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Abstract, Despite the fact that the Frisch scheme has been studied for quite some time now,
only solutions where the rank of the matrix is one lower than its order are well understood
and characterized. Good numerical methods to compute solutions with lower rank do not

even exist.

In this paper an algorithm is presented to compute solutions of the Frisch scheme when the
resulting rank is lower than the order of the matrix minus one, The algorithm is based
on a potential reduction algorithm for convex optimization. The problem is, however, not
convex. The resulting solution is not always guaranteed to achieve the minimal possible rank.
However, a reduced rank solution is always returned.

‘Key Words. Identification; optimization; Frisch scheme; linear matrix inequalities,

1. INTRODUCTION

The Frisch scheme deals with the problem of iden-
tifying linear relations between measured data.
Suppose n variables are measured over m time
instants, The measurements are aggregated in an
m x n real matrix M. It is assumed that the
number of measurements exceeds the number of
variables: m > n so that the matrix M has more
rows than columns. This assumption of overde-
termination is of course necessary since otherwise
the problem would bé trivial. An existing linear
relation will reveal itself via an n-vector z that
belongs to the kernel of the matrix M:

Mz =0,

The number of independent linear relations is in-
dicated by the algebraic rank r of M. The corank
of M is defined as n — rank(M). The corank
equals the number of linear independent relations
between the variables.

1The following text presents research results obtained
within the framework of the Belgian programme on in-
teruniversity attraction poles (TUAP-17,TUAP-50) initi-
ated by the Belgian State - Prime Minister's Office - Sel-
ence Policy Programming. The scientific responsibility is
assumed by its authors.

2Bart De Moor is a senior research associate with the
N.F.W.0. (Belgian National Fund for Scientific Research).
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Typically, however, measurements are noisy so
that no linear relations between the data exist.
A fundamental assumption on the noise is that it
is additive and uncorrelated, The measured ma-
trix M can then be written as;

M= M+ N,

where M denotes the noisefree data and N the
noise variables. The noise on the different chan-
nels is assumed to be uncorrelated, hence:

 N'N = diagonal

and ker(N) = 0. No linear relations between the
noise and the exact data exist either:

M!N = N'M =0,

The measured, exact and noise Grammians are
denoted as:

A=M'M, A=M'M, D=N'N.

The Frisch scheme can now be formulated as fol-
lows:

Given a positive definite matrix A, find a diago-
nal, positive definite matrix D so that:

1. A=A-Dis positive semi definite,

2. The corank of 4 is maximal.
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The maximization of the corank is necessary
since the goal is to find the maximum number
of linear relations, Generically the rank of A,
cannot be reduced arbitrarily, There exist a
generic lower bound, which is called the Wilson-
Lederman bound. See e.g. De Moor (1988) and
references therein. The rank of A can be reduced
under this bound only in special cases.

Although the Frisch scheme has been studied al-
ready for a long time, its solutions are only well
characterized when the minimal rank of A4 is only
1 lower than the rank of A and necessary and suf-
ficient conditions for this case are well understood
now (Kalman,1982). In this paper & method to
find solutions of lower rank is presented for the
cases where these conditions are not met, It is
based on a potential reduction method for convex
optimization, In section 2, it is described briefly
how the potential reduction method can be used.
Section 3 contains some numerical examples. The
conclusions are summarized in section 4.

2, THE POTENTIAL REDUCTION
METHOD

In this section we describe how a potential reduc-
tion method can be used to solve reduced rank
linear matrix inequality (LMI) problems. The
potential reduction method is an interior point
method for the optimization of a linear objective
function over a convex set, The Frisch scheme is
however not a convex problem, Nevertheless, an
extension of the potential method for convex op-
timization can be used to find solutions quickly.
A more detailed description of the algorithm can
be found in David (1994).

The Frisch scheme can be reformulated as min-
imum rank problem involving linear matrix in-
squalities:

min Rank 4 - D > 0,

subject to D > 0,

where D is a diagonal matrix. The solutions
where A — D is rank deficient, are situated on
the boundary of the convex set of positive (semi)
definite matrices., The constraints D > 0 are algo
convex. The idea is to start inside the feasible
set and to move to the boundary. Therefore the
following objective function is constructed:

N D o
#(D) = qlogdet(A~D)~logdet ( 0 A—D )

The first term is —co where A — D is rank de-
ficient. The second term becomes +oo on the
boundary of the domain D > 0 and A—~D > 0. It
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is a barrier function for the feasible domain. The
constraint D > 0 has to be included otherwise
some of the elements of D could become nega-
tive. To find reduced rank solutions ¢(D) has to
be minimized. It might look strange that A — D
is also included in the convex term that becomes
+00 when A— D issingular. This does not matter
if ¢ is taken high enough as ¢(D) is equivalent to
(g — 1) logdet(A — D) — logdet D, It makes the
implementation easier however, It is easily shown
that ¢ has to be larger than 2,

#(D) is not a convex function, hence the theory
of Nesterov and Nemirovsky (1993) cannot be ap-
plied directly. However, if the concave term is
linearized, the theory can be applied. As the first
term of ¢(D) is concave, the value of ¢(D) will al-
ways be lower than that of the linearization. Thus
if the linearized function is minimized the corre-
sponding value of ¢(D) will be even lower.

The Newton direction of the linearized function is
~H(D) 1g(D), where H(D) is the Hessian and
g(D) is the gradient. It can then easily be com-
puted as the solution of a least squares problem
(Boyd and El Ghaoui, 1993):

=H"lg= argmin J|I(1-¢q)
v

+) w(A=D)PE(A- D) P||p 4, , D -
(=1 i=t

where E; is an n X n-matrix with all zeros except
a one on position (i, ).

The Newton algorithm is:
Dk+1 = Dk - czdiag(H"lg).

The damping factor « still has to be determined,
To ensure that D4y is again inside the feasi-
ble set if D, is feasible, the Nesterov-Nemirovsky
damping factor is taken. This damping factor de-
pends on the so-called Newton decrement 6(D)
(Nesterov and Nemirovsky, 1993):

8(D) = |H(D)~*4(D).
The Nesterov-Nemirovsky damping factor is then:

o= fpy H6(D)> .25
135Dy '
{ a=1 if (D) < .25.

If v is known, (D) can easily be computed as:

n
3" vi(A- D)~"V2E (A - D)-1/?

=1
n
+ Euf
i=1

§(D) =

F
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Starting from an initial feasible point, the algo-
rithm will move towards a minimum of ¢(D).
Each of the updates will be inside the feasible
set. To stop the algorithm the following criterion
is used. It can be shown that when I is near the
boundary of A— D > 0,

("E?xl U;'(A - D)_lle'.(A - D)"IHHF) 2

1-g¢

1)
is & good estimate of the number of decreasing
eigenvalues. When it is rounded towards the near-
est integer it indicates the number of decreasing
eigenvalues of A— D, Let ng be that number, The
stopping criterion is then: Sort the eigenvalues in
ascending order and check if the eigenvalue indi-
cated by ng is smaller than a certain tolerance.
If so, stop, else continue. The resulting rank of
A—-Disn—ny

To start the algorithm needs an initial point in-
side the feasible set. We suggest to start from
the analytic center of the constraints A~ D > 0
and D > 0 (Boyd and El Ghaoui, 1993). The
minimum rank problem is, however, not convex.

. 'There is not a single minimum. The intuitive

idea behind the algorithm is that if the rank of
A — D is lower on a point on the boundary than
in other boundary points, ¢(D) will be steeper
towards this point, Thus it is more likely that
the method will converge to this point, Numeri-
cal experiments show that this is often the case.
However, the optimization method can get stuck
in other minima than the optimal one. Still these
minima are reduced rank solutions, This is illus-
trated in the next section.

3. NUMERICAL EXAMPLES

In this section some numerical examples are
shown, First 2 x 2 examples are solved, to il-
lustrate some facts graphically.

Consider the following example:

_ {8 2
1=(22).
The lowest possible rank for A— D is 1, The rank
minimization algorithm starts at the analytic cen-
ter of A—D > 0 and D > 0. The evolution of
the eigenvalues is shown in figure 1. If D is rep-

resented by:
z 0
p-(29).

The steps of the algorithm can be represented in
an zy-plane, This is shown in figure 2. Also the
boundaries of the feasible region are plotted. The
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Fig. 1. The logarithm of the eigenvalues for a simple
2 x 2 example as a function of the number
of iterations. One eigenvalue decreases to 0,
The resulting rank of A — D is thus 1. Note
how the eigenvalue reduces linearly on this
logarithmic plot.

boundary of the feasible region consists of the
axes # = 0 and y = 0. The curved line repre-
sents the boundary where det(4 — D) = 0. All
the points on that boundary represent matrices of
rank 1. The algorithm starts in the analytic cen-
ter of the feasible region: (3.49,3.06). In a few
steps the algorithm moves to a singular point on
the boundary: (5.86,5.13).

In figure 2 also the paths followed by the opti-
mization algorithm are shown starting from 40
points around the analytic center. All the paths
tend to the boundary of the feasible region where
the rank of A — D equals 1.

In the previous example, all the rank deficient
matrices had rank 1. Consider the following 2 x 2
matrices where the minimal possible rank is 0:

10 0

A= ( 00 ) .
Again the algorithm is started from the analytic
center of the feasible region. In this case two
eigenvalues tend to 0. The different steps con-
verge to the intersection of the two boundaries
#z = 10 and y = § where the rank of A - D is 0.
This is shown in figures 3 and 4.

In figure 4 also the paths followed by the opti-
mization algorithm are shown starting from 40
points around the analytic center of the feasible
region, All the paths tend to the corner point
of the boundary of the feasible region where the
rank of A — D equals 0.

The method is not restricted to small examples,
Consider a 10 x 10 matrix A;9. The numerical

" SYSID '94 Copenhagen Denmark Vol. 3.
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Fig. 2. The upper figure shows the steps taken by
the algorithm starting from the analytic cen-
ter of the feasible region. The curved line is
the boundary where 4 — D is rank deficient.
The algorithm quickly moves from the ana-
lytic center of the feasible region towards the
boundary. The lower figure shows the paths
followed starting from 40 points around the
analytic center. All the paths move to the
boundary where the rank of A — D equals 1.
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Fig. 3. The logarithm of the eigenvalues for a special
2 x 2 example as a function of the number of
iterations, Two eigenvalue decrease to . The
resulting rank of A — D is thus 0. Remark
how the eigenvalues reduces linearly on this
logarithmic plot.

values are shown in the appendix. This matrix is
a positive definite matrix of full rank, The ma-
trix is constructed such that the minimal rank for
the Frisch scheme is known. A is constructed as
A = BB' 4+ D, with B € R'°*3, 3 random ma-
trix. D is a diagonal matrix with strictly positive
elements. The minimal obtainable rank of A — D
is thus 3. The eigenvalues as a function of the
iterations are shown in figure 5. 7 eigenvalues de-
crease. The rank of the resulting matrix is thus
3. The optimal D is exactly D;. Note that this is
not & typical order 10 example, since the Wilson-
Lederman bound for n = 10 equals 6.

As a last example the evolution of the eigenval-
ues for a random 7 X 7 matrix A7 are shown in
figure 6. The numerical values of the entries are
shown in the appendix. Two eigenvalues decrease.
The resulting rank of A — D is 5. This is higher
than the Wilson-Lederman bound, which is 4 for
a 7 x 7 mafrix. This is correct as the Wilson-
Lederman bound is only a generic lower bound.
The resulting elements of D are: :

D = diag ( 0.008258 2.475 0.0109 0.01552
0.2606 0.8981 0.01883 )

4. CONCLUSIONS

In this paper an algorithm is presented to find re-
duced rank solutions for the Frisch scheme, The
algorithm is based on an algorithm for convex op-
timization. This problem is however not convex.
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Fig. 6. The logarithm of the eigenvalues for & random
7 x 7 example as a function of the number
of iterations, Two eigenvalues decrease to 0.
The resulting rank of A — D is thus 5.
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‘ The algorithm can evolve to points that are not
optimal. However, the solutions are always of re-
duced rank.

The same algorithm can also be used to compute
solutions for exiensions of the Frisch scheme. E.g.
if it is known that certain cross-correlations exist
between channels, This can be done by introduc-
ing non-zero parameters in off-diagonal elements
of D. The only restriction is that D has to remain
symmetric (and positive definite).
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APPENDIX .

( 3.67 1.78  —1.68 1.206 —1.644 2474 0247 4011 2127 —0.348 \
1.78 167 —0.215 -0.020 —0.797 0.905 -0.185 1468  0.736 0.928
' —1.68 —0.215 2.822 -1.429 (.710 —-0.714 -0.468 -2.1% -1.87 2319
1.206 —0.020 -1.429- 1.954 -0.662 1.269 0.449 2.146 126 -1.479
Ay = | —1644 0787 0710 -0.662 1756 —1.418 —0.142 —2.073 —0.940 0.037
0= 2474 0906 -0.714 1.269 -1418 3.6564 0353 3.922 1.I11 0.435
0.247 —0.185 —-0.468 0.449 —0.142 0.353 0.699 0589  0.347 -0.614
4.011 1468 -2.125 2,146 —2.073 3.922 0580 6.453 2492 -0.776
2127  0.736 -1.87 1.26 —-0.940 1.111  0.347 2492 1.879 —1.558

\ ~0.348 0928 2319 —1.479 0.037 0435 -0.614 —0.776 —1.558  3.582 /

6.167 —5.434 4433 —~0.442 -1.17 1227 -3.578
—5.434 1345 -4.839 1.944 4976 -1.737 2.56
4433 -4839 9128 -5.036 -2.579 -2,126  0.975
Ar=| —0.442 1944 -5.036 6.401 3.822 4124 —0.608
—-1.17 4976 -2.5679 3.822 6.669 3.881  0.278
1.227 -1.737 -2.126 4,124 3.88 7.352 -1.9011
-3.578 256 0975 -0.608 0.278 -1911 6.122
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