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Abstract

Some control problems can be formulated as con-
_vex problems involving linear matrix inequalities.
Not only controllers for linear time invariant sys-
tems can be designed in this way but also con-
trollers for linear systems with time varying un-
certainties, It is also possible to design reduced
order controllers, but the problem is no longer
convex. To design a controller of the lowest pos-
sible order that satisfies the constraints, the min-
imal rank of an affine matrix function has to be
found subject to linear matrix inequalities.

In this paper an algonthm is proposed for solving
such problems. It is an extension of a potential
reduction method for solving convex optlmlzsf
tion problems. The problem of finding minimum
rank solutions is, however, not convex. Still, with
the proposed potential reduction method reduced
rank solutions can easily be obtained.

1, Introduction

Fast and reliable algorithms exist to solve con-
vex problems ({2}, {3], {11], [12]). This has moti-
vated many researchers to formulate or reformu-
late problems in control as convex optimization
problems. We refer to {2}, [3], [4] and the refer-
ences therein, A lot of analysis and state feedback
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problems have already been shown to be convex
(e.g. [3])-

It has also been shown how certain output feed-
back controllers can be designed using convex op-
timization, In [2] the Youla parameterization and
a particular approximation of the controller are
used. However, the resulting controller is usually
of very high order. More recently it has also been
shown how these problems can be formulated as
convex problems involving linear matrix inequal-
ities. In that framework, it is even possible fo
design reduced order controllers if low rank solu-
tions of one of the involved matrices can be found,
e.g. [1], {4), [8], [10]. These methods are not re-
stricted to linear time invariant systems, but can
also be applied fo design linear controllers for
polytopic linear differential inclusions and norm-
bound linear differential inclusions ([4]). An ad-
vantage of the problem formulations is that the
order of the reduced order controller is not spec-
ified in advance: The lower the rank of a certain
matrix, the lower the order of the corresponding
controller.

In general the minimum rank problems involving
linear matrix inequalities that have to be solved,
can be written as follows:

mjn Rank F(z) >0, subject to C(z) >0,

where F(z) and C(2) are affine symmetric matrix
functions: F(z) = Fo+ 21/ + ...+ 2mFim and
C(z) Co+a1Ci 4.+ szm Wlth Fi=F}e

R™M¥*ns and C; = Cf € R"*"e, {=10...m. This

problem is not convex. Usually there exist several
local and global minima. However, the presented
algorithm will quickly find reduced rank solutions
that satisfy the constraints.




In [5] an- algorithm to solve these problem was
proposed. It was based on the inversion of an an-
alytic center algorithm for convex optimization.
In this paper another algorithm is proposed to
solve these problems. It is an extension of a po-
tential reduction method for convex optimization.
Practical results show that the potential reduc-
tion method is better than the algorithm. pro-
posed.in [6]. It ia-faster and it is possible to find
solutions where the latter algorithm sometimes
fails to converge.

The paper is organized as follows. In section 2
the design of a controller that satisfies a given
Lz-gain bound is discussed. Two reduced rank
solutions have to be solved in this case. How the
rank reduction method can be solved using the
potential reduction method is described in section
3. Section 4 contains some numerical examples.
The conclusions are summarized in section 5.

2. Lz-gain control

In this section the formulas to design a linear time
invariant controller that guarantees a bound on
the L3 gain of a NLDI are summarized ({4]). Con-
sider the following NLDI: .

= Az + Byw+ Byu+ Byp
Ciz 4 D:ww + Dyt + D:p?
Cyz+ Dyww+ Dyyu+ Dypp (1)
= Cyz+ Dyyw + Dyyu+ Dypp,

p= A, la@i < 1,
where [|.}] is the induced 2-norm for matrices. It is

assumed that Dy, = 0, without loss of generality.
The Ly gain of the system is defined as:
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where [|.]l2 is the Ly norm of the signal:

Il = [ " e d.

For notational reasons, Diw, Dyu, Dyp, Dy, Dy,
and Dy, are assumed to be zero. However, the
formulas can easily be extended to include the
non-zero cages. The stated formulas are the ones
needed for the example of section 4.

From arguments in [4] the following theorem can
be proved:

Theorem 1 4 controller of order n, which guar-
antees that the Ly-gain of the NLDI (1) is lower

than v, ezists if matrices P >0and@Q >0, and
positive scalars A, u and & can be found such that
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o ¢an be removed from (4) and (5), by multipli-
cation of the null spaces of the matrices at the
right hand side ([4]).

To find a controller that satisfies the bound, is a
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bit more involved than finding a stabilizing con-.

troller, as & X and 4 have to be found such that
A=yl Tofind a A = u~!, El Ghaouj ([N
proposed to apply the following procedure; First
find P, Q, A and 4 that satisfy (3), (4) and (6)
and -

(1) e

Then apply a rank minimization on (6) subject to
(8), (4) and (5). When a rank 1 matrix is found,
A = =1 holds. If & rank 1 solution for (6) exists
and the other constraints are also satisfied, a full
order controller that satisfies the given specifica-
tions exists. If no rank 1 solution can be found,
it doesn’t imply that there doesn’t exist & con-
troller such that the Ly-gain is smaller than 7.
The formulas are only sufficient for NLDIs and
not necessary ({4]).

When A and g are fixed, the order of the controller
can also be reduced by minimizing the rank of (3)
subject to (4) and (5). When P, Q and the rank
of (3) are known, the order of the controller and
the corresponding matrix £ can be found,

PB (o] ' : .
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Finally the controller is designed, solving a convex
feasibility problem for a feasible K. If solutions
A, 4, P and Q are found we know from the theory
that a solution K has to exist. Usually a whole set
of reduced order controllers exists that satisfy the
constraints, Extra conditions can also be taken
into account. '

3. fhe potential reduction method

In this section it is shown how & potential reduc-
tion method can be used to solve reduced rank
linear matrix inequality (LMI) problems. The al-
gorithm is an extension of a potential reduction
method for optimizing a linear objective over a
convex set. The potential reduction method is an
interior point method for convex optimization.
Consider again the general minimum rank prob-
lem as described in the introduction, The desired
- Hlutions z are situated at the boundary of the
set of feasible solutions satisfying the constraints
F(z) 2 0 and C(z) > 0. This set is convex
([3),[21}).
The algorithm works as follows.
objective function is constructed:

#(2) = qlog det F(z) —log det ( Cg”) Fl(}z) ) .

The first term is a concave term that becomes
—oo when F(z) is singular, The second term is &
convex term that becomes +oo at the boundary
of the feasible domain. It can be interpreted as a
barrier function. To find a reduced rank solution
of F(z), ¢(x) has to be minimized.

It might look strange that F(z) is included
in the convex term that becomes +oo when
F(z) is singular. This does not matter if ¢
is taken high enough as ¢(z) is equivalent fo
‘1 — 1)log det F(z) — logdet C(z). It makes the
implementation easier however, It is shown that
¢ has to satisfy the following constraint:

e
1 —
q> +n;

The following

¢(z) is not a convex function, thus the theory
of Nesterov and Nemirovsky ({11]) cannot be ap-
plied directly. However, if the concave term is lin-
earized the theory can be applied. The linearized
function in z} is

$(z) = qgkz — log det ( C(()z) F?w) ) +¢,

where gp. is the gradient of logdet F(2): gr =
(o m )’ and g; = traceF(z)"1F, i=
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1...m. cis a constant. The concave term does
not matter for the minimization. The first term
of ¢(z) is concave, This implies that the value
of ¢(z) will always be -lower than that of ¥(z).
Thus if the linearized function is minimized, the
corresponding value of the objective functlon will
be even lower.

The Newton direction of y(z) is —H(2)~1g(z),
where H(z) is the Hessian and g(z) is the gradi-
ent. It can then easily be computed as the golu-
tion of a least squares problem'

= Z‘vgz;'leZ;‘

fH'"lg = 'argmin'. e
' i=1

F

+1 1t -0~ Eu;z, IF;Z, ,
f=1- . F
where 7, and Z; are the Cholesky factors of C(z)
and F(z): O(m) Z.Z} and F(z) = 2, 2}.
The Newton algorithm is:

Try1 =2 — C\’H"l

The damping factor « still has to be determined.
To ensure that zp4i is again inside the feasi-
ble set if 2, is in the feasible set, the Nesterov-
Nemirovsky damping factor is taken. This damp-
ing factor depends on the so-called Newton decre-
ment §(z) ({3],{11]):

8(z) = || H(=)" eIl
The Nesterov-Nemirovsky damping factor is then:

{ a= ]T—_H%T;)' if6(3)> .25,
O =

if 6(z) < .25,
If v is known, 8(z) can easily be computed as:

m
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i=3

§(z) =

F F
Starting from an initial feasible point, the algo-
rithm will move towards a minimum. Each of the
updates will be inside the feasible set. To stop the
following criteria can be used. As z remains fea~
sible, the eigenvalues of F'(z) are always positive.
An eigenvalue is considered to be singular if it is
lower than a certain threshold, It can be shown
that when z is near the boundary F(z) > 0,

- - 2
(HEF;x u;Z! lFiZf'"F)
g-—1

(7)




is an estimate of the number of decreasing eigen-
values. When (7) is rounded towards the near-
est integer it indicates the number of decreasing
eigenvalues of F(2). Let-ng be that number. The
stopping criterion can then be formulated as fol-
lows: Sort the eigenvalues in-ascending order and
check if the eigenvalue indicated by ny is smaller
than the threshold, If 80, atop, ¢lse continue, The
rank of the resulting F(z) will be n 1 — ng.
However, the algorithm can. also get stuck in a
finite local minimum, It i known that if 4(z)
is lower than 25, the algorithm will converge
quadratically towards.a minimum, If 6(z) be-
comes small, the algorithm ‘gets stuck in a fi-
nite local minimum, No reduced rank solution
is found in this cage, : L

More details of the algorithm can be found in {6]

4. Examples

In this section the above theory is illustrated with
an example. Reduced order controllers are de-

signed for a pendulum with a varying length,
shown in figure 1, This system can be described

() - (4 )(2)( 1),

g 1
= 0 ' —t)
¢ (-'% )(92) mi miz

with A(D))] < 1, where A(?) is an unknown
bounded time varying uncertainty, and where lo
is the nominal length, 6 is the maximal deviation
from thig ‘nominal length, 8y is the angle of the
pendulum, @, is the angular velocity. ‘m is the
mass of the load, ‘ :

A disturbing input w is assumed, parallel to the
control input 4, The controlled output is the an-
gle 8. The following values are used:

b = 1 (m), & = (m),
mo= b5 (kg), g = 981 (m/s?).
®)

Figure 1: The pendulum with varying -léngth setup,
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Figure 2: The eigenvalues of (6) as a function of the
number of iterations, One of the eigen-
values goes to zero, This implies that a
solution A = y~1 exists,

We want to design a controller such that the Lo-
gain of the closed loop is less than 1. First a
feasible solution has to be found satisfying (3)-
(6). Once a feasible point is found, a A and H
have to be computed such that the rank of (6) is
1, subject to (3), (4) and (5). The evolution of
the eigenvalues of (6) is shown in figure 2. Ope
eigenvalue goes to 0, Thug & solution A = =1 gx-
ists, such that the other inequalities are satisfied:
A=47870e - 04, p = 2.0890¢ 4+ 03. With X and
4 fixed, the rank of (3) can be reduced subject to
(4) and (5). The evolution of the eigenvalues of
(3) is shown in figure 3. The final rank of (3) is 3,
implying a first order controller, The state space
realization of the controller jg

Ae | B, \ _ [ =190.3] 1097
- Cc Dc - 109-5 , _63311 )
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Figure 3: The eigenvalues of (3) as a function of

the number of itérations, One eigenvalue
decreases to zero. This implies that the
rank of the matrix is only three. The
order of the controller will be one lower
than the order of the plant.

The actual Ly-gain is 0.1594, which is much lower
_than the given bound.

5. Conclusions

In this paper a potential reduction method is pro-
posed to solve minimum rank problems involving
linear matrix inequalities. This problem shows up
in the design of reduced order controllers for lin-
ear time-invariant problems. The minimum rank
procedure is not restricted to the problems men-
tioned in this paper. A lot of other problems
in controller design can be solved in this way.
Other interesting problems like the Frisch scheme
in identification can also be solved in this way.

The proposed method works better than another
method based on the inversion of the analytic
path. The potential method works faster and has
the advantage that all the constraints are always
taken into account. The step never has to be re-
computed.

Although it is not guaranteed that a minimum
rank golution is obtained, often it is reached. In
almost all cases at least a reduced rank solution
is found, if there exists one that satisfies all the
constraints,
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