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Abstract

Prediction error learning algorithms for neural state space models are developed,

both for the deterministic and the stochastic case with measurement and process

noise. For the stochastic case a predictor with direct parametrization of the Kalman

gain by a neural net architecture is proposed. Expressions for the gradients are de-

rived by applying Narendra's sensitivity model approach. Finally a Linear Fractional

Transformation representation is given for neural state space models, which makes it

possible to use these models, obtained from input/output measurements on a plant,

in a standard robust performance control scheme.

Keywords: Arti�cial neural networks, state space models, prediction error algorithms,

Extended Kalman Filtering (EKF), sensitivity models, Linear Fractional Transformations

(LFTs), robust control.
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1 Introduction

The use of arti�cial neural networks in the context of control theory is motivated by the

facts that any continuous nonlinear function can be approximated arbitrarily well on a

compact interval by a multilayer feedforward neural net with one or more hidden layers,

their ability of learning and adaptation, parallel distributed processing and possibility for

e�cient hardware implementation (Hunt et al.(1992)). In Chen et al.(1990a,b) identi�ca-

tion methods are already proposed for input/output models, parametrized by multilayer

feedforward neural networks. In the present paper prediction error algorithms are devel-

oped for general nonlinear state space models, parametrized by feedforward neural nets

(simply called neural state space models here), for the deterministic identi�cation case as

well as for the stochastic case with process noise. In the predictor proposed for the latter

a direct parametrization of the Kalman gain by a neural net architecture is made in in-

novations form. The advantage of a direct parametrization is revealed by the derivation

of a Narendra's sensitivity model for generating the gradients of the cost function in the

identi�cation scheme (Narendra and Parthasarathy (1991)). These expressions are consid-

erably simpler than for a parametrization based on the Extended Kalman Filter, which has

the disadvantage of a complicated dependence on the parameter vector through a Riccati

equation. The expressions for the stochastic case become then a natural extension for those

of deterministic identi�cation with a simulation model as predictor.

After discussing identi�cation methods for neural state space models, it is shown how

an LFT (Linear Fractional Transformation) representation can be derived for these models.

Such LFTs are frequently used in modern robust control design (Dahleh and Khammash

(1993), Doyle et al.(1991), Packard and Doyle (1993)). The neural state space models can

be interpreted as a nominal linear system with bounded nonlinear feedback perturbation

and in the stochastic case also corrupted by a white noise innovations sequence. The need

for identi�cation schemes that are able to estimate models which can be interpreted as

such is e.g.expressed in Smith and Doyle (1992), Packard and Doyle (1993). Hence LFTs

for neural state space models may bridge some of the existing gap between system identi-

�cation and control design.

This paper is organized as follows: in Section 2 several neural state space models are

introduced as parametrizations for nonlinear predictors for both the deterministic and

stochastic case. Section 3 discusses prediction error learning algorithms for neural state

space models, sensitivity models for generating the gradients of the cost function, together

with some heuristics. In Section 4 LFTs for neural state space models are derived and

�nally in Section 5 an example is given on identi�cation of a nonlinear interconnected

system with hysteresis, corrupted by process and measurement noise.
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2 Neural state space models

Nonlinear discrete time systems of the form
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0
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(1)
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2 R

m

, output vector y

k

2 R

l
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x

k

2 R

n

. v
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2 R

n
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l

are respectively process noise and measurement noise and are

assumed to be zero mean white Gaussian noise processes with covariance matrices
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It is assumed that f

0

and g

0

are continuous nonlinear mappings.

Predictors for the deterministic as well as for the stochastic identi�cation case will be dis-

cussed now, together with corresponding parametrizations by a neural network architecture

in each of these cases.

2.1 Choice of predictors

In the case of deterministic identi�cation (v

k

= 0, w

k

= 0) a simulation model (Ljung

(1987) p.133) can be chosen as predictor

M
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with model structure M

d

and set of models M

�

d

= fM

d

(�) j � 2 D

M

d

g. Given N

input/output data Z

N

a prediction error algorithm aims then at minimizing the cost func-

tion

V

N
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N
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X
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k
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with solution
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Here �

k

(�) = y

k

� ŷ

k

(�) is the prediction error and l(�

k

) is a scalar valued positive function

(typically l(�

k

) =

1

2

�

t

k

�

k

).

In the stochastic case (v

k

6= 0, w

k

6= 0) one possibility for choosing a predictor is to

consider the Extended Kalman Filter (EKF) for the system (1). The EKF will give an

estimation of the state of system (1) by linearizing it around a reference trajectory. In

fact it can be thought of as a restricted complexity �lter which is constrained to have a

similar format as that used for linear systems (Goodwin (1984) p.294). This �lter is not an
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optimal state estimator in general, but nevertheless frequently used in many applications.

Linearizing the nonlinear system (1) around x

k

= x̂

k

, v

k

= 0, w

k

= 0 and applying the

Kalman �lter to the resulting time-varying linear system leads to the extended Kalman

�lter (Goodwin (1984) p.293,p.307):
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where
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and K

k

(�) is the Kalman gain. The covariance matrices Q;S;R are parametrized by �. �

0

is given. In this case the optimal solution to the prediction error algorithm is:
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Following the argumentation in Goodwin (1984) p.307,pp.366-367, in Ljung (1987) p.88

or in Ljung (1979) a feasible alternative to the EKF is a direct parametrization of the

Kalman gain, rather than indirectly via the Riccati equation, which eliminates a great

deal of complexity in �tting the predictor to the data. In that case we have a predictor in

innovations form

M

s;direct

(�) :

(

x̂

k+1

= f(x̂

k

; u

k

; �) +K(�)�

k

; x̂

0

= x

0

given

ŷ
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with as optimal solution to the prediction error algorithm
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2.2 Parametrizations by feedforward neural nets

For each of the model structuresM

d

,M

s;ekf

andM

s;direct

parametrizations by neural nets

will be proposed now. Such parametrizations make sense because any continuous nonlinear

function can be approximated arbitrarily well on a compact interval by a multilayer feedfor-

ward neural network with one or more hidden layers (Cybenko (1989), Funahashi (1989),

Hornik et al. (1989), Leshno et al. (1993)). The nonlinear mappings are parametrized now

by multilayer feedforward neural networks with one hidden layer. The following choice of

predictors is made:
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ŷ

k

= W

CD

tanh(V

C

x̂

k

+ V

D

u

k

+ �

CD

)

(11)

5



with

� = [W

AB

(:);V

A

(:);V

B

(:);�

AB

;W

CD

(:);V

C

(:);V

D

(:);�

CD

]

1

(12)

and

M

s;ekf

(�) :

8

>

>

>

>

<

>

>

>

>

:

x̂

k+1

= W

AB

tanh(V

A

x̂

k

+ V

B

u

k

+ �

AB

) +K

k

(�)�

k

; x̂

0

= x

0

ŷ
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It will be shown later on in Section 4.2 in what sense precisely (15) can be interpreted as

a direct parametrization of the Kalman gain in innovations form. The dimensions of the
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. The predictors (11) and (15) are shown in Fig.1 and Fig.2.

Remarks:

� The parametrizations in (11)(13)(15) are not minimal. Like for linear state space

models, which are only unique up to a similarity transformation, we have e.g. for
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and T = V

A

1

2 R

n�n

is taken in (16), one obtains a new parametrization with
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It is not investigated in this paper if it possible to reduce the number of parameters

further by considering nonlinear transformations of the state space model. This

aspect is important with respect to the identi�ability concept, which concerns the

unique representation of a given system description in a model structure (Ljung

(1987) pp.100,105) and the fact whether two di�erent values of � can produce the

same input/output behaviour or not. For linear state space models a minimal number

of parameters is obtained by taking a canonical form, but on the other hand also non-

minimal parametrizations are used in system identi�cation practice such as e.g. for

the algorithms proposed in (De Moor et al. (1991), Van Overschee and De Moor

(1994)) which have advantages from a computational and numerical point of view.

� Instead of working with full parametrizations (11)(13)(15) for the nonlinear map-

pings f and g in (1) one can also take partial parametrizations if one has a priori

knowledge on the structure of the state space model (1), e.g. from physical insight.

Parametrizations by neural nets like
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� The model structures (11)(13)(15)(17)(18) are called here brie
y neural state space

models. In neural networks terminology one would call this recurrent neural networks

(see e.g. Zurada (1992) for an introduction), but from the viewpoint of identi�cation

theory these are state space models, parametrized by feedforward neural networks.

In our opinion the term neural state space models is more suitable for the latter

framework.
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3 Learning algorithms for neural state space models

3.1 Optimization problems

Prediction error learning algorithms for neural state space models (11)(13)(15)(17)(18)

will be discussed here. Computation of gradients of the cost function will be based on the

framework of Narendra on gradient methods for the optimization of dynamical systems

containing neural networks (Narendra and Parthasarathy (1991)). Only o�-line algorithms

will be discussed. The following nonlinear least squares (NLS) problems must be solved
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From the viewpoint of optimization theory there exist several methods for solving these

problems. Either general purpose methods for unconstrained nonlinear optimization can

be used or methods that take into account the particular structure of the NLS problem,

which is the minimization of a sum of squared residuals. The simplest method is steepest

descent. More advanced are Levenberg-Marquardt and Quasi-Newton methods (see Gill

et al. (1981)), which are Newton-like methods that try to build up curvature information

of the Hessian, based on gradient information only. For large scale problems conjugate

gradient algorithms are to be preferred, because in this algorithm there is no need to store

matrices. For each of these methods one needs to know the gradients of the performance

index V

N

with respect to the parameter vector �. If we assume that l(�) =

1

2
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t

� (for other

choices see Ljung (1987)) the gradient becomes
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It will be shown now that the computation of the gradients is straightforward by applying

Narendra's sensitivity model approach, but only in the case of deterministic identi�cation

and the stochastic case with directly parametrized Kalman gain. The derivation of the

gradient for the stochastic case with EKF predictor is too complex because of the depen-

dency on � of the Kalman gain through the Riccati equation. In that case gradients can

be calculated numerically or another optimization method, which is not gradient based,

can be used then.

3.2 Sensitivity models
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According to Narendra and Parthasarathy (1990)(1991) such a sensitivity model can be

obtained by taking the derivatives of (25) with respect to � and �
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@ŷ

k

@�

,

@ŷ
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are generated (Fig.3). A steepest descent learning
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algorithm which makes use of this sensitivity model for computation of the gradients is

called by Narendra dynamic backpropagation, introduced as a complement to the original

backpropagation algorithm (Rumelhart et al. (1986)), which is a learning rule for static

nonlinear mappings. For nonlinear dynamical systems containing neural nets the dynamic

backpropagation procedure must be applied instead.

The derivatives will be given now for the predictor with directly parametrized Kalman gain

(which includes as a special case deterministic identi�cation by setting W

K

= 0, V

K

= 0).

An elementwise notation for (15) is

8

>

>

<

>

>

:

x̂

i

:=

P

j

w

AB

i

j

tanh(

P

r

v

A

j

r

x̂

r

+

P

s

v

B

j

s

u

s

+ �

AB

j

) +

P

j

w

K

i

j

tanh(

P

r

v

K

j

r

�

r

)

ŷ

i

=

P

j

w

CD

i

j

tanh(

P

r

v

C

j

r

x̂

r

+

P

s

v

D

j

s

u

s

+ �

CD

j

);

(27)

where f:g

i

and f:g

i

j

denote respectively the i-th element of a vector and the ij-th element

of a matrix. The assignment operator ':=' is introduced here in order to make it possible

to omit the time index k.

De�ning

'

l

=

P

r

v

A

l

r

x̂

r

+

P

s

v

B

l

s

u

s

+ �

l

AB

 

l

=

P

r

v

C

l

r

x̂

r

+

P

s

v

D

l

s

u

s

+ �

l

CD

�

l

=

P

r

v

K

l

r

�

r

(28)

one obtains the following derivatives

@�

@�

:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

@�

i

@w

AB

j

l

= �

i

j

tanh('

l

)

@�

i

@v

A

j

l

= w

AB

i

j

(1 � tanh

2

('

j

)) x̂

l

@�

i

@v

B

j

l

= w

AB

i

j

(1 � tanh

2

('

j

))u

l

@�

i

@�

AB

j

= w

AB

i

j

(1 � tanh

2

('

j

))

@�

i

@w

K

j

l

= �

i

j

tanh(�

l

)

@�

i

@v

K

j

l

= w

K

i

j

(1� tanh

2

(�

j

)) �

l

@	

@�

:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

@	

i

@w

CD

j

l

= �

i

j

tanh( 

l

)

@	

i

@v

C

j

l

= w

CD

i

j

(1� tanh

2

( 

j

)) x̂

l

@	

i

@v

D

j

l

= w

CD

i

j

(1� tanh

2

( 

j

))u

l

@	

i

@�

CD

j

= w

CD

i

j

(1� tanh

2

( 

j

))

@�

@x̂

k

:

@�

i

@x̂

r

=

P

j

w

AB

i

j

(1 � tanh

2

('

j

)) v

A

j

r

@	

@x̂

k

:

@	

i

@x̂

r

=

P

j

w

CD

i

j

(1� tanh

2

( 

j

)) v

C

j

r

:

(29)
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In fact one can interpret the predictor with its corresponding sensitivity model as one

augmented system, that generates ŷ

k

as well as

@ŷ

k

@�

at its output. Such an extended

network model was also de�ned in Chen et al. (1990a,b) in the context of input/output

models parametrized by feedforward neural nets.

There is also the possibility for developing parallel training algorithms for the neural state

space models because for each of the p parameters �; � of the parameter vector � one has a

simulation of the sensitivity model over N samples. These p simulations can be distributed

over the available number of processors. Parallel algorithms for input/output models were

also discussed in Chen et al. (1990b).

3.3 Heuristics

The nonlinear optimization problem (21)-(23) has in general many local minima. Hence

one has to start from several initial parameter vectors in order to have some con�dence in

the quality of the obtained local optima. Two heuristics are proposed here how a priori

knowledge can be used for generating meaningful starting points for the identi�cation

procedure: initializing neural state space models as linear state space models (which makes

sense for weakly nonlinear systems) and learning complex neural state space models from

lower complex ones.

3.3.1 Linear models as starting points

Suppose a linear state space model is available in innovations form (Ljung (1987) p.87 or

Ljung (1979))

(

x̂

k+1

= A(�)x̂

k

+B(�)u

k

+K(�)�

k

ŷ

k

= C(�)x̂

k

+D(�)u

k

(30)

with Ef�

k

�

t

s

g = ��

ks

(� diagonal) and �

k

= y

k

� ŷ

k

. Taking the neural state space model

(15) with directly parametrized Kalman gain initially as

W

AB

=

1

�

1

[I

n

R

1

]; [V

A

V

B

] = �

1

"

A B

0 0

#

; �

AB

= 0; (n

hx

� n)

W

CD

=

1

�

2

[I

l

R

2

]; [V

C

V

D

] = �

2

"

C D

0 0

#

; �

CD

= 0; (n

hy

� l)

W

K

=

1

�

3

[I

n

R

3

]; V

K

= �

3

"

K

0

#

; (n

h�

� n);

(31)

where �

1

; �

2

; �

3

are small positive real numbers and R

1

; R

2

; R

3

are arbitrary matrices of

appropriate dimension, (15) behaves as the linear model (30) for �

1

; �

2

; �

3

! 0. Indeed
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for bounded input and state vector sequences one obtains

x̂

k+1

=

1

�

1

[I

n

R

1

] tanh(�

1

"

A B

0 0

# "

x̂

k

u

k

#

+

"

0

0

#

) +

1

�

3

[I

n

R

3

] tanh(�

3

"

K

0

#

�

k

)

�

1

;�

3

!0

= Ax̂

k

+Bu

k

+K�

k

ŷ

k

=

1

�

2

[I

l

R

2

] tanh(�

2

"

C D

0 0

# "

x̂

k

u

k

#

+

"

0

0

#

)

�

2

!0

= Cx̂

k

+Du

k

;

(32)

which follows immediately from the Taylor expansion of the activation function

tanh(x) = x�

1

3

x

3

+

2

15

x

5

�

17

315

x

7

+ ::: ; (jxj <

�

2

); (33)

where tanh(x) ' x for jxj ! 0. This means that results from linear system identi�cation

can be used to initialize neural state space models in the local optimization scheme.

3.3.2 Learning complex neural state space models from lower complex ones

Suppose some neural state space model is already available (e.g. a model with a low number

of hidden neurons, characterized by W

(1)

AB

, V

(1)

A

, V

(1)

B

, �

(1)

AB

, W

(1)

CD

, V

(1)

C

, V

(1)

D

, �

(1)

CD

) and one

would like to decrease the �tting error by introducing extra hidden neurons in the model.

The more complex neural state space model (W

(2)

AB

, V

(2)

A

, V

(2)

B

, �

(2)

AB

, W

(2)

CD

, V

(2)

C

, V

(2)

D

, �

(2)

CD

)

has then the same input/output behaviour as the lower complex one if one takes

W

(2)

AB

= [W

(1)

AB

R

1

] ; [V

(2)

A

V

(2)

B

] =

"

V

(1)

A

V

(1)

B

0 0

#

; �

(2)

AB

=

"

�

(1)

AB

0

#

W

(2)

CD

= [W

(1)

CD

R

2

] ; [V

(2)

C

V

(2)

D

] =

"

V

(1)

C

V

(1)

D

0 0

#

; �

(2)

CD

=

"

�

(1)

CD

0

#

W

(2)

K

= [W

(1)

K

R

3

] ; V

(2)

K

=

"

V

(1)

K

0

#

(34)

with R

1

,R

2

,R

3

arbitrary matrices of appropriate dimension.
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4 LFT representation for neural state space models

An LFT representation will be derived now for the neural state space model with directly

parametrized Kalman gain, which is the most general case. The derivation of an LFT for

the other neural state space models such as the predictor in the deterministic identi�cation

case (11) and partial parametrizations (17)(18) is straightforward then because they can

be interpreted as special cases. LFT representations for neural state space models were

�rst introduced in Suykens et al. (1993).

4.1 Motivation

Modern robust control theory makes frequently use of LFTs such as in the formulation of

the standard robust stability and standard robust performance control problems, where

uncertainties are pulled out of an augmented plant model for which a linear controller is

designed, taking into account the structure in the uncertainty block and the nature of the

uncertainty (such as time-invariant, time varying and nonlinear perturbations, unmodeled

dynamics) (Dahleh and Khammash (1993), Doyle et al.(1991), Packard and Doyle (1993)).

On the other hand there exist the well-known gap between identi�cation and control that

comes up if one has to design a controller for a plant, based on identi�cation results from

input/output measurements on that plant. The need for new identi�cation schemes that

can bring estimated models in the framework of �-theory is e.g. expressed in Packard

and Doyle (1993). According to Smith and Doyle (1992) the application of robust control

methods is also hampered by the fact that most popular identi�cation methods assume all

uncertainty in the form of additive noise, while modern robust control synthesis techniques

aim at providing robustness with respect to uncertainty in the form of both additive noise

and plant perturbations.

A candidate method proposed in this paper is the following

1. First nonlinear system identi�cation is done using neural state space models. Both

measurement and process noise can be taken into account in the model structure. The

number of models that can be represented in the model structures M

d

and M

s;direct

is large, which makes the assumption that the true plant can be represented in the

model structure more reasonable (an assumption which is almost always violated in

practice for linear models).

2. An LFT representation is derived for the obtained neural state space model. The

nonlinear model is represented here as a nominal linear model with bounded non-

linear feedback perturbations (to be interpreted as a linear model with parametric

uncertainties caused by nonlinear perturbations). In fact two levels of uncertainty are

13



important here: the �rst level is the uncertainty characterized by con�dence intervals

on the estimated parameter vector

^

�

N

for the true parameter vector �

0

; the second

level is that the obtained model can be represented as the uncertain linear model.

We will only focuss on the second level in this paper.

3. Finally the LFT representation is used in a standard robust performance control

scheme, assuming the certainty equivalence principle holds. If not ok, go back to 1.

In fact it is assumed here that the obtained neural state space model is valid in the

following senses

1. The prediction error must be unpredictable from all linear and nonlinear combina-

tions of past inputs and outputs. Methods for checking this are discussed e.g. in

Billings et al.(1992).

2. The obtained neural state space model must perform well on fresh data, that were

not used for identi�cation. This the most popular way of model validation in the �eld

of neural networks, where the available data set is normally splitted into a training

set and a test set and a performance index is de�ned on both sets, respectively called

�tting error and generalization error (see Hammerstrom (1993) or Zurada (1992) for

an introduction). In Ljung (1987) p.416 this is also considered to be a good and

pragmatic way of model validation, because there is no need for any probabilistic

arguments or assumptions on the true system in this case.

3. It is assumed that the obtained model is also valid in the sense of Smith which

means that given experimental data and a model with both additive noise and

norm-bounded perturbations, the model can produce the observed input-output data

(Smith and Doyle (1992)).

Besides the possibility for using the LFTs in robust control design, the representation

provides us with more insight in the neural state space models itself such as e.g. how the

model (15) can be interpreted as a model with direct parametrization of the Kalman gain

in innovations form.
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4.2 Derivation of LFTs

Using the elementwise notation (27)(28) for the predictor (15)

(

x̂

k+1

= W

AB

tanh(V

A

x̂

k

+ V

B

u

k

+ �

AB

) +W

K

tanh(V

K

�

k

) ; x̂

0

= x

0

ŷ

k

= W

CD

tanh(V

C

x̂

k

+ V

D

u

k

+ �

CD

)

we obtain

(

x̂

i

:=

P

j

w

AB

i

j

tanh('

j

) +

P

j

w

K

i

j

tanh(�

j

)

ŷ

i

=

P

j

w

CD

i

j

tanh( 

j

):

(35)

This can be written as

(

x̂

i

:=

P

j

w

AB

i

j




AB

j

j

'

j

+

P

j

w

K

i

j




K

j

j

�

j

ŷ

i

=

P

j

w

CD

i

j




CD

j

j

 

j

;

(36)

where




AB

j

j

=

8

<

:

tanh('

j

)

'

j

; ('

j

6= 0)

1 ; ('

j

= 0) ; j = 1; :::; n

hx




CD

j

j

=

8

<

:

tanh( 

j

)

 

j

; ( 

j

6= 0)

1 ; ( 

j

= 0) ; j = 1; :::; n

hy




K

j

j

=

8

<

:

tanh(�

j

)

�

j

; (�

j

6= 0)

1 ; (�

j

= 0) ; j = 1; :::; n

h�

:

The fact that the 
 elements are equal to 1 if the argument of the activation function

becomes 0 is easily seen by applying de l' Hospital's rule or by using the Taylor expansion

for tanh(.). These elements have the property that they belong to bounded intervals:




AB

j

j

2 (0; 1], 


CD

j

j

2 (0; 1], 


K

j

j

2 (0; 1]. Turning back again to matrix-vector notation

(36) can be written as

(

x̂

k+1

= W

AB

�

AB

(x̂

k

; u

k

)(V

A

x̂

k

+ V

B

u

k

+ �

AB

) +W

K

�

K

(�

k

)V

K

�

k

ŷ

k

= W

CD

�

CD

(x̂

k

; u

k

)(V

C

x̂

k

+ V

D

u

k

+ �

CD

)

(37)

or

(

x̂

k+1

= A(x̂

k

; u

k

)x̂

k

+B(x̂

k

; u

k

)u

k

+ b

2

(x̂

k

; u

k

) +K(�

k

)�

k

ŷ

k

= C(x̂

k

; u

k

)x̂

k

+D(x̂

k

; u

k

)u

k

+ d

2

(x̂

k

; u

k

)

(38)

with diagonal matrices �

AB

= diagf


AB

1

1

; :::; 


AB

n

hx

n

hx

g, �

CD

= diagf


CD

1

1

; :::; 


CD

n

hy

n

hy

g, �

K

=

diagf


K

1

1

; :::; 


K

n

h�

n

h�

g and

A(x̂

k

; u

k

) = W

AB

�

AB

(x̂

k

; u

k

)V

A

; B(x̂

k

; u

k

) = W

AB

�

AB

(x̂

k

; u

k

)V

B

C(x̂

k

; u

k

) =W

CD

�

CD

(x̂

k

; u

k

)V

C

; D(x̂

k

; u

k

) = W

CD

�

CD

(x̂

k

; u

k

)V

D

b

2

(x̂

k

; u

k

) = W

AB

�

AB

(x̂

k

; u

k

)�

AB

; d

2

(x̂

k

; u

k

) = W

CD

�

CD

(x̂

k

; u

k

)�

CD

K(�

k

) = W

K

�

K

(�

k

)V

K

:

(39)
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The representation (38)(39) for the model (15) explains in what sense we have a direct

parametrization of the Kalman gain and how it serves as a straightforward extension of

a linear model in innovations form (30) towards nonlinear systems, especially if �

AB

= 0,

�

CD

= 0 making b

2

= 0, d

2

= 0.

The following step for representing (38)(39) as an LFT is to de�ne a nominal model.

Depending on the input and state vector sequences the elements 


AB

j

j

, 


CD

j

j

, 


K

j

j

belong

to certain intervals




AB

j

j

2 [


�

AB

j

j

; 


+

AB

j

j

] � (0; 1]




CD

j

j

2 [


�

CD

j

j

; 


+

CD

j

j

] � (0; 1]




K

j

j

2 [


�

K

j

j

; 


+

K

j

j

] � (0; 1]:

(40)

The nominal 
 values will be de�ned now as the midpoint of these intervals. The choice

of these intervals is a matter of degree of conservativeness that one wants to take into

account and will depend on the input signals for which the predictor (35) is simulated.

The most conservative LFT will be obtained by setting all nominal 
 values equal to 0.5

as the midpoint of the intervals (0,1], ensuring independence of the input and state vector

sequence. The following de�nitions are made (see also Steinbuch et al.(1992))




nom

AB

j

j

= (


�

AB

j

j

+ 


+

AB

j

j

)=2 ; s

AB

j

j

= (


+

AB

j

j

� 


�

AB

j

j

)=2




nom

CD

j

j

= (


�

CD

j

j

+ 


+

CD

j

j

)=2 ; s

CD

j

j

= (


+

CD

j

j

� 


�

CD

j

j

)=2




nom

K

j

j

= (


�

K

j

j

+ 


+

K

j

j

)=2 ; s

K

j

j

= (


+

K

j

j

� 


�

K

j

j

)=2

(41)

and

�

nom

AB

= diagf


nom

AB

1

1

; :::; 


nom

AB

n

hx

n

hx

g ; S

AB

= diagfs

AB

1

1

; :::; s

AB

n

hx

n

hx

g

�

nom

CD

= diagf


nom

CD

1

1

; :::; 


nom

CD

n

hy

n

hy

g ; S

CD

= diagfs

CD

1

1

; :::; s

CD

n

hy

n

hy

g

�

nom

K

= diagf


nom

K

1

1

; :::; 


nom

K

n

h�

n

h�

g ; S

K

= diagfs

K

1

1

; :::; s

K

n

h�

n

h�

g

(42)

and

�

AB

= �

nom

AB

+ S

AB

�

AB

; �

AB

= diagf�

AB

1

1

; :::; �

AB

n

hx

n

hx

g

�

CD

= �

nom

CD

+ S

CD

�

CD

; �

CD

= diagf�

CD

1

1

; :::; �

CD

n

hy

n

hy

g

�

K

= �

nom

K

+ S

K

�

K

; �

K

= diagf�

K

1

1

; :::; �

K

n

h�

n

h�

g

(43)
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with �

AB

j

j

2 [�1; 1], �

CD

j

j

2 [�1; 1], �

K

j

j

2 [�1; 1], such that k�

AB

k � 1, k�

CD

k � 1,

k�

K

k � 1. Hence the matrices in (38) can be written as

A(x̂

k

; u

k

) = A

nom

+A

�

(�

AB

) ; B(x̂

k

; u

k

) = B

nom

+B

�

(�

AB

)

C(x̂

k

; u

k

) = C

nom

+ C

�

(�

CD

) ; D(x̂

k

; u

k

) = D

nom

+D

�

(�

CD

)

b

2

(x̂

k

; u

k

) = b

nom

2

+ b

2

�

(�

AB

) ; d

2

(x̂

k

; u

k

) = d

nom

2

+ d

2

�

(�

CD

)

K(�

k

) = K

nom

+K

�

(�

K

)

(44)

with

A

nom

= W

AB

�

nom

AB

V

A

; A

�

(�

AB

) = W

AB

S

AB

�

AB

V

A

B

nom

= W

AB

�

nom

AB

V

B

; B

�

(�

AB

) = W

AB

S

AB

�

AB

V

B

C

nom

= W

CD

�

nom

CD

V

C

; C

�

(�

CD

) = W

CD

S

CD

�

CD

V

C

D

nom

= W

CD

�

nom

CD

V

D

; D

�

(�

CD

) = W

CD

S

CD

�

CD

V

D

b

nom

2

= W

AB

�

nom

AB

�

AB

; b

2

�

(�

AB

) = W

AB

S

AB

�

AB

�

AB

d

nom

2

= W

CD

�

nom

CD

�

CD

; d

2

�

(�

CD

) = W

CD

S

CD

�

CD

�

CD

K

nom

= W

K

�

nom

K

V

K

; K

�

(�

K

) = W

K

S

K

�

K

V

K

:

(45)

Finally an upper Linear Fractional Transformation (LFT) is obtained then for the neural

state space model with directly parametrized Kalman gain (Fig.4)

ŷ = F

u

(G;�)

2

6

6

4

u

�

1

3

7

7

5

(46)

with state space representation
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>

>

>

>
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>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

G :

2

6

6

4

x̂

k+1

ŷ

k

q

k

3

7

7

5

=

2

6

6

6

6

6

6

6

4

A

nom

B

nom

K

nom

b

nom

2

[W

AB

S

AB

W

K

S

K

0]

C

nom

D

nom

0 d

nom

2

[0 0 W

CD

S

CD

]

2

6

6

4

V

A

0

V

C

3

7

7

5

2

6

6

4

V

B

0

V

D

3

7

7

5

2

6

6

4

0

V

K

0

3

7

7

5

2

6

6

4

�

AB

0

�

CD

3

7

7

5

0

3

7

7

7

7

7

7

7

5

:

2

6

6

6

6

6

6

6

4

x̂

k

u

k

�

k

1

p

k

3

7

7

7

7

7

7

7

5

� : p

k

= � : q

k

;� = diagf�

AB

;�

K

;�

CD

g ; k�k � 1:

(47)
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An LFT representation for the neural state space model in the deterministic identi�cation

case (Fig.4)

ŷ = F

u

(G;�)

"

u

1

#

(48)

can be seen as a special case of (46)-(47) (W

K

= 0,V

K

= 0), with state space representation
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>
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>
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>

>

>

>

>

>

>

>

>

:

G :

2

6

6

4

x̂

k+1

ŷ

k

q

k

3

7

7

5

=

2

6

6

6

6

4

A

nom

B

nom

b

nom

2

[W

AB

S

AB

0]

C

nom

D

nom

d

nom

2

[0 W

CD

S

CD

]

"

V

A

V

C

# "

V

B

V

D

# "

�

AB

�

CD

#

0

3

7

7

7

7

5

:

2

6

6

6

6

4

x̂

k

u

k

1

p

k

3

7

7

7

7

5

� : p

k

= � : q

k

;� = diagf�

AB

;�

CD

g ; k�k � 1:

(49)

At the component level the uncertainty is caused by the 
 elements and corresponding �

elements which depend nonlinearily on the input and state vector. The interconnection

matrices of the neural state space model are assumed to be exact, although there exist

uncertainty on these matrices because of the identi�cation procedure. At the system level

this uncertainty becomes structured because the matrix � is diagonal (see also Doyle et

al.(1991)). The uncertainty is real and the dimension of � does only depend upon the

number of hidden neurons in the neural net architectures. Finally the LFT representations

(46)-(49) can be used in a standard robust stability or robust performance control scheme

(Fig.5).

Remarks:

� In the standard robust control scheme of Fig.6 with augmented plant P the exogenous

input vector w and the regulated output z, related to the 1-DOF control schemes of

Fig.5 consist respectively of the variables r, �, 1 and r� ŷ (tracking error), u (see e.g.

Boyd and Barratt (1991)). The constant input 1, due to the bias vectors of the neural

nets, can be interpreted as an extra disturbance signal. Measurement noise in w is

characterized by the white noise innovations sequence � for M

d

. For M

s;direct

both

process noise and measurement noise in w are related to � because of the directly

parametrized Kalman gain in innovations form.
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� LFT representations for simulationmodel predictors related to the partial parametriza-

tions (17) and (18) are a special case of (48)(49) and correspond respectively to
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>

>
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"

A

nom

B b

nom

2

W
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S
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V
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0 �
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0

#
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2

6

6

6

6
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x̂

k

u

k

1

p

k

3

7

7

7

7

5

� : p

k

= �

A

: q

k

; k�

A

k � 1

(50)

with b

nom

2

= W

A

�

nom

A

�

A

and to
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>

>

>

>
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"

x̂

k+1

q
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=

"

A B

nom

b

nom

2

W

B

S

B

0 V

B

�

B

0

#
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2

6

6

6

6

4

x̂

k

u

k

1

p

k

3

7

7

7

7
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� : p

k

= �

B

: q

k

; k�

B

k � 1

(51)

with b

nom

2

= W

B

�

nom

B

�

B

.

� Results based on the LFTs (46)(48) are only rigorous if a nominal model was de�ned

by setting 


AB

j

j

= 0:5, 


CD

j

j

= 0:5, 


K

j

j

= 0:5. All other choices are heuristic because

they depend on the input vector and state vector sequence but on the other hand

may lead to less conservative results.

� The size of the intervals [


�

AB

j

j

; 


+

AB

j

j

], [


�

CD

j

j

; 


+

CD

j

j

], [


�

K

j

j

; 


+

K

j

j

] gives an indication of the

'hardness' of nonlinearity of the underlying nonlinear system: a maximal 'distortion'

is obtained if these intervals coincide with (0; 1] and a minimal 'distortion' for the

limiting case 


+

AB

j

j

= 1, 


+

CD

j

j

= 1, 


+

K

j

j

= 1 and 


�

AB

j

j

! 1, 


�

CD

j

j

! 1, 


�

K

j

j

! 1,

corresponding to a linear model. The larger the size of the intervals [


�

AB

j

j

; 


+

AB

j

j

],

[


�

CD

j

j

; 


+

CD

j

j

], [


�

K

j

j

; 


+

K

j

j

], the higher the 'distortion' will be and the more di�cult it

will become to �nd a linear robustly stabilizing controller that can cope with the

uncertainty characterized by these intervals.
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5 Example

An example is given on nonlinear system identi�cation using the neural state space model

with directly parametrized Kalman gain (15). The system to be identi�ed is an intercon-

nected system, consisting of two dynamical subsystems and two static nonlinearities: a

hysteresis curve f

1

(:) and a hyperbolic tangent function f

2

(:) = tanh(:) (see Fig.7). The

linear systems L and M are both SISO of order 2 and 1 with state vectors x

k

and z

k

respectively. The interconnected system with input u

k

, output y

k

and state vector [x

k

; z

k

]

has the following form

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

x

k+1

= A

L

x

k

+ b

L

u

k

+

"

1

0

#

v

k

z

k+1

= a

M

z

k

+ b

M

f

1

(c

t

L

x

k

)

y

k

= f

2

(c

M

z

k

+ d

M

f

1

(c

t

L

x

k

)) + w

k

(52)

with v

k

, w

k

zero mean white Gaussian noise processes. The I/O data were generated by

a random input signal, uniformly distributed in the interval [-1,1]. Process noise v

k

and

measurement noise w

k

have both standard deviation 0.01. The system matrices for L and

M are

A

L

=

"

0:1 �0:2

1 0:3

#

; b

L

=

"

0

1

#

; c

L

=

"

1

0

#

; d

L

= 0; a

M

= 0:7; b

M

= c

M

= d

M

= 1

The nonlinearity f

1

(:) is shown in Fig.8 and de�ned by the following table

x

2

> 0 x

2

� 0

�c� d � x

1

� �c+ d f

1

= �c -

�c+ d � x

1

� c+ d f

1

= x

1

� d -

c� d � x

1

� c+ d - f

1

= c

�c� d � x

1

� c� d - f

1

= x

1

+ d

�c� d � x

1

f

1

= �c f

1

= �c

x

1

� c+ d f

1

= c f

1

= c

which means that the right or left part of the curve is selected depending on the sign

of x

2

. In total 2000 data points were generated by (52) with c = 1, d = 0:2 in f

1

. This

data set is splitted into two parts: a training set containing the �rst 1000 data points

(N

fit

= 1000) and a test set consisting of the following 1000 data points (N

gen

= 1000)

which are fresh data to test the obtained models. Corresponding �tting error V

N

fit

and

generalization error V

N

gen

are de�ned on these sets. As predictor a neural state space

model (15) was taken with n = 3, n

hx

= n

hy

= 7, n

h�

= 2. In order to minimize the
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cost function (23) a quasi-Newton method with BFGS updating of the Hessian and a

mixed quadratic and cubic line search was used (function fminu of Matlab's optimization

toolbox) (Matlab User's Guide (1992)). Simulation of the neural state space model and

its corresponding sensitivity model, needed to generate the gradient of the cost function,

were both written in C code, making use of Matlab's mex facilty. The best local minimum

after taking 100 di�erent starting points (according to a random Gaussian distribution

with standard deviation 0.5) was V

N

fit

= 6:3848 e � 04. This model had also a minimal

generalization error equal to V

N

gen

= 1:5803 e � 03. Model validation tests were done

according to Billings et al.(1992): residuals �

k

should be unpredictable from all linear and

nonlinear combinations of past inputs and outputs. The following conditions should hold:

�

��

(� ) = E[�

k��

�

k

] = �

�

, �

u�

(� ) = E[u

k��

�

k

] = 0 (8� ), �

u

2

0

�

(� ) = E[(u

2

k��

�u

2

k

)�

k

] = 0 (8� ),

�

u

2

0

�

2

(� ) = E[(u

2

k��

� u

2

k

)�

2

k

] = 0 (8� ), �

�(�u)

(� ) = E[�

k

�

k�1��

u

k�1��

] = 0 (� � 0). Here

u

2

0

= u

2

k

� u

2

k

, where u

2

k

denotes the mean of u

2

k

. In practice normalized correlations

are computed. The sampled correlation function between two sequences �

k

and �

k

is

given by

^

�

��

(� ) = (

P

N��

k=1

�

k

�

k+�

)=[

P

N

k=1

�

2

k

P

N

k=1

�

2

k

]

1=2

. This normalization ensures that

�1 �

^

�

��

� 1. 95% con�dence bands are de�ned as 1:96=

p

N (N is data length). These

tests are shown in Fig.9 for the training data.

The intervals [


�

AB

j

j

; 


+

AB

j

j

], [


�

CD

j

j

; 


+

CD

j

j

], [


�

K

j

j

; 


+

K

j

j

] were calculated based on the training

data and the optimal model with as result




+

AB

j

j

= 1; 


+

CD

j

j

= 1; 


+

K

j

j

= 1

and




�

AB

= [0:0562 0:8942 0:7313 0:7659 0:8904 0:8306 0:3841]

t




�

CD

= [0:1785 0:6271 0:5012 0:6022 0:0244 0:1877 0:2284]

t




�

K

= [0:9920 0:9997]

t

which indicates that the nonlinearity of the underlying system is rather 'hard' except for

the neural net responsible for the Kalman gain: the 


�

K

j

j

elements close to 1 indicate that

the system dynamics depend linearily on the innovations input �

k

, which is indeed also the

case for the true system (52). This is also seen in the plots of Fig.10: the elements of the

matrices A(x̂

k

; u

k

), B(x̂

k

; u

k

), C(x̂

k

; u

k

), D(x̂

k

; u

k

), K(�

k

) are plotted with respect to time

for a part of the training data. The variation on the elements of K is small.
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6 Conclusions

A neural state space model framework for nonlinear system identi�cation is proposed.

Both models for the deterministic identi�cation case and the stochastic case with process

noise and measurement noise are treated. Prediction error algorithms are discussed where

the gradients of the cost function are generated by a Narendra's sensitivity model. LFT

representations are given which make it possible to interpret a given neural state space

model as a nominal linear model with bounded nonlinear feedback perturbation and to use

it in a standard robust performance control scheme. Further possible research directions

are e.g.to look for parametrizations of neural state space models with a minimal number of

parameters, the development of on-line and parallel learning algorithms and to work out

real life examples on robust control, based on identi�cation results from neural state space

models.
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List of Captions

Figure 1. Neural state space model for deterministic system identi�cation: simulation

model parametrized by feedforward neural nets.

Figure 2. Neural state space model for the stochastic case with process noise: predictor

with directly parametrized Kalman gain in innovations form, parametrized by feedforward

neural nets.

Figure 3. A nonlinear dynamic model and its corresponding Narendra's sensitivity model

for generating the gradient of the cost function with respect to the parameter vector � in

a prediction error learning algorithm (�; � 2 �).

Figure 4. LFT representation of neural state space models for deterministic identi�ca-

tion (left) and the stochastic case with process noise (right). G is related to a nominal

linear system. Bounded uncertainty is pulled out in the block �, represented in feedback

form. The uncertainty at this system level is structured because of the diagonal structure

of �. The elements of � are real and of nonlinear nature.

Figure 5. Example of using neural state space models in LFT representation (of Fig.4) in

a 1-DOF control scheme, assuming the certainty equivalence principle holds.

Figure 6. Standard robust performance control scheme with augmented plant P . Re-

lated to Fig.5 the exogenous input vector w consists of r, 1 and � and the regulated output

z to r � ŷ and u. y is the sensed output and u the actuator input.

Figure 7. Nonlinear interconnected system consisting of two linear dynamic systems L

and M , respectively of order 2 and 1, and two static nonlinearities: a hysteresis curve f

1

(:)

and f

2

(:) = tanh(:). The system is corrupted with process noise v and measurement noise

w.

Figure 8. Hysteresis curve f

1

(x

1

). Depending on the sign of x

2

the right or left part

of the curve is selected.

Figure 9. Model validation: normalized correlation tests with 95% con�dence intervals

for the model with minimal �tting and generalization error, evaluated on the training set:

a/

^

�

��

(� ), b/

^

�

u�

(� ), c/

^

�

u

2

0

�

(� ), d/

^

�

u

2

0

�

2

(� ), e/

^

�

�(�u)

(� ).

Figure 10. Illustration of parametric uncertainties on the elements of the matricesA(x̂

k

; u

k

)
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(Fig.a), B(x̂

k

; u

k

) (Fig.b), C(x̂

k

; u

k

) (Fig.c), D(x̂

k

; u

k

) (Fig.d), K(�

k

) (Fig.e), evaluated on

part of the training set. The variation on the elements of the Kalman gain is small.
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