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Abstract

The aim of this paper is to indicate the strik�
ing similarities between three di�erent subspace
algorithms for the identi�cation of combined
deterministic�stochastic systems� The similari�
ties between these algorithms have been obscured�
due to di�erent notations and backgrounds� It is
shown that all three algorithms are special cases
of one unifying Theorem� The comparison also in�
dicates that the three algorithms use exactly the
same subspace to determine the order and the ex�
tended observability matrix� but the weighting of
the space is di�erent in the three cases�

�� Introduction

In the literature� a number of algorithms to iden�
tify multi�input multi�output �MIMO� combined
deterministic�stochastic systems have been pub�
lished� Contrary to 	classical
 algorithms ��� ��
these subspace algorithms do not su�er from
the problems caused by a�priori parametriza�
tions and non�linear optimizations� They iden�
tify MIMO systems in a very simple and ele�

�The following text presents research results ob�
tained within the framework of the Belgian pro�
gramme on interuniversity attraction poles �IUAP�
��� initiated by the Belgian State � Prime Minister�s
O�ce � Science Policy Programming	 The scienti
c
responsibility is assumed by its authors	
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gant way� In this paper� we will indicate and
explore some striking similarities between � di�er�
ent subspace algorithms for the identi�cation of
combined deterministic�stochastic systems� This
comparison is done through the introduction of
a unifying Theorem� of which all three published
algorithms are a special case� We believe that
this observation will contribute considerably to a
further understanding of subspace algorithms for
system identi�cation�

We consider three di�erent algorithms in this pa�
per� The �rst one is the algorithm due to La�
rimore ���� It is based on statistical arguments
and makes extensive use of principal angles and
directions� The method is often referred to as the
	Canonical Variate Analysis
 �CVA�� The sec�
ond algorithm we will consider is the MOESP

algorithm by Verhaegen ���� MOESP stands for
	Multivariable Output�Error State sPace
� The
third algorithm is the N�SID algorithm by Van
Overschee � De Moor ���� which is also treated
from a di�erent point of view in Viberg� Otter�
sten� Wahlberg � Ljung ���� N�SID stands for
	Numerical algorithms for Subspace State Space
System IDenti�cation
 and should be read as a
Californian license plate � enforce it� The last al�
gorithms ��� �� �� are based on geometrical and
linear algebra concepts�

The identi�cation problem is the following � let
uk � R

m � yk � R
l be the observed input and out�

put generated by the unknown system �

xk�� � Axk �Buk � wk ���

yk � Cxk �Duk � vk ���
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���
and A�Q � R

n�n � B � R
n�m � C � R

l�n � D �
R
l�m � S � Rn�l and R � Rl�l � vk � R

l and wk �
R
n are unobserved� Gaussian distributed� zero

mean� white noise vector sequences� fA�Cg is
assumed to be observable� while fA� � B Q��� �g
is assumed to be controllable�

The main problem is then stated as � Given
input and output measurements u�� � � � � uN and
y�� � � � � yN � where N is large and sometimes �e� g�
for statistical analysis reasons� is required to go to
in�nity �N ���� Given the fact that these two
sequences �uk and yk� are generated by an un�
known combined deterministic�stochastic model
of the form described by equations �������� Find
A�B�C�D�Q�R� S up to within a similarity trans�
formation�

Subspace algorithms basically consist of two steps
�see Figure ��� As a �rst step� the algorithm
computes a certain characteristic subspace from
the given input�output data� which coincides with
the subspace generated by the columns of the ex�
tended observability matrix of the system ��i��
The dimension of this subspace is equal to n� the
order of the system to be identi�ed� Thus� in
a �rst step� the order and the extended observ�
ability matrix of the system are determined� di�
rectly from the given input�output data �full lines
in Figure ���

For the second step� the algorithms apply two dif�
ferent strategies as illustrated in Figure �� For
more details see also ����

Since all algorithms determine in a �rst step the
order and the extended observability matrix� we
will focus our attention to that problem in this
paper� We introduce a unifying Theorem that
allows the determination of the order and the
extended observability matrix from input�output
data� The basic subspace in this Theorem is ob�
tained by an oblique projection� as was already
mentioned in ��� ��� The only di�erence between
the algorithms lies in the use of di�erent weight�
ing matrices�

This paper is organized as follows � In Section �

�E denotes the expected value operator and �kl the
Kronecker delta�
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Figure �� The two steps of a subspace algorithm	
The full lines represent the 
rst step � the
determination of the order �n� and the
extended observability matrix ��i� from
the input�output data uk� yk	 This 
rst
step is analyzed in the paper	 The dot�
ted lines represent the two possibilities
for the second step	 The left hand side
illustrates the strategy followed in �� ���
while the right hand side illustrates the
strategy of �� ��	

we introduce some notation� Section � presents
the unifying Theorem� which is the main result
of this paper� In Section � it is shown how the
� algorithms �t in this unifying theory� Section �
summarizes the main results of this paper�

�� Notation

In this section we introduce the notation used for
input and output block Hankel matrices� for pro�
jections and for some matrix operations�

Input and output block Hankel matrices are de�
�ned as �

U�ji��
def
�

�
BB�

u� u� u� � � � uj��
u� u� u� � � � uj
� � � � � � � � � � � � � � �
ui�� ui ui�� � � � ui�j��

�
CCA

Y�ji��
def
�

�
BB�

y� y� y� � � � yj��
y� y� y� � � � yj
� � � � � � � � � � � � � � �
yi�� yi yi�� � � � yi�j��

�
CCA

where we assume that j � � throughout the
paper� i is a user�de�ned index which is 	large



enough
� The subscripts of U and Y denote the
subscript of the �rst and last element of the �rst
column�

We denote the 
past
 input block Hankel matrix
with U�ji�� and the 
future
 input block Han�
kel matrix with Uij�i��� A similar notation ap�
plies for the past and future output block Han�
kel matrices� Furthermore� for notational con�
venience and following ���� we de�ne the matri�
ces p� f and u as � the past inputs and out�

puts p
def
�

�
U�ji��
Y�ji��

�
� the future outputs

f
def
�

�
Yij�i��

�
� the future inputs u

def
��

Uij�i��
�
�

The extended �i � n� observability matrix �i
�where the subscript i denotes the number of
block rows� is de�ned as �

�i
def
�

�
BB�

C
CA
� � �

CAi��

�
CCA

The Kalman �lter state sequence eXi is de�ned as
in ��� �

eXi
def
�
� exi exi�� exi�� � � � exi�j�� �

Each column is the output of a non�steady state
Kalman �lter built from the matrices of the sys�
tem �if they were known�� The j columns of
�Xi are thus the outputs of a bank of j Kalman
�lters in parallel� When the system matrices
A�B�C�D�Q�R� S would be known� this sequence
could be determined easily by combining the
input�output data with the known system matri�
ces� The point is that this state sequence can also
be obtained directly from the input�output data�
without any knowledge of the system matrices�
This observation is at the heart of the approach
elaborated on in ��� to which we refer for more
details�

�A denotes the operator that projects the row
space of a matrix onto the row space of A �which

is assumed to be of full row rank� � �A
def
�

At�AAt���A� A� denotes the subspace perpen�
dicular to the row space of A� B�A is short hand
for the projection of the row space of B onto the

row space of A � B�A
def
� B�A � BAt�AAt���A�

The Moore�Penrose inverse of a matrix A is de�

noted by Ay and the n � n identity matrix by
In�

	� A unifying framework

In this section we present a unifying framework
for the determination of the order and the ex�
tended observability matrix of a system� directly
from given input�output data� In a �rst subsec�
tion� we will stress the intuition that leads to the
Theorem� In a second subsection� we state the
Theorem� In section � we show that the three
aforementioned algorithms are special cases of the
unifying Theorem�

	��� Intuition

The goal of an identi�cation procedure is to �nd
a model that behaves in approximately the same
way as the process under consideration� In the
framework of subspace identi�cation� we attain
this goal by solving two subsequent problems �

Optimal Prediction � The optimal prediction
problem can be restated as � predict the
future outputs �f� as accurately as possi�
ble� using all the information that can be
obtained from the past �p�� and using the
knowledge of the inputs that will be pre�
sented to the system in the future �u��
Inspired by the linearity of the system� we
propose to combine the past �p� and the fu�
ture inputs �u� linearly to predict the future
outputs �f�� We denote the linear combi�
nations respectively with Lp and Lu� The
quality of the prediction is measured in the
Frobenius norm� Mathematically� the �rst
part of the identi�cation goal thus becomes �

min
Lp � R

li��m�l�i

Lu � R
li�mi

kf �
�
Lp Lu

�� p
u

�
k�F

��
The optimal combination of the past �p� to
predict the future is thus Lpp� Geometri�
cally� the row space of Lpp can be inter�
preted as the oblique projection of the
row space of f along the row space of u on
the row space of p� This oblique projec�

tion is denoted with O � Rli�j �

O
def
� Lpp

Complexity Reduction � Apart from the fact
that we want to �nd a model that can pre�



dict the future� we also want the complex�
ity of this model to be as low as possible�
We thus need to reduce the complexity of
O� Since the rows of O span an li dimen�
sional subspace in the j dimensional ambi�
ent space� we can introduce a complexity re�
duction by reducing the subspace dimension
to n �the order of the system�� Intuitively�
this implies that we only have to remember
n di�erent directions of the past to predict
the future� Mathematically� the second step
can be formulated �

min
R � Rli�j

kW� �O �R�W�k
�
F ���

constrained to � rank �R� � n

where W� � R
li�li and W� � R

j�j are user
de�ned weighting matrices� These weight�
ing matrices determine which part of the
	information
 of O is important to retain�
Since we do not want to loose any 	informa�
tion
 �row rank� due to the weighting� we
should make sure that � rank �W�OW�� �
rank �O��

	��� A unifying Theorem

Theorem � Under the assumption that �

�� The process noise wk and the measurement
noise vk are not identically zero�

	� The input uk is uncorrelated with the pro�
cess noise wk and the measurement noise
vk�


� The input uk is persistently exciting of order
�i �
� pp 
�
�

�� There is an in�nite amount of measure�
ments available � j ���

�� W� is of full rank and W� is such that
rank �p� � rank �pW��

Then �

O � � �f�u�� �p�u��t �� �p�u�� �p�u��t ���p

and with the singular value decomposition

W�OW� �
�
U� U�

�� S� �
� �

��
V t
�

V t
�

�
���

We have �

�� The order of the system �����
� is equal to the
number of singular values in equation ���
di�erent from zero�

�� The optimal reduction R can be taken equal
to� �

R �W��
� U�S�V

t
�W

y
�

	� The extended observability matrix �i can be
taken equal to �

�i �W��
� U�S

���
�

�� The part of the Kalman state sequence eXi that
lies in the column space of W� can be recov�
ered from �

eXiW� � S
���
�

V t
� ���


� The �full� Kalman state sequence eXi can be
recovered from �

eXi � �yiO ���

The proof of the unifying Theorem and related
discussions can be found in ����

�� Three algorithms and the unifying

Theorem

In this section we show how the three subspace
algorithms �N�SID� MOESP and CVA� deter�
mine the system order and the matrix �i from the
given input�output data as stated in Theorem ��
but with di�erent weighting matrices W� and W�

for each algorithm� The proofs of the Theorems
can be found in ���

���� N�SID

Theorem � N�SID

The algorithms of ��� � correspond to Theorem �
with the weights �

W� � I

W� � I

A consequence of W� � I is that we do not need
��� to determine the states eXi� but that they can
be determined simply from the singular value de�
composition �using ����� In the next subsections�

�This is the minimum norm solution of the optimiza�
tion problem �� When W� is rank de�cient there is more
than one solution�



it will become clear that for the other two algo�
rithms� the determination of the state sequenceeXi requires the use of formula ����

In ��� an interpretation of this algorithm is given
in an instrumental variable framework� In ��� the
connection with non�steady state Kalman �lters
is elaborated on �see also Section ���

���� MOESP

Theorem 	 MOESP

The algorithm of �� corresponds to Theorem �
with the following weights �

W� � I

W� � �u�

Note that� since W� is not of full rank� we do
not recover the full state from the singular value
decomposition� According to formula ���� we only
recover the projection of the state �

eXiW� � eXi�u�

The state could be determined through formula
���� However� since MOESP does not use state
sequences� we will not elaborate on this any fur�
ther�

��	� CVA

Theorem � CVA

The algorithm of �	 corresponds to Theorem �
with the following weights �

W� � ��f�u���f�u��t�����

W� � �u�

From Theorem  we conclude that applying the
weighting matrices of Theorem  to the results of
Theorem � leads to a principal direction analy�
sis between the past inputs and outputs orthog�
onalized to the future inputs �p�u�� and the fu�
ture outputs orthogonalized to the future inputs
�f�u��� The same principal angles are calculated
as in ����

In ��� it is proven that the principal directions
lying in the past �p�u�� correspond to the pro�
jected states of Formula ���� This proves formally
that the principal directions are no states� but
projected states�

The 	full
 state sequence is given by equation ���
of Theorem �� First �i is determined from the
left singular vectors �and the weights of Theorem
�� Then� we �nd with ��� �

eXc
i � �yiO

In ���� it is proven that eXc
i is exactly equal to the

	memory
 used by Larimore ����


� Conclusion

In this paper we have introduced a unifying Theo�
rem that allows the extraction of the system order
and the extended observability matrix from given
input�output data� The Theorem succeeds in uni�
fying three algorithms described in the literature�
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