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1 Introduction: the CTLS and STLS problem.

A problem that often occurs in system identi�cation, modal analysis, signal process-

ing [6], etc. is to approximate a given a�nely structured data matrix A (e.g. Hankel,

Toeplitz,...) by one of lower rank having the same structure. Since there is linear

dependence among the error entries in A, the Total Least Squares (TLS) solution

no longer yields optimal statistical estimators [5]. To get more accurate estimates,

Abatzoglou and Mendel [1] extended the classical TLS problem to incorporate the

algebraic dependence of the errors in A and called their extension \constrained TLS".

De�nition: Constrained TLS (CTLS) problem [1]. Let A

p�q

be given and �A

j

=

F

j

�a be the correction on its jth column with F

j

a �xed p�m matrix and �a a zero-

mean white noise vector of minimal dimension m. The CTLS problem seeks to (\�"

denotes the conjugated transpose):

min

�a;y

k�ak

2

2

subject to fA+ [F

1

�a; : : : ; F

q

�a]gy = 0 and y

�

y = 1 (1)

e.g. ifA is Hankel then F

j

= [0

p�(j�1)

I

p

0

p�(q�j)

] withm = p+q�1. For simplicity, we

assume that �a is white (if not, a whitening transformation can always be applied [1]).

As shown in [1], the CTLS solution

b

y can be obtained from the following unconstrained

minimization problem:

min

y;y

�

y=1

y

�

A

�

D

�1

y

Ay with D

y

= H

y

H

�

y

and H

y

=

q

X

j=1

y

j

F

j

(2)

if H

y

has full rank and p � m. The corresponding correction matrix �A = [F

1

�a;

: : : ; F

q

�a] with �a = �H

y

by

A

b

y(\y" denotes the pseudo-inverse). In [1], a complex

version of Newton's method has been derived and applied to �nd the CTLS solution.

However, convergence problems occur as soon as the noise in A is no longer small

which is the case in biomedical signal processing [6]. Better convergence results have

been obtained with substantially less computations by solving (2) simply by means

of inverse iteration, i.e. for k = 1; 2; : : : up to convergence, solve for y(k):

R

�

Q

�

1

D

�1

y(k�1)

Q

1

Ry(k) = y(k � 1)

1
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with A = Q

1

R; Q

�

1

Q

1

= I

q

and R upper triangular, the truncated QR decomposition,

and y(0) an initial estimate of the eigenvector corresponding to the minimal eigen-

value of A

�

D

�1

by

A. Typically, we take as y(0) the eigenvector corresponding to the

minimal eigenvalue of A

�

A. Convergence is obtained as soon as ky(k)� y(k� 1)k

2

is

below a given tolerance �. This CTLS problem is a special case of the following:

De�nition: Structured TLS (STLS) problem [3]. Given an m� 1 data vector a

and weight vector w. Let B(b) = B

0

+ b

1

B

1

+ : : :+ b

n

B

n

be an a�ne matrix function

of the parameter vector b where B

j

; j = 0; 1; : : : ; n are �xed given p�q matrices. Find

a rank-de�cient matrix in the a�ne set B(b) such that a given quadratic function

[a; b; w]

2

2

of the parameters b

i

is minimized, i.e.

min

b;y

[a; b; w]

2

2

subject to B(b)y = 0 and y

�

y = 1 (3)

e.g. if we want to approximate a p � q Hankel matrix A by one of lower rank, say

B(b) =

P

n

i=1

b

i

B

i

, then a = [A

11

; : : : ; A

p1

; A

p2

; : : : ; A

pq

] contains the n = p + q � 1

di�erent entries of A =

P

n

i=1

a

i

B

i

, w = [1; : : : ; 1]

T

if all entries are equally weighted.

B

0

= 0 while B

j

is a zero matrix with ones on its jth antidiagonal containing the

entries (i; j�i+1); i = 1; : : : ; j. Here, we focus on the STLS problem (3) with m = n:

min

b;y

ka� bk

2

2

subject to B(b)y = 0 and y

�

y = 1 (4)

in which weights w are not considered for simplicity.

As proven in [4, 3, Theorem 1] by making use of Lagrange multipliers, the STLS

solution is obtained from the following nonlinear generalized Singular Value Decom-

position (SVD) problem:

Find the triplet (u; �; v) corresponding to the minimal � that satis�es

Av = D

v

u� u

�

D

v

u = 1 and A

�

u = D

u

v� v

�

D

u

v = 1 (5)

D

u

, de�ned by

P

m

i=1

B

�

i

(u

�

B

i

v)u = D

u

v, andD

v

, de�ned similarly by

P

m

i=1

B

i

(u

�

B

i

v)v

= D

v

u, are Hermitian nonnegative de�nite with elements that are quadratic in the

components of u and v. The STLS solution y is given by y = v=kvk

2

and the compo-

nents of b are obtained from b

k

= a

k

� u

�

B

k

v�; k = 1; : : : ;m.

The following properties of the STLS solution are important for our comparison:

1. If B

0

= 0 and W = diag(w

i

) then (a� b)

�

Wb = 0, i.e. the residual vector a� b is

orthogonal to b. This property is necessary but not su�cient for optimality.

2. If D

v

in (5) is invertible then the STLS solution also follows from the following

equivalent minimization problem [4]:

min

v

�

2

= min

v

v

�

A

�

D

�1

v

Av subject to v

�

D

u

v = 1 (6)

3. The object function (6) is scaling invariant, i.e. (6) does not change if we replace

v by v=�.

4. With D

u

and D

v

as de�ned in (5): u

�

D

v

u = v

�

D

u

v for arbitrary u and v.

5. If (u; �; v) satis�es (5) then any triplet (

u

�

; �;

v

�

) with �� = 1 also satis�es (5), i.e.

the vectors u and v are not unique.
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A straightforward linear convergent algorithm that solves the set of nonlinear

equations (5) is outlined in [3, 4] and is based on the inverse iteration method to �nd

the smallest singular value and corresponding singular vectors of a matrix. For given

D

u

and D

v

, one step of inverse iteration is performed, using the QR decomposition

of A, in order to obtain new estimates of u and v. These are then used in updating

D

u

and D

v

, etc. Convergence is achieved when kB(b)vk

2

and kB(b)

�

uk

2

(with B(b)

the current reconstructed approximation matrix) fall below a given tolerance �.

Many STLS applications are treated in [3]. Here, we con�ne our attention to a

comparison of STLS with CTLS and other suboptimal approaches described in [6, 2].

Section 2 then compares the di�erent methods in a particular signal enhancement

problem in which we try to approximate a Hankel matrix by one of lower rank.

The suboptimal methods [2, 6] try to solve the minimization problem:

min

B2S

r

kA�Bk

F

(7)

where S

r

is the set of rank r matrices having the same structure as A, by decomposing

this problem in 2 simpler subproblems. First, one gets the rank r approximation A

(r)

of A. Hereto, Cadzow [2] arranges the data a in a matrix A

p�q

with p; q determined

by the considered application (e.g. p = q(+1) in Sec.2) and computes the rank r

truncated SVD of A, i.e. given the SVD A

p�q

=

P

q

i=1

�

i

u

i

v

�

i

with �

i

� �

i+1

;8i, then

A

(r)

=

P

r

i=1

�

i

u

i

v

�

i

. As shown in [6], better resolution properties using noisy data are

obtained by �rst arranging the data in a matrix A

p�q

, where p >> q, and then com-

puting the Minimum Variance (MV) estimate A

(r)

=

P

r

i=1

(�

2

i

� p�

2

�

)�

�1

i

u

i

v

�

i

of the

noise-free data matrix. �

2

�

is the (estimated) variance of the complex noise added to

the given data a. Since A

(r)

destroys the structure of A we next recover the required

structure and this completes the �rst iteration, e.g. if A is Hankel (as in Sec.2), the

closest Hankel matrix is simply obtained by replacing the antidiagonals of A

(r)

by the

average of their elements. However, the new structured matrix is no longer of rank r.

One then iterates by again computing the truncated SVD [2] or MV estimate [6] and

restoring the required structure, etc. This process converges but not (necessarily) to

the minimum of (7). In fact, it is shown in [3, 4] that these suboptimal approaches do

not deliver an L

2

-optimal solution since the orthogonality property is not satis�ed,

i.e. k(A�B)

�

Bk

F

= (a� b)

�

Wb 6= 0 where W is a weighting matrix (determined by

the structure of A, e.g. ifA is Hankel thenW = diag(1; : : : ; q�1; q; : : : ; q; q�1; : : : ; 1)).

Let's now compare STLS with CTLS. CTLS, as well as STLS, allow to approx-

imate given structured matrices A = B

0

+

P

n

i=1

a

i

B

i

, such as Toeplitz and Hankel

matrices or matrices with certain zero patterns or error-free entries, by rank-de�cient

matrices B(b) having the same structure. In these cases, A and B have the same

structure implying that m = n and both formulations coincide if [a; b; w]

2

2

= ka� bk

2

2

.

Although both formulations allow to introduce weighting matrices W

n�n

, we focus

here on the unweighted case, i.e. W = I

n

. De�ne �a = �(a� b) the correction vector

then (4) can always be written as (1) where �A = [F

1

�a; : : : ; F

q

�a] =

P

n

i=1

�a

i

B

i

=

�

P

n

i=1

a

i

B

i

+

P

n

i=1

b

i

B

i

= �(A�B(b)), i.e. the jth column F

j

�a of �A equals the jth

3



column of

P

n

i=1

�a

i

B

i

and this de�nes the di�erent F

j

as used in the CTLS formula-

tion. Di�erences between both formulations arise when A and B(b) or [F

1

�a; : : : ; F

q

�a]

are structured in a di�erent way, e.g. when A is an arbitrary matrix and B is the

closest rank-de�cient Hankel matrix. In that case, A�B is not a Hankel matrix and

we can not �nd F

j

and �a such that CTLS formulates exactly the same problem.

In addition, the STLS problem formulation is more general in the sense that more

general quadratic criteria than the 2-norm can be used and other constraints can be

easily added merely because the solution of the STLS problem is based on the use of

Lagrange multipliers, e.g. if one wants to �nd a matrix B closest to A such that B

has a speci�ed singular value �, the STLS problem formulation is easily found [3]:

min

b;u;v

ka� bk

2

2

subject to Bv = u�; B

�

u = v� and u

�

u = 1

Comparing the way in which CTLS and STLS solve their problem, the following

conclusions can be made. First, D

y

= H

y

H

�

y

, used in the CTLS problem (2), equals

D

v

, used in the STLS problem (6), for y = v, e.g. if A

p�q

is Hankel then H

y

=

2

6

6

4

y

1

: : : y

q

0

.

.

.

.

.

.

0 y

1

: : : y

q

3

7

7

5

p�(p+q�1)

=

P

q

i=1

y

i

F

i

. Second, D

u

= H

u

H

�

u

, used to solve the

STLS problem (5) and (6), is a q � q Hermitian positive de�nite Toeplitz matrix

generated in the same way from the elements of u as D

y

= H

y

H

�

y

from the elements of

y. Observe that D

u

is not used in the CTLS problem which is the main reason why the

CTLS algorithm, outlined above, is simpler than the STLS algorithm based on inverse

iteration. Comparing (2) with (6), we observe that the main di�erence between both

solutions is the fact that the STLS scaling constraint v

�

D

u

v = 1 has been replaced

by a simpler constraint v

�

v = 1 in the CTLS problem (as formulated here) or the

requirement that one of its components be �1, e.g. v

q

= �1 as used in [1]. This is

the main reason why the CTLS algorithms, presented here and in [1], as well as the

classical algorithms Steiglitz-McBride and Iterative Quadratic Maximum Likelihood,

do not converge to the L

2

-optimal solution, as shown with a simple counterexample in

[4] (despite misleading claims in the literature). Indeed, the scaling or normalization of

v in (6) has no e�ect on v

�

A

�

D

�1

v

Av but one may not replace the constraint v

�

D

u

v = 1

by another one, e.g. v

�

v = 1, as done in (1), or v

q

= �1 [1]. The appearance of D

u

is a crucial requirement for the optimal solution.

2 Results

Here, we compare the performance of the STLS and CTLS algorithms with that of

the suboptimal approaches [2, 6] in the following exponential data modeling problem.

Given N complex data points x

n

; n = 0; : : : ; N � 1, modeled as:

x

n

=

K

X

k=1

c

k

z

t

n

k

=

K

X

k=1

(a

k

e

j�

k

)

)e

(�d

k

+j2�f

k

)t

n

n = 0; : : : ; N � 1 (8)

where j =

p

�1 and t

n

is the time lapse between the e�ective time origin and sample

x

n

, the objective is to estimate the frequencies f

k

, damping factors d

k

, amplitudes a

k
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Figure 1: The results (averaged over 1000 runs) of applying STLS-HTLS, CTLS-

HTLS, CA-HTLS, MV-HTLS and the nonenhanced P0-HTLS to the simulation signal

x

n

= e

(�0:01+j2�0:2)n

+ e

(�0:02+j2�0:22)n

; n = 0; : : : ; 24 (K = 2; N = 25) [6] versus

the peak signal-to-noise ratio = 10 log(1=�

2

�

) where �

2

�

is the variance of the added

complex Gaussian noise: (a) % of times that each method fails to resolve the 2 peaks

within the frequency intervals 0:2� 0:0094Hz and 0:22� 0:0106Hz; (b) Relative root

mean-squared errors (excluding failures) obtained for estimating d

1

= 0:01Hz.

and phases �

k

; k = 1; : : : ;K. Prior to parameter estimation, the data are enhanced

as follows. Arrange the x

n

in a p�q Hankel matrix A in which N = p+q�1. Except

for Cadzow's method in which p = q is taken, q is set to K + 1. Approximate now

A by the closest rank K Hankel matrix B by means of the CTLS algorithm based

on inverse iteration, the STLS algorithm of [3], the MV method [6] and Cadzow's

method [2]. The cleaned-up data samples

b

x

n

; n = 0; : : : ; N � 1, which are found

along the �rst column and last row of the resulting B, are then used to estimate

the required signal parameters f

k

; d

k

; a

k

; �

k

in (8) by an improved version of Kung's

state-space method based on TLS and called here HTLS. See [6] for more details. If

respectively no signal enhancement, Cadzow's method or the MV method with one

iteration, CTLS or STLS with � = 10

�7

, is used prior to HTLS, the method is called

P0-HTLS, CA-HTLS, MV-HTLS, CTLS-HTLS or STLS-HTLS.

Simulations show that MV-HTLS signi�cantly improves the resolution of interfer-

ing peaks. As shown in Fig. 1(a), the resolution is doubled compared to Cadzow's

method that still performs better than the nonenhanced method P0-HTLS. CTLS-

HTLS and STLS-HTLS do not exhibit good resolution properties except on small

sampled problems, e.g. N = 25 as shown in Fig.1. For larger N , examples are found

in which the resolution of STLS-HTLS and CTLS-HTLS is even worse than for the

nonenhanced method P0-HTLS, e.g when solving [6, Example 1] where N = 128

and K = 5. However, if the peaks are resolved, then the obtained STLS-HTLS and

CTLS-HTLS parameter estimates f

k

; d

k

; a

k

; �

k

are clearly more accurate (closer to the

Cram�er-Rao bound) than the other estimates, as illustrated in Fig.1(b). On the other

hand, STLS-HTLS and CTLS-HTLS, requiring typically 50 to 100 iterations or more,

are computationally much more expensive than the suboptimal approaches that only
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Figure 2: Linear convergence behavior of the (a) STLS versus (b) CTLS algorithm for

one run on the simulation signal used in Fig.1. �

�

= 0:01. � = 10

�10

. The logarithm

of the 3 singular values of the current approximation matrix B(b) are plotted versus

the number of performed iterations.

perform one iteration here. Besides a considerably smaller number of computations

per iteration step, the CTLS algorithm converges clearly faster, usually a factor 2,

than the STLS algorithm (see Fig.2). Convergence problems, especially with STLS,

occur for large noise levels and large N (compared to K). The convergence properties

of these algorithms are not yet fully understood and are currently under study.
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