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Abstract -

In applications, system-and-control engineers are often confronted with the problem of
tuning some free parameters of a fixed structure, while a variety of statical and dynamical
performance specifications is under consideration, For practical problems, it is easy to
verify that irade-offs arise spontaneously when the paramelers are varied. However, to find
solutions on the trade-off boundary, the problem needs to be handled as a multi-objective

optimization problem.

1 From real life to a mathematical multi-objective optimiza-
tion problem (MOOP)

Three different phases are needed to transform a practical problem into a MOOP (ref. [6]).
Phase 1: Parametrization: In this phase, the fixed structure is parametrized, which
means that the unknowns are chosen. Let X € R" be the vector containing the n unknown
parameters.

Phase 2: Classifying the dynamical design specifications:

Phase 2a: Trivial specifications and quality specifications: When analyzing the different dy-
namical design specifications in practical problems, two main categories arise immediately:

o Trivial specifications include requirements such as realizability, stability and limitations
on the parameter size.

o Quality specifications must guarantee a certain performance level. Rise time, overshoot
and energy are quality measures for time-domain performance, while gain margin and

phase margin measure the frequency-domain behaviour. In practice, it is preferred to
exptess a system’s quality using a quality vector instead of one single quality measure.

Phase 2b: Hard and soft specifications: After gathering all the dynamical design specifications,
the complete set of specifications, found in phase 2a, is splitted into two subsets: ‘
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o The set of hard specifications contains all specifications that need to be satisfied to
have a feasible design. In practice, it contains all trivial specifications and those quality
measures for which no trade-off is allowed by the designer.

o The set of soft specifications includes all the performance measures that must be traded-
off.

Phase 3: Formulation as a multi-objective optimization problem: Once the phases
1 and 2 are completed, it is simple to express the designer’s wish: minimize all the soft
specifications simultaneously, without violating the hard specifications, The general (vector)
minimization problem can be stated as

min f= (fi,. o fi)'

XerF
with F representing the set of feasible designs,

2 Solving the MOOP

In the literature, a variety of techniques is available for finding solutions on the trade-off

boundary. We only use methods based on function scalarization. These methods transform .

the vector minimization problem into a function minimization problem. Three methods are
available in our software: )

Vector norm optimization: Using the p-norm as defined in [5], the transformed problem
becomes

gznég I filX ) os M Sl X)) lp

‘The weights A; allow the designer to influence the trade-off to be found.
The ¢ constraint method: The transformed problem (ref. {1]) is stated as

min f(X) st fi Sy Vidi

In this method, the constraint values ¢; allow the designer to influence the trade-off to be
found.

The goal attainment method: Let f* be the designer’s goal and X be the desired search
direction from this goal (ref. [4]), then the problem is transformed in

min 7 s.t. X € F, F(X) = Ay < f1, Vi

The general problem that shows up after transforming the MOOP, is a non-linear program-
ming problem, stated as

min f(X) st §(X) = (@(X),. (X)) 2 0

To solve this problem, the technique of sequential programming is used with a logarithmic
barrier function, as proposed in (3]. The problem reduces to

c
min L(X,r) = f(X) - "Z:IOS(Qi(X))

where » is a positive scalar.
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3 How to reduce the design time?

~Although the designer can influence the trade-off to be found, it should be clear that he
almost never finds the ’ideal’ trade-off immediately. In practice, this means that the time to
find an acceptable design is not equal, but proportional to the time to find one trade-off point.
To make the approach useful for applications, this design time should be reduced as much as
possible. Many factors influence the time to solve the non-linear programming problem, but
three of them, of extreme importance, must be analyzed carefully.

o The nature of the problem: convex or non-convex ?
¢ Local low order approximations: available or estimated?
¢ The time needed for a function evaluation

Generically, there are very few problems in dynamical design that guarantee convexity, that
allow exact calculation of local approximations and that allow all functions to be evaluated
analytically.

4 An example

Consider the problem of designing a dynamical control law K (s) for the following one- degree-
of-freedom {1DOF) configuration (see figure 1).

1
(s+3)(sz+2s+2)

Figure 1: A 1DOF configuration with a control law K (s) to be designed

Four different parametrizations are investigated: Three classical parametrizations of the
control law K (s) (a compensator network, a PJ-controller and a P/ D-controller) and a mod-
ern controller, based on the Youla-parametrization.

The design specifications of interest:

¢ As hard specifications (to be satisfied always), we consider stability, reahzabll:ty, bounds
on the design variables and zero steady state error for a step input.

o As soft specifications (to be traded-off), we consider the !; norm of the error signal e(t)
and the overshoot in the response y(t), for a step input u(t).

The problem is stated as
n};n A& (X) + 2282(X) sit. X satisfies @pgpqy, Vi
with ¢; measuring the overshoot and $, as a measure for the energy (cfr. vector norm

optimization for p = 1). The transformed problem can be solved with the logarithmic barrier
method,
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Figure 2 shows the 'optimal’ step responses for different weights, while figure 3 shows the
trade-off curves of the different parametrizations.
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Figure 2: Step responses with a Pl-controller: the initial design and designs on the trade-off
boundary (designs for various weights)
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Figure 3: (1) Trade-off curves for classical parametrizations. (r) Classical versus modern
parametrization.
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