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Abstract

This paper proposes to use Enns’s frequency weighted balanced truncation with
as a weighting function the inverse of the outer factor of the system to be reduced.

This results in a relative error model reduction method very similar to Balanced
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Stochastic Truncation (BST), in the sense that in both methods, there is a spectral
factorization of G(s)GT(~s), involving the solution of a Riccati equation, and a
controllability gramian to be computed. It is shown that the computation of the
observability gramian of the weighted system in Enns’s method can be reduced in
this case to the computation of the observability gramian of the weighting function
only, Moreover, a Schur decomposition of the Hamiltonian associated with the Riccati
equation can be found with little effort, so that the Riccati equation may be solved

at a much smaller cost.

1 Background

Let G(s) be a square stable invertible plant of order n, and let G=1(s) be its inverse.
Some notation:

[A,B,C,D|2 C(sI — A)"'B+D

Let (A, B,C, D] be a minimal realization of G(s), A € R"*", B,CT ¢ R**™, D ¢ R™*m,
then [A;, B;, Ci, D;], where A; £ A — BD-1C, B;2 BD-', ;& —D-10, D; 2 D1, is a

minimal realization of G~1(s).

We briefly recapitulate Enns’s scheme for frequency weighted model reduction: we wish
to obtain a system G,(s) = [A:, By, C;, D;] of order at most r such that ||W;(s)(G(s) —
Gr(8))Wo(8)l|oo is made small, where Wi(s) £ [A;, Bi, C;, D) and W,(s) 2 [A,, By, Cs, D)
are stable and invertible frequency weights. In the unweighted case (Wi(s) = I, W,(s) = I),
this is accomplished by balanced truncation [M81] : the observability and controllability
grammians () and P are computed from ATQ+QA+CTC = 0 and AP+ PAT+BBT =0,
a similarity transform [T~'AT,T-'B,CT, D] is found that balances the grammians (i.e.
makes them equal and diagonal : T"'PT-T = TTQT = T = diag([oy...0,])), and the
reduced model G,(s) is obtained by truncating the states with the smallest corresponding
Hankel singular values o;.

The Hy norm of the modelling error can be bounded in terms of the Hankel singular values

corresponding to the truncated states : J|G(s) — Gy (8)|leo £ 250%, .4 04

Enns [E84a, E84b, AM89] proposed the following extension for frequency weighted bal-

anced truncation :
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Balancing P and ¢ makes no sense, since they need not even be of the same dimension.

However, balancing P, and @, and truncation of the states corresponding to the smallest
diagonal elements o; of the balanced matrices yields a good reduced model in the frequency
weighted norm ||W,(8)(.)W;(38)||oo-

Enns showed that the reduced model is generically stable when W,(s) = I or Wi(s) = I
(Zhou et al. [ZZL93] proved that ‘generically’ may be replaced with ‘always’in the discrete

time case). Unfortunately, an error bound as in the unweighted case is not available.

2 Relative error model reduction

Zhou et al. [ZZL93) noted (for the discrete-time case in fact) that Enns’s method with
the inverse system of G(s) as a weighting function is equivalent to Balanced Stochastic
Truncation (BST) if G(s) is minimum phase, and show that the relevant gramians may be
computed by solving two n-by-n Lyapunov equations, and an error bound was given that
is equivalent to the error bound proposed by Green [G88] for BST. We take the opportu-
nity to point out that this bound can be replaced by a tighter one equivalent to the one
proposed by Wang et al. [WS90], i.e. [G~1(G — G))|leo S 250, 4, 0i(y/1 + 02 + 03), with
o; defined as in [ZZL93].

We propose to generalize Zhow’s approach by weighting with the inverse of the outer
spectral factor W(s) of the system G(s) at hand, i.e. W(s) is stable and minimum phase s.t.
W (s)WT(=38) = G(s)GT (~3). We then take W,(s) & (W(s))~! = Ci(s] = Awi)~! Bui+ D,
where Ay; 2 A; + XCTC;, Byi & Bi + XOTD;, Cui 2, Dui 2, and X is the solution of




the algebraic Riccati equation
AX + XAT+ XCfCiX =0 (1)

such that Ay = A; + XCTC; has all its eigenvalues in the left half plane.

Using W,(s) as a weighting function on the output side, it is easily verified that P, is the
solution of AP, + P,AT + BBT = 0 and Q, = —Q,. = Q. where Q,, is the solution of
AL:Qu+ QuAwi + CTCi = 0.

Note that the Riccati equation 4;X + X AT + XCTC;X = 0 may be solved more cheaply
than a general algebraic Riccati equation. One may take advantage of the fact that there is
a trivial solution X = 0; this solution is the stabilizing one if G(s) is minimum phase, and
one then finds Q; = Qu = Q; (cf. [ZZL93]). Moreover, if the solution Q; of ATQ;+ Q;A; +
CTC; = 0, is invertible (which is generically true), then Q7! is one solution to the Riccati
equation, for which A,; = —Q7* A Q;, so this is the stabilizing one if G~*(s) is antistable;
in the latter case, @, = Qu = —Qy, since (~QuAiQ7)(~Qi)+(= @) (= Q7 ATQ)+CTC; =
QiAi + ATQi + CTC; = 0.

When G~1(s) is neither stable nor antistable, a Schur decomposition of the Hamiltonian

of the Riccati equation may be written down directly:

A; 0
_CTC; —AT

after computing a Schur decomposition of A; = USUH, with all right half plane eigenvalues

60 U
uz o

0 U
vd o0

—JSTJ —JUHCTCU
0 S

in the upper left block (J is the permutation matrix of the same size as A; with ones on the
Viin V2
Var Ve

one can reorder the 2n x 2n Schur matrix such that all right half plane eigenvalues are

antidiagonal and zeroes elsewhere). Using an orthogonal transformation V £ .

in the upper left block in maximally O(12np(n + p)) flops, including the flops needed for
reordering the Schur matrix S, where p is the number of nonminimum phase zeroes of

G(s). This compares favorably to the approximately O(200n%) flops normally needed for
a Schur decomposition of size 2n x 2n. Therefore

0 U I U4 Sy Suz

UuJg o Uuj o 0 S
where Sy (S-)is upper triangular with only RHP (resp. LHP) eigenvalues, The stabilizing
solution to the Riccati equation (1) is then X = UV, V71 JU¥,

Vin Vi
Var Vo

Viin. Vi
Var Voo

A; 0
-cfc; AT
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3 Model reduction procedure

1. Solve AP, + P,AT + BBT =0 for P,
2. Compute X = UVy V7' JU¥ as shown above.

3. Solve AT.Q, + QgAuwi + CTC; = 0 for Q,, where C; & —D-1C and Ay 2 A+ BC; +
XCFc,.

We use Safonov’s Schur method [SC88] to do the balanced truncation to a system of

order r:

4, Compute matrices V; and V,, whose r columns form bases for the right and left

eigenspaces of Py(); associated with the r biggest eigenvalues.
5. Compute a singular value decomposition U, 2. VT = VTV,

6. Defining L £ 5707V and T & ViV,55t, 4, 2 LAT, B, 2 LB, C, & CT, the
reduced order model is G,(s) a [Ar, B, C;, D).

There is of course also a dual input-side weighted equivalent, where @, is computed
from ATQ, + QA4 + CTC = 0, X from ATX + XA; + XB;BfX = 0, and P, from
AwiP, + Py AT; + B;BT = 0, where this time B; £ BD~! and A,; 2 A — B;C + BBl X.

A bound on the error has not been proved so far, but we formulate the following

Conjecture 1 If o} are the eigenvalues of P,Qq, with oy > 05 > ... 2> 0y 2> 0, and if the

number of nonminimum phase zeroes p is not greater than n — r, then

IG()™(G(s) = Go(sDlloo < 2 3> os(//TF 0% + )

{=r4l

4 Example
Take the following example :

428 4+ 627 + 225 — 625 + 420 — 523 — 422 — 12 -2
328 + 1527 + 3725 + 6525 + 7821 4+ 5928 + 2722 + 82+ 1

This system is stable and has 3 nonminimum phase zeroes. It is reduced to order r = 4

G(s) &

using both BST and our method. The magnitude Bode plots for the original system (full
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Figure 1: Full line : original system, dashed line : our method, dash-dotted line : BST .
(a) magnitude Bode plots (b) error magnitude

line), BST (dash-dotted line) and our method (dashed line) are given in Fig. 1(a). The
relative error magnitude vs. frequency is for BST (dash-dotted line) and our method
(dashed line) are given in Fig. 1(b).

Our conjectured bound yields [|G(s)~'(G(s) — Gr(8))lo < 4.15. The actual error is

IG(s) 1 (G(8)=G\(s))|leo = 2.17, whereas the error for BST is NG ()" (G(8)—Grsr(8))leo =
11.87.

References

[AM89] ANDERSON, B.D.O., and J.B. MOORE, 1989, Optimal Control - Linear
Quadratic Methods (Chapter 10). Prentice-Hall

[DP84] DESAI, U.B., and D. PAL, 1984, A transformation approach to stochastic model
reduction. IEEE Trans. Aut. Control, 29, pp. 1097-1100

[E84a] ENNS, D., 1984, Model reduction for control system design. Ph.D. dissertation,
Stanford University, Stanford, CA, USA

[E84b] ENNS, D., 1984, Model reduction with balanced realization: an error bound and &
frequency weighted generalization. Proc, 29rd Conf. Decision & Control, Las Vegas,
USA, pp.127-132




[G88] GREEN, M., 1988, A relative error bound for balanced stochastic truncation. JEEE
Trans. Aut. Conirol, 32, pp. 961-965

[J87] JONCKHEERE, E.A. 1987, On Stochastic Model Reduction. IEEE Trans. Aut. Con-
trol, 32, pp. 530-531

[M81] MOORE, B.C., 1981, Principal component analysis in linear systems: controllabil-
ity, observability, and model reduction. JEEE Trans. Aut. Control, 26, 17-31

[SC88] SAFONOV, M.G., and R.Y. CHIANG, 1988, Model reduction for robust control:
A Schur relative-error method. Int. J. Adaptive Control Signal Process., 2, pp. 259-272

[WS90] WANG, W., and M.G. SAFONOV, 1990, A tighter relative-error bound for bal-
anced stochastic truncation. Syst. & Control Lett., 14, pp. 307-317

[WS91] WANG, W., and M.G. SAFONOV, 1991, Relative-error bound for discrete bal-
anced stochastic truncation. Int. J. Control, 54, pp. 593-612

[ZZ1.93) ZHOU, K., Y. ZHENG, and T. LU, 1993, Stability and error bounds for discrete
time frequency weighted balanced truncation. Proc. 82nd Conf. Decision & Control,

San Antonio, Texas, 2927-2928




