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Abstract

The aim of this paper is to indicate the strik-
ing similarities between three different subspace
algorithms for the identification of combined
deterministic-stochastic systems. The similari-
ties between these algorithms have been obscured,
due to different notations and backgrounds. It is
shown that all three algorithms are special cases
of one unifying Theorem. The comparison also in-
dicates that the three algorithms use exactly the
same subspace to determine the order and the ex-
tended observability matrix, but the weighting of
the space is different in the three cases.

1. Introduction

In the literature, a number of algorithms to iden-
tify multi-input multi-output (MIMO) combined
deterministic-stochastic systems have been pub-
lished. Contrary to “classical” algorithms [3, 4],
these subspace algorithms do not suffer from
the problems caused by a-priori parametriza-
tions and non-linear optimizations. They iden-
tify MIMO systems in a very simple and ele-
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gant way. In this paper, we will indicate and
explore some striking similarities between 3 differ-
ent subspace algorithms for the identification of
combined deterministic-stochastic systems. This
comparison is done through the introduction of
a unifying Theorem, of which all three published
algorithms are a special case. We believe that
this observation will contribute considerably to a
further understanding of subspace algorithms for
system identification.

We consider three different algorithms in this pa-
per. The first one is the algorithm due to La-
rimore [2]. It is based on statistical arguments
and makes extensive use of principal angles and
directions. The method is often referred to as the
“Canonical Variate Analysis” (CVA). The sec-
ond algorithm we will consider is the MOESP
algorithm by Verhaegen [8]. MOESP stands for
“Multivariable Output-Error State sPace”. The
third algorithm is the N4SID algorithm by Van
Overschee & De Moor [7], which is also treated
from a different point of view in Viberg, Otter-
sten, Wahlberg & Ljung [9]. N4SID stands for
“Numerical algorithms for Subspace State Space
System IDentification” and should be read as a
Californian license plate : enforce it. The last al-
gorithms [7, 8, 9] are based on geometrical and
linear algebra concepts.

The identification problem is the following : let
up € R™ y, € R be the observed input and out-
put generated by the unknown system :

Tpt1 = Azp+ Bug +wy (1)
yr = Czp+ Dug + v (2)
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(3)
and 4,Q € R*™™" B € RV*™ C € R*", D €
R*™ S e R and R € R™* . v, € RN and wy, €
R™ are unobserved, Gaussian distributed, zero
mean, white noise vector sequences. {A,C} is
assumed to be observable, while {4,[ B Q'/? ]}
is assumed to be controllable.

The main problem is then stated as : Given
input and output measurements ui,...,uxy and
Y1,-..,yn. where N is large and sometimes (e. g.
for statistical analysis reasons) is required to go to
infinity (N — o0). Given the fact that these two
sequences (ug and yi) are generated by an un-
known combined deterministic-stochastic model
of the form described by equations (1)-(3). Find
A, B,C,D,Q, R, S up to within a similarity trans-
formation.

Subspace algorithms basically consist of two steps
(see Figure 1). As a first step, the algorithm
computes a certain characteristic subspace from
the given input-output data, which coincides with
the subspace generated by the columns of the ex-
tended observability matrix of the system (I';).
The dimension of this subspace is equal to n, the
order of the system to be identified. Thus, in
a first step, the order and the extended observ-
ability matrix of the system are determined, di-
rectly from the given input-output data (full lines
in Figure 1).

For the second step, the algorithms apply two dif-
ferent strategies as illustrated in Figure 1. For
more details see also [6].

Since all algorithms determine in a first step the
order and the extended observability matrix, we
will focus our attention to that problem in this
paper. We introduce a unifying Theorem that
allows the determination of the order and the
extended observability matrix from input-output
data. The basic subspace in this Theorem is ob-
tained by an oblique projection, as was already
mentioned in [7, 9]. The only difference between
the algorithms lies in the use of different weight-
ing matrices.

This paper is organized as follows : In Section 2

'E denotes the expected value operator and dy; the
Kronecker delta.
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Figure 1: The two steps of a subspace algorithm.
The full lines represent the first step : the
determination of the order (n) and the
extended observability matrix (I';) from
the input-output data uy,yr. This first
step is analyzed in the paper. The dot-
ted lines represent the two possibilities
for the second step. The left hand side
illustrates the strategy followed in [8, 9],
while the right hand side illustrates the
strategy of [2, 7].

we introduce some notation. Section 3 presents
the unifying Theorem, which is the main result
of this paper. In Section 4, it is shown how the
3 algorithms fit in this unifying theory. Section 5
summarizes the main results of this paper.

2. Notation

In this section we introduce the notation used for
input and output block Hankel matrices, for pro-
jections and for some matriz operations.

Input and output block Hankel matrices are de-
fined as :

Ug Ul U2 e Uj—1
def up Uz U3 ... U
1€ J
Ugji—1 =
Uj—1 U; Uig1 o0 Ujpj—2
Yo Y1 Y2 e Yji
v def yiooYy2 Y ... Yj
oli—-1 =
Yi-1 Yi Yi+1 - Yitj-—2

where we assume that ;7 — oo throughout the
paper. i is a user-defined index which is “large



enough”. The subscripts of U and Y denote the
subscript of the first and last element of the first
column.

We denote the ”past” input block Hankel matrix
with Up|;—1 and the ”future” input block Han-
kel matrix with Ujjp;_1. A similar notation ap-
plies for the past and future output block Han-
kel matrices. Furthermore, for notational con-
venience and following [2], we define the matri-
ces p, f and u as : the past inputs and out-

puts p d:ef < Uoji-1 >, the future outputs
f d:ef ( Yij2i-1 ), the future inputs u d:ef
( Uipiz1 )-

The extended (i > n) observability matrix T';
(where the subscript ¢ denotes the number of
block rows) is defined as :

C
I def CA

I

CAi71

The Kalman filter state sequence X, is defined as
in [7] :

X; def (% ZTiq1r Tigz ... Tipj-1 )
Each column is the output of a non-steady state
Kalman filter built from the matrices of the sys-
tem (if they were known). The j columns of
X; are thus the outputs of a bank of j Kalman
filters in parallel. When the system matrices
A, B,C,D,Q, R, S would be known, this sequence
could be determined easily by combining the
input-output data with the known system matri-
ces. The point is that this state sequence can also
be obtained directly from the input-output data,
without any knowledge of the system matrices.
This observation is at the heart of the approach
elaborated on in [7] to which we refer for more
details.

IT4 denotes the operator that projects the row

space of a matrix onto the row space of A (which

is assumed to be of full row rank) : II4 dlef

At(AA)"'A. A' denotes the subspace perpen-
dicular to the row space of A. B/A is short hand

for the projection of the row space of B onto the

row space of A : B/A def Bl = BA'(AA") A

The Moore-Penrose inverse of a matrix A4 is de-

noted by A" and the n x n identity matrix by
I,.

3. A unifying framework

In this section we present a unifying framework
for the determination of the order and the ex-
tended observability matriz of a system, directly
from given input-output data. In a first subsec-
tion, we will stress the intuition that leads to the
Theorem. In a second subsection, we state the
Theorem. In section 4 we show that the three
aforementioned algorithms are special cases of the
unifying Theorem.

3.1. Intuition

The goal of an identification procedure is to find
a model that behaves in approximately the same
way as the process under consideration. In the
framework of subspace identification, we attain
this goal by solving two subsequent problems :

Optimal Prediction : The optimal prediction
problem can be restated as : predict the
future outputs (f) as accurately as possi-
ble, using all the information that can be
obtained from the past (p), and using the
knowledge of the inputs that will be pre-
sented to the system in the future (u).
Inspired by the linearity of the system, we
propose to combine the past (p) and the fu-
ture inputs (u) linearly to predict the future
outputs (f). We denote the linear combi-
nations respectively with L, and L,. The
quality of the prediction is measured in the
Frobenius norm. Mathematically, the first
part of the identification goal thus becomes :

min =L L) ()1

L, € Rlix(m+ni
Lu c ]RliXmi

(4)
The optimal combination of the past (p) to
predict the future is thus L,p. Geometri-
cally, the row space of L,p can be inter-
preted as the oblique projection of the
row space of f along the row space of v on
the row space of p. This oblique projec-
tion is denoted with O € R/#>*J .

@ d:ef L,p

Complexity Reduction : Apart from the fact
that we want to find a model that can pre-



dict the future, we also want the complex-
ity of this model to be as low as possible.
We thus need to reduce the complexity of
O. Since the rows of O span an li dimen-
sional subspace in the j dimensional ambi-
ent space, we can introduce a complexity re-
duction by reducing the subspace dimension
to n (the order of the system). Intuitively,
this implies that we only have to remember
n different directions of the past to predict
the future. Mathematically, the second step
can be formulated :

min || [O - R] Wz”% (5)
R e RiixJ

constrained to : rank (R) =n

where W, € RF¥XV and Wy € RI*XJ are user
defined weighting matrices. These weight-
ing matrices determine which part of the
“information” of O is important to retain.
Since we do not want to loose any “informa-
tion” (row rank) due to the weighting, we
should make sure that : rank (W;OW,) =
rank (0).

3.2. A unifying Theorem

Theorem 1 Under the assumption that :

1. The process noise wy and the measurement
noise vy are not identically zero.

2. The input uy is uncorrelated with the pro-
cess noise wy and the measurement noise
V.

3. The input uy, is persistently exciting of order
2i [3, pp 363].

4. There is an infinite amount of measure-
ments available : 7 — oo.

5. Wy is of full rank and Ws is such that
rank (p) = rank (pW>)

Then :
O =[(f/u") (p/u") | (p/u") (p/u") ] 'p

and with the singular value decomposition
Sy 0 Vi
wow=ts (3 $)(1)

We have :

1. The order of the system (1)-(8) is equal to the
number of singular values in equation (6)
different from zero.

2. The optimal reduction R can be taken equal
to? :
R =W U, S Viw

3. The extended observability matrix T'; can be
taken equal to :

I =W 'U.8 2

4. The part of the Kalman state sequence )N(Z that
lies in the column space of Wy can be recov-
ered from :

XWy = 8,V (7)

5. The “full” Kalman state sequence X; can be
recovered from :

X;=Tr!o (8)

The proof of the unifying Theorem and related
discussions can be found in [6].

4. Three algorithms and the unifying
Theorem

In this section we show how the three subspace
algorithms (N4SID, MOESP and CVA) deter-
mine the system order and the matriz I'; from the
given input-output data as stated in Theorem 1,
but with different weighting matrices W1 and Wy
for each algorithm. The proofs of the Theorems
can be found in [6].

4.1. N4SID
Theorem 2 N4SID

The algorithms of [7, 9] correspond to Theorem 1
with the weights :

Wy, =1
Wy = 1T

A consequence of Wy = I is _that we do not need
(8) to determine the states X;, but that they can
be determined simply from the singular value de-
composition (using (7)). In the next subsections,

2This is the minimum norm solution of the optimiza-
tion problem 5. When W is rank deficient there is more
than one solution.



it will become clear that for the other two algo-
rithms, the determination of the state sequence
X requires the use of formula (8).

In [9] an interpretation of this algorithm is given
in an instrumental variable framework. In [7] the
connection with non-steady state Kalman filters
is elaborated on (see also Section 2).

4.2. MOESP
Theorem 3 MOESP

The algorithm of [8] corresponds to Theorem 1
with the following weights :

Wy, = 1

W, I, .

Note that, since W5 is not of full rank, we do
not recover the full state from the singular value
decomposition. According to formula (7), we only
recover the projection of the state :

XWy = XIl,.

The state could be determined through formula
(8). However, since MOESP does not use state
sequences, we will not elaborate on this any fur-
ther.

4.3. CVA
Theorem 4 CVA

The algorithm of [2] corresponds to Theorem 1
with the following weights :

Wi o= [(ffut)(fut) T
WQ = HUL

From Theorem 4 we conclude that applying the
weighting matrices of Theorem 4 to the results of
Theorem 1 leads to a principal direction analy-
sis between the past inputs and outputs orthog-
onalized to the future inputs (p/u’) and the fu-
ture outputs orthogonalized to the future inputs
(f/ut). The same principal angles are calculated
as in [2].

In [6] it is proven that the principal directions
lying in the past (p/u’) correspond to the pro-
jected states of Formula (7). This proves formally
that the principal directions are no states, but
projected states.

The “full” state sequence is given by equation (8)
of Theorem 1. First I'; is determined from the
left singular vectors (and the weights of Theorem
4). Then, we find with (8) :

xX¢=r1l0

In [6], it is proven that X £ is exactly equal to the
“memory” used by Larimore [2].

5. Conclusion

In this paper we have introduced a unifying Theo-
rem that allows the extraction of the system order
and the extended observability matrix from given
input-output data. The Theorem succeeds in uni-
fying three algorithms described in the literature.
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