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Abstract

Due to the scientific boom in higher-order signal processing, the interest in algebraic manip-
ulations of tensors is rapidly increasing. We studied a model that can be interpreted as the
tensorial equivalent of the Singular Value Decomposition. In the paper we mainly focus on

the algebraic properties of this model.



A Singular Value Decomposition
for Higher-Order Tensors

Lieven De Lathauwer* Bart De Moort Joos Vandewalle

ESAT - E.E. Dept. - K.U. Leuven

K. Mercierlaan 94, 3001 Heverlee, Belgium
Lieven.DeLathauwer@esat.kuleuven.ac.be

Due to the scientific boom in higher-order signal processing, the interest in algebraic
manipulations of tensors is rapidly increasing.

By researchers in mathematical psychology, a model was proposed which is generally
suitable as a tensorial decomposition. When putting the right constraints, this model
turns out to be the tensorial equivalent of the Singular Value Decomposition.

In higher-order statistics, the “Tensor SVD” can e.g. be used to perform the Independent
Components Analysis. In this paper we mainly focus on the algebraic properties of the

model.

Let @ be a third-order (I x J x K) tensor with real entries, providing a formal way
of expressing a multilinear form on R x R/ x RX. Our results can immediately be
generalized to tensors of order higher than three. The generalization to the complex case

is straightforward too.

If P, @, R denote the dimension of ®’s “column space”, “row space” and “tube space”,
then the decomposition model is given by

P Q@ R
‘I’ijk = Z ZEAiijqurqur (1)

P oa T
in which A € R1*F) B € /%9 and C € RE*E are (column-wise) orthogonal matrices
and the “core tensor” Z(pxqxr) is “all-orthogonal”. All-orthogonality means that two
submatrices in =, corresponding to different fixed values of p (or g, or r), are always
orthogonal with respect to the inner product. The submatrices of = are put in order of

descending energy.
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Second Order

Third Order
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contains on position (z,:') the inner
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P = g(IxK.I) 'g(IxKJ)
contains on position (¢,¢') the inner

product of rows ¢ and ¢’ in F product of horizontal planes 7 and ¢’ in @

Pr=A-Dy- At
with A containing the I-mode
singular vectors of @

Pr=A-Dy- At
with A containing the left
singular vectors of F

The inner product of horizontal planes
p and p' in Z is the (p, p’)th element
of D 4. Different horizontal planes of =
are orthogonal.

The inner product of rows p and p’
in ¥ is the (p,p’)th element of Dy.
Different rows of ¥ are
orthogonal.

| F|| = ||Z|| (Frobenius norms) ||®]| = ||Z|| (Frobenius norms)

Table 1: Comparison between second and third order Singular Value Decomposition

There are several ways to write down the model equations. One equivalent is to consider
® as a sum of rank-1 tensors:

P Q R
®=3 3> Eur A 0B, 0C, (2)
P g

r

in which A,, B,, C. are the columns of A, B, C and o denotes the vectorial outer product.

If we denote the inner product along a certain mode by X.4e, We can as well put:

P (1xsxk) = E(Px@xR) Xp Auxp) Xq Buxq) Xr CixxR) (3)

A pure matrix equation is obtained by unfolding ® and = to (JI x K) and (QP x R)
matrices  and Z, with J and @ slowlier varying than I resp. P:

3=(B@4)-E-C* (4)

in which ® denotes the Kronecker product.

In the second-order case this model boils down to the well-known Singular Value Decom-
position (under the condition that all singular values are different). Generalizations of
some second-order properties are listed in Table 1.

The generalized SVD provides the means for calculation of a generalization of the best
rank-k approximation of matrices. We study the problem in which a given tensor @ is
approximated in least-squares sense by an other tensor ®, satisfying the generalized SVD
model for fixed P, @, R. In other words, the column-wise orthonormal matrices A(1xpP)s
B(xq), C(k xr) and the core tensor = have to be determined, such that

(i’(IxeK) = E(Px@xR) Xp A Xy B x, C (5)



minimizes for a given (I x J x K) tensor ® the residual sum of squares
>33 (@isk — Din)? (6)
TGk

The best estimation can be computed by means of an alternating least squares algorithm.
The initial value of this iteration process is obtained by truncation of the generalized SVD

model.



