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A lower bound of p may be calculated via power iteration 
methodtl]. However this algorithm sometimes suffers from a 
limit cycling problem. In this short paper, a continuous time 
power iteration scheme is proposed. The scheme is based on 
building a continuous time dynamic system for power itera- 
tion, and then solving it by automatic step integration meth- 
ods. Numerical examples show that convergence properties are 
promising. 

1 Introduction 
For computing a lower bound of the structure singular value p, 
a power iteration scheme was developed for the purely complex 
case in [l] (we will refer to it as the standard power iteration or 
SPI). The iteration scheme appears to have good convergence 
properties, and each iteration step of the scheme is very cheap, 
80 that the resulting lower bound algorithm is very fast. How- 
ever, the lower bound power iteration is not always guaranteed 
to converge because of limit cycling. In this short paper, a con- 
tinuous time power iteration scheme is proposed. We construct 
a continuous dynamic system for the power iteration, such that 
if the continuous dynamic system is stable for some initial val- 
ues, that is, the continuous power iteration is convergent, then 
the solution can be found from the steady states. 

2 Characterization of lower 

where a = [a: ai]', b = [b: hilt, w = [w: wilt  and z = [z: z;]' 
with nonzero vectors 21, w1, bl ,  a1 E C' and zz, WO, h, az E 
C m, and wfal # 0. Now by eliminating z and b, we can rewrite 
(1) as: 

O M  
@ [  :] = [  M' 0 1  [ ::: 21 [:I (2) 

where dii = diag(Orxr, Him), dia = diag(&L, Omxm), 

dol = d i a g ( ~ I , , O , x m ) ,  daz = diag(Orxr, Him). BY 
separating real and imaginary parts, it can easily be checked 
that (2) is equivalent to the following equation: 

(3) 

with Mr = real(M), Mi = imag(M) and d;, = real(diz), 
diz = imag(dla), d g  = real(dZl), dil = imag(d2i). Now letting 
x = [a: a: w: wj]' and D(z) emphasize the fact that D is a 
function of 2, we obtain: 

bound of p AD(z)z = @I (4) 

Let a matrix M E Cc nxn be given, and let the block structure 
contain two blocks: a repeated scalar block(s = 1) and a full 
block (f = 1)with dimensions r and m (r + m = n) respec- 
tively, then the lower bound of p(M)(see [l] for the definition 
of p ( M ) ) ,  8, satisfies the following equations[l]: 
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Basically there is no difference between (1) and (4). However 
the matrices and vectors are real in (4), while they are complex 
in (1). This formulation can be easily generalized to the cues 
of s > 1 and f > 1. It can be done by modifying the matrices 
dli,  diz, dal and dpa. The matrix D ( z )  here contains all the 
structure information. 

3 Continuous time model of 
power iteration 

Now we consider the following continuous time dynamic sys- 
tem: - dx = AD(z)z - 82, @ = z'AD(z)z 

dt (5) 
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here x is a vector function of the time t .  For this dynamic 
system, one property is that the vector z has a constant 
norm of 1 if the initial value of the norm is 1. We can we 
this by taking the derivative of 11x11': dllzll'/dt = 2 2 ' 5  = 
2(1- z'z)(z'ADz), so we have d ~ ~ x ~ [ ' / d t ~ ~ ~ + 1  = 0. Thus if we 
take the initial value llz(0)ll = 1, llzll is constant and equal to 
1. The second property is that in any equilibrium point where 
dx/dt = 0, (5)is the same as (4), and thus /3 is a lower bound 
of P 
Now we can see that a power iteration can be formed by dis- 
cretizing the continuous dynamic system of (5) plus normal- 
izing the norm of the state vector in each step. Let (5) is 
discretized as: 

where Atk is the integration step at time tk and 2 k  is the 
Vector 2 at time tk. Suppose x:AD(xk)zk > 0 and let Atk = 
1/ (Z~AD(Zk) tk) ,  then by normalizing the norm Of Z k + i  to 1, 
(6) can be arranged as 

(7) 

The power iteration (7) is actually the same as SPI (see [I] 
for details of SPI), if some intermediate results in each iter- 
ation are not used and if @k+l = IIAD(2k)Zkll. Note that if 
x:AD(zk)ck < 0 the above explanation does not hold. How- 
ever it can be proved that if the continuous time power iteration 
is convergent, z 'AD(t )z  > 0 always near an equilibrium point. 
Though numerical simulation of the continuous time dynamic 
system is also discrete, it is different from SPI, as the former 
can choose integration steps according to the desired accuracy 
by, for example, automatic step Runge-Kutta integration, the 
latter only uses a special integration law of (6), for which the 
integration steps can be possibly very large. One result is that 
limit cycling in SPI could be eliminated in the continuous time 
power iteration, which will be shown by an example later. 

4 Numerical examples 
We simulated the continuous dynamic system of (5) using 
MATLAB function 'ode23', which uses the automatic step 
Runge-Kutta-Fehlberg integration method. The desired ac- 
curacy of the solution is set to lo-'. For most of examples we 
tested with nonzero initial vectors O r ,  ai, wr and wit the &U- 

lations were convergent, by which we mean that both the state 
vector x and the scalar @ evolve to constant values, even in the 
case where SPI has limit cycling. Here is one of the examples. 
The matrix M is generated in random, by MATLAB 'rand' 
with format 'normal', as: 

1 1.0308 0.7611 -0.3225 
M = [ -0.7599 -0.1659 -0.3684 

0.8741 0.3009 1.1479 

the block structure consists of one repeated scalar block with 
dimension r = 2 and one full block with dimension a = 1. 
We first use SPI to calculate the lower bound of p with the 
MATLAB function 'mu' [2]. The initial values of the vectors 
b and w are the same and generated randomly as: -0.7896 - 
0.0098i, 0.5648 - 0.0515i, 0.0321 - 0.2317i. For this special 
case, limit cycling appears during SPI, as shown in the upper 
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Figure 1: Upper plot: Standard power iteration. 
Limit cycling occurs in iterations. Bottom plot: 
Continuous power iteration. p evolves to an equi- 
librium point 1.384 in 102 steps 
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plot of Fig.1. Now we calculate @ by solving the differential 
equation (5) with the MATLAB function 'ode23'. The matrix 
M is exactly the same as above. The initial value of the vector 
E is calculated from initial values of the vectors b and w via (1). 
That is, we use the same initial values as those for the power 
iteration as shown above. We do this for comparison of the 
two methods. The bottom plot of Fig. 1 shows the simulation 
result. @ now evolves rather smoothly and converges to an 
equilibrium value 1.384 in 102 steps (the number of all forward 
and backward steps are 306). 

5 Conclusion 
From numerical experiences, we found that the convergence 
properties of the continuous time power iteration are good, 
even in the case where the limit cycling happens in SPI. How- 
ever the results presented here are very preliminary. The sta- 
bility property of the continuous time dynamic system of the 
power iteration is not proved yet for a general block structure. 
It is a subject of current ongoing research. Actually we have 
found that in a special case where the Jacobian matrix of (5) 
at a certain equilibrium point has purely imaginary eigenval- 
ues, then limit cycling could happen for some initial values. 
The continuous time power iteration is in general slower than 
SPI (if SPI is convergent), so it is suggested only to use the 
continuous time power iteration in the case where SPI is not 
convergent or is very slow. 
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