @n

This is not at all equivalent with the generalized eigenvalue
problem (14).

The confusion arises from a 'misinterpretation’ of the scal-
ing property. Indeed, the scaling or normalization of v has
no effect on v*A*D;!Av (Property 3), but, one may not
replace the constraint v* Dyv = 1 by another one (in this
case the linear one (26) ). The appearance of Dy is a cru-
cial requirement for the optimum solution.

A possible variation is to replace the linear constraint (26)
with a quadratic one as

c[m]

Cloe]
( (clool)t ylee]

0

(A ;,;,A)vfwl =

ve=1, (28)
If in each step, it is again assumed that D, is constant,
the minimization of (15) subject to (28) requires the cal-
culation of the minimal eigenvalue M and corresponding
eigenvector v[¥], which will satisfy

(A'Dypon =2 A) olF] = ofINK] | (olRlytf8] — 1



Upon convergence, we get the equation
(A*D7L, A) ol = yleelpleel - (yleelyiylol =1, (29)

Again, this equation differs from the generalized eigen-
value problem (14). Comparing (29) to (14) shows that
the weighting matrix D, , which occurs in (14) is absent in
(29). Said in other words, the two eigenvalue problems are
fundamentally different 2 !

The conclusion is that, since our generalized eigenvalue
(14) was obtained via a formal proof, IQML with a linear
or quadratic constraint does not deliver the right solution!
This will be confirmed by a numerical simulation below.

C. Steiglitz- McBride iteration

The Steiglitz-McBride algorithm is an iterative method for
computing a rational approximation of a given data se-
quence. Originally, this method was formulated as a sys-
tem identification technique based on input-output mea-
surements. However, it also applies to the noisy impulse
response realization problem. Let the model be as in (20).
On the k-th iteration, an estimate ¢[¥](z) and y{*1(z) is ob-
tained by minimizing the error criterion

pt+g-1

M="Y

i=1

1 ; 1 ;
[y["](a’)[y{,,—_l](z—)[a(i)]]*-t["](Z)[y—[,,_—q(-;;)['5(1)]]]2

Typically, a constraint such as yy‘] = 1 is imposed to avoid
the trivial zero solution. The notation y!*1[.] and t[¥I[]
denotes filtering by finite impulse response (FIR) filters.
Likewise, the operator m;]l—(;—)[a(k)] represents an all-pole
inverse filter operation applied to the signal a(k). é(3) is
an impulse and hence ;[1.—..-1:1-(;5[5(5)] is the impulse response
of the all-pole filter. The error equation can be converted
to matrix-vector form as

elk] = ||Cte-1y k] _ prlk-1140k]) 2 | (30)

where Cl¥-1 and H[*-1] are lower triangular Toeplitz ma-
trices made from the data sequence a(k) and the impulse

2The fact that the normalization of an eigenvector and the presence
of another matrix are important in eigenvalue-based optimization prob-
lems, can already be seen from a constant matrix case. First, consider
the eigenvalue problem Az = DzA. It's easy to see that the value of the
quadratic form z'Az where z is an eigenvector, depends on the normal-

275 180 ) and let D be

ization of £. Consider the example A = ( 1.50 2.75

o

gives X =

0.5088 0.4715

0.4715  0.4637 ) The eigenvalue decomposition AX = DXA

0.7741 -—0.6892 - 4.1669 0
( 0.6331  0.7246 ) a0 o= ( 0 70.3639 )
Both eigenvectors are normalized to have norm 1. We now rescale the
vectors of X to Y so that Y*DY = I;. Let's now check the quadratic

forme: X'ax = ( 3-9702 O )\ The minimum is cbtained for

0.0000 1.0019
the second column of X, the maximum for the first column. If we verify
YiAY = 4'1663 70.3633 , we see that the minimum is obtained

for the first column of Y, the maximum for the second column!!
Next, consider the optimization problems: min cRP z!Azr subject to

z'Dz = 1. This is equivalent with min _ g, f:—% subject to z'z = 1,
for which the solution is given by the minimal eigenvalue satisfying
Az = Dz). This is not equivalent with the solution to min _ g, oAz
subject to z'z = 1, for which the solution is given by the minimal eigen-
value of A.

response of the all-pole filter 1/(y*~1)(2)) (see [10] for full
details).

Obviously, the minimization of (30) subject to a linear
constraint on y{¥] ig a least squares problem. In [10] it
is shown that at each iteration step, the solution is ex-
actly equal to the solution given by IQML with a linear
constraint. Hence, when applied to the noisy realization
problem, the Steiglitz-McBride algorithm coincides with
linearly constrained IQML. Since one of our conclusions so
far was that IQML converges to a sub-optimal solution, the
same observation applies for Steiglitz-McBride.

V1. NUMERICAL EXAMPLES

We discuss two numerical examples. The first one shows by
a first order approximation that the methods of Cadzow,
IQML and Steiglitz-McBride deliver suboptimal solutions.
The second example illustrates the convergence behavior
of the inverse iteration algorithm of this paper.

All simulations are done in MATLAB.

A. A simple counterezample

We take as a data sequence a € R® wherea’ = [654321],
which we want to approximate with a first order linear
system. (Any decreasing sequence of natural numbers can
be modelled as the impulse response of an LTI system as

Tp4l = (1) _i g, y¢ = (1 0 )zg. For this data

sequence, zo = ( 6 1 )’.). The impulse response of the
first order system (over this finite time horizon) can be
parametrized as b* = [ a af af? af® af* af® ]. We will
use the 5 x 2 Hankel matrix

h g

Il
B QW T O
el - I S |

In the first table, we take the unweighted case (i.e.all weights
in (23) are equal to 1).
Some remarks that follow from Table I:

- It is clear that IQML and Steiglitz-McBride (equiva-
lent with linearly constrained IQML) do not give the
optimal order 1 approximation.

- When we apply the method of subsection IV.C to this
example, we obtain a polynomial of degree 13, which
has only one real root.

- The inverse iteration method of Section III converges
to the exact solution in 9 iterations. Initial vectors
are (1 111 1)"and (1 1) scaled appropriately,
using property 4. At convergence, the orthogonality
condition is satisfied (at least numerically): (a—b)'b ~
10-Y¥ x ¢, .

- IQML with a linear constraint requires 9 iterations for
convergence while IQML with a quadratic constraint
needs 19 iterations (both with the same starting vector
vl% as for inverse iteration).



Next we consider the quadratic object function (23) with
weights w* = [12 2 2 2 1], i.e. we minimize |4 — B||%
subject to B Hankel and rank deficient. The results are
summarized in Table II.

Remarks that follow from Table II:

- The inverse jteration method was started with initial
vectors ul)' = [111111]and o =[11]
(scaled appropriately) and required 10 iterations for
convergence. One can verify that the orthogonality
property (a — b)'Wb = 0 is satisfied (numerically),
where W = diag(w).

- Cadzow’s method converges in 89 steps. The corre-
sponding 5 x 2 Hankel matrix is rank deficient. How-
ever, the orthogonality condition (which is necessary
for Ly optimality) is NOT satisfied for the Cadzow
approximating sequence: (a — b)'Wb = 1072 % €.

B. Numerical ezample for the inverse iteration algorithm

Consider the impulse response

d(k) = 0.91% sin(0.9k)+0.97% sin(0.7k+1) ,k = 1,2,...,74,

(31)
and let it be perturbed by a white noise Gaussian ran-
dom sequence n(k) with zero mean and variance 0.2. The
data that will be approximated consist of the sequence
a(k) = d(k) + n(k),k=1,...,74. We take p =70,¢ = 5.
In this example, we also demonstrate that the inverse iter-
ation algorithm does not necessarily converge to the global
minimum. There may be other stationary points as well.
’Estimate I’ is obtained by taking as starting vectors, vec-
tors with all ones, appropriately scaled. ’Estimate 2’ is
obtained by taking as starting vectors the singular vectors
of A, corresponding to the smallest singular value. The
objective function for Estimate I is smaller than that for
Estimate 2. Some results and comments are shown in Fig-
ures 1, 2 and 3. The roots of the characteristic equation
of the system (31) are 7.4190e — 01 + 6.2489¢ — 01¢ and
5.6567e —01+7.1283¢ — 01i. The results obtained from the
estimates are summarized in Table III.

VI. CONCLUSIONS

In this paper, we have shown that some classical algorithms
that were designed to solve the optimal L, noisy realiza-
tion problem, do not generate Lj-optimal solutions.

Using Lagrange multipliers, we have derived necessary con-
ditions for optimality and shown that these can be inter-
preted as a nonlinear generalized SVD problem. An inverse
iteration method to solve it was proposed.

When the data come from the impulse response of a lin-
ear time invariant system, which is corrupted by additive
Gaussian white noise, then the L; approximant as de-
rived here, is the maximum likelihood estimate. Obviously,
adding other linear constraints (such as e.g. the require-
ment that the polynomial y(z) should be symmetric in its
coefficients, a necessary condition for stability) present no
additional conceptual nor algorithmic problems.

Many other applications for affinely structured matrices

are analysed in [6].
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