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Abstract: The relationships between linear least squares (equation error), total linear least
squares (errors-in-variables) and the Frisch scheme are well understood for the static case.
For the dynamic case, much work has been done to explore similar relationships. What
seemed to be lacking so far is the solution to the so-called dynamic total least squares
problem, which itself is a special case of a structured total least squares problem. In this
paper, we present a survey of some recent results for this dynamic total least squares problem
(which in fact corresponds to the L;-optimal modelling of linear SISO systems). We discuss
the most relevant properties and make some suggestions on how these results might be useful
in the context of the Frisch scheme.
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1. INTRODUCTION ?

For the static case, the relationships between least
squares (equation-error in the L norm), total
least squares (errors-in-variables in the L; norm)
[14] and the Frisch scheme are well understood
by now (see e.g. [5] [6] [7]). The least squares
solutions play a fundamental role in the construc-
tion of the solution set of the Frisch scheme, at
least in the case where the inverse of the data co-
variance matrix is sign-similar to an elementwise
positive matrix [15] [16] [17]. In this case, the
solution of the Frisch scheme in the so-called so-
lution space (the null space of the data covariance
matrix) can be represented as a polyhedral cone,
the vertices of which are the least squares solu-
tions. By appropriate sign changes, these can all
be ’reflected’ to lie in the positive orthant (we re-
fer to [10] for details). In this case, the total least
squares solution is a convex combination (a linear
combination with positive weights) of the least
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squares solutions. It corresponds to the Perron-
Frobenius eigenvector of the inverse data covari-
ance matrix and is contained in the polyhedral
cone of the least squares solutions [7]. Other re-
lations between the least squares and total least
squares solutions are explored in [7]. In the case
where the inverse of the data covariance matrix
is not sign-similar to an elementwise positive ma-
trix, the geometry of the solution set is much more
involved, as demonstrated in [2).

In the dynamic case, when the model is taken
to be a SISO linear time-invariant system, the re-
lationships between least squares methods (e.g.
equation error in the L; norm) and linear dy-
namic errors-in-variables models (as e.g. explored
in [1] [3]) are far less understood.

As a matter of fact, up to recently, there was
no known solution to the so-called dynamic to-
tal least squares problem, which is the following
(formulated and solved here for SISO systems):

Let wy € R4k =0,...,N be a given vector se-
quence of data where the scalar sequences u; and

y are defined as 3 w; = ( :: ) Find approxi-

30ne could consider the first component of w; to be
an input sequence u; and the second component to be an
output sequence yj or the other way around.




mations vy of the uy, and z; of the y;, such that
vy and z; are related by a linear model of given
order n with real coefficients:

n n
Ea;zk_;+2ﬂwk_; =0,k=n,...,.N, (1)
=0 i=0

and v; and z; minimize

N
J= 2[(1/; —z)he + (we —w)’qe], (2
k=0

where gx and hx, k= 0,..., N are given positive
weights, subject to

n n

Sal+d pi=1. 3)

§=0 i=0

It is assumed that N > 3n+1 to make constraint
(1) meaningful.

The minimization problem (2) with constraints
(1) and (3) will be called the dynamic total linear
least squares problem.

Let us observe that all the observations are
treated ’symmetrically’ in the sense that not only
the outputs are modified, as is the case in equa-
tion error methods, but that also the inputs are
modified. The weights g; and h; are god-given or
specified by the user. In the case that g = by =
1,Vk, the formulation corresponds to the statis-
tical errors-in-variables problem, which is max-
imum likelihood when the input-output data of
an unknown linear system are corrupted by addi-
tive white Gaussian noise and one wants to find
from the observations the difference equation that
models the system.

It is the purpose of this paper to present the so-
lution to the dynamic total linear least squares
problem and some of its properties. We hope that
this contribution will clarify some of the relations
in the ferra incognita between least squares, to-
tal least squares and the Frisch scheme (errors-in-
variables) for dynamic systems. We will not give
proofs in this paper. But details can be found in
[10] [11] [12].

This paper is organized as follows: In Section
2, we briefly recall the static total linear least
squares problem and its solution via the singular
value decomposition (SVD). We then show how
the dynamic total least squares problem is a spe-
cial case of a structured total least squares prob-
lem, and hence its solution can be obtained via
a so-called Riemannian singular value decompo-
sition (which is one of the major results of [10]).
In Section 3, it is shown how the given data se-
quence can be decomposed into two sequences,
the Lj-approximations and the residuals, which
are orthogonal to each other (in diagonal inner
products derived from given weights). In Section

4, it is shown how certain block Hankel matri-
ces W; constructed from the weighted residuals
are always non-singular and hence, the residuals
themselves can be considered as being generated
by a linear system. In Section 5, we discuss how
one can find completions W}“‘“ of the block Han-
kel mﬂricesﬁ with the Lz-approximations, such
that Wrem WT = 0.

We will use the notations

| w - _
wk—(yk) )wk—(zk))

mh=((“k—"h)gk) ’

(ve — zx) hs
for the given data, the optimal approximations
and the weighted residuals respectively. By W
we denote the 2i x (N + i) block Hankel matrix
constructed from the sequence wy:

and

] 0 0 1wy U
R 0o o 0 W WY
W; = ven
0 1o Wy_:1 Wy O 0
Wy Un Uy [s] 0 0
UN-1 ON
N 0
“es (4)
1 0
1] 0

Here, i is a user-defined integer which is assumed
to be larger than n (the order in the difference
equation (1)). The block Hankel matrix W; is
constructed similarly from the weighted residuals
. Note that the first block row has i1 leading
zero vectors. We’ll also use the data sequences
w, & and B, all of which are in R(V+1*2 where

wT=(w0w1 ...H)N.-le)a

and % and o are constructed similarly. The se-
quences u,y,v and 2, all in RV+1), are defined
as:

uT = (uouy ...unN-1UN),
¥ = (You - .UN-1UN),
vIT = (vov1 ...uN-1VN),
T = (2021 ...2n~12N) -

The vectors a and & contain the coefficients o;
and B; of the linear model. The transfer function
associated to the difference equation (1) will be
denoted by b(z)/a(2).

2. SOLUTION VIA A RIEMANNIAN
SVvD

The static total least squares problem for a given
data matrix A € RP*¢ can be formulated as
By=0,

min ||A — B|| subject to
min 14 - B|| subject to z* =0




The two constraints ensure the rank deficiency of
the approximating matrix B. As is well known,
the solution can be calculated via the ’smallest’
singular triplet of A (see [14], [21]), i.e. the triplet
(u,0,v) corresponding to the smallest singular
value o, which satisfies

Av = 1o, v u=
ATu=vo, wo=1. (5)
For ¢ the smallest singular value of A, the matrix
B is given by a rank one update of A as

B=A-uov .

It turns out (see [10] [11] [13]) that the solution of
the dynamic total least squares problem is given
by the following Theorem:

Theorem 1

The vectors a and b that contain the coefficients
of the difference equation (1) which is the solution
of the dynamic total least squares problem, follow
from the ’smallest’ singular triplet of a generalized
(’nonlinear’) singular value decomposition of the

form
v 0)(3) = @e+Dpur,

(}[;:)u = D.,(g)r,

in whichY and U are Hankel matrices of dimen-
sion (N —n+1) x (n+1) that are built up with
the output and input data; Dy, Dy and Dy are
positive definite matrices, the elements of which
are certain quadratic functions of the components

of a, b resp.u. The vectors u and (@7 b )T are
normalized such that

uT(Dz+ Dy)u=1 and (& 57)D, ( g ) =1.

The minimum value of the object function (2) is
given by the smallest singular value 7. The vec-
tors a and b from the difference equation (1) can
be obtained from a simple scaling of @ and b so0
that they satisfy (3). The data sequences z and v
can be obtained from the smallest singular triplet
and the original data (see [8] for detailed formu-
las).

Due to space limitations, we can not provide the
full details here (for which we refer to [10] [11] [12]
[13]). But let us make the following remarks:

- First note the ressemblance between the SVD
for the static case in (5) and the ’general-
ized’ SVD in Theorem 1. Both are in terms
of the given data (A in the static case and
the matrix (Y U) in the dynamic case).

As a matter of fact, the SVD of Theorem
1 would be a well-known generalized SVD
(the restricted SVD, see [9]) in case that
Dy, Dy and Dy would be constant matrices.
Because of the fact that, on the one hand
these matrices are not constant as they are a
function of the singular vectors to be found,
and because they are always positive defi-
nite, we propose to call the generalized SVD
of Theorem 1 a Riemannian singular value
decomposition (see [13]).

- In [10] we demonstrate that the dynamic total
least squares problem is a special case of the
more general structured total least squares
problem (STLS), which can be solved via
a Riemannian SVD. The main conclusion
of Theorem 1 is that the transfer func-
tion b(z)/a(2), associated with the optimal
model (1) that solves the dynamic total
least squares problem, can be obtained from
a Riemannian SVD.

- The intermediate steps in the proof of this re-
sult [10], which is obtained via the technique
of Lagrange multipliers, are instrumental
in the derivation of the properties of the
dynamic total least squares solution to be
stated below. To mention just one property:
The difference of the Hankel matrices Z and
V, which contain the modified’ output and
input data of equation (1), and the Hankel
matrices Y and Y is a multilinear function
of the singular triplet (u,,(@” % )T) Re-
call that in the static case this is similar as
the difference A — B is a rank one matrix.
In the dynamic case, the rank is however
larger than one.

- A heuristic algorithm which is inspired by the
method of inverse iteration is described in
[10] [11] (which also contains much more
details about the derivation and other ad-
ditional properties). In [13] we will be de-
scribing a continuous time method (a gra-
dient flow) which employs some ideas from
differential geometry.

We will now turn to the enumeration of some of
the properties that are satisfied by a solution to
the dynamic total least squares problem.

3. ORTHOGONALITY OF % AND %

When in optimization problems, a criterion to be
optimized is a sum of squares, orthogonality is
never far away. For instance, for the static total
least squares problem, there is a property of or-
thogonality of the residuals and the data in the
approximation matrix B, as the column and row
spaces of both matrices are perpendicular:

(A-B)BT =0 and (A-B)TB=0.




veC\A — D) Ve o) =V,

(The operator vec(.) stores the columns of the ma-
trix between brackets in a long column vector).
A similar orthogonality property holds true for
the dynamic total least squares problem, for
which one can prove:

Theorem 2
N v
w'w=0 or (ZT)(G(“—”) H(y—-2))=0,

where G and H are diagonal matrices with the
weights g and h;.

This property can be exploited in the derivation
of algorithms for a closely related problem (within
Willem’s ’behavior’ context [18] [19]).

4. RANK DEFICIENCY OF THE
RESIDUAL MATRIX

Let ¢ be a given integer for which it is assumed
that { > n where n is the order in the differ-
ence equation (1). Consider the weighted residual
matrix ﬁ". € R@*(N+9) constructed from the se-
quence Wy as in (4). Then one can show:

Theorem 3
If rank[a 8] = 2, then:

rank(W;) =n+i,Vi>n.

The fact that rank[a b] = 2 is quite natural since
it implies that the transfer function of the system
is not just a constant.

This Theorem has some farreaching consequences.
It is well known that, when the rank of a block
Hankel matrix behaves as in the Theorem for in-
creasing i, the data in the matrix (which in this
case are the column vectors of the sequence @
padded with the appropriate number of zeros) are
generated by a linear system of order n [8]. Hence,
Theorem 3 really means that the vector sequence
% with the weighted residuals (and padded with
zeros) is generated by a linear time invariant sys-
tem. As a matter of fact, we can prove that this
system is described as follows:

Corollary 1
The linear system that generates the weighted
residuals W is given by

arev ( Z)

_brev(z) ¢

ol the coemcients.

From Theorem 2 and 3 we can now give the fol-
lowing interesting interpretation to the solution
of the dynamic total linear least squares problem
(where for simplicity we assume that the weights
gx and h; are all 1): The given data w; (which can
be ’arbitrary’) are split into two sequence ty and
i, which are not only orthogonal to one another
(Theorem 2) but which are also generated by two
linear systems: The transfer function b(z)/a(z)
for W can be obtained from a Riemannian SVD
as in Theorem 1, while that for @ is then given
by —a*v(2)/b"V(2).

One might wonder about the fact that the se-
quence of weighted residuals is highly structured,
in the sense that it can be modelled by a linear
system. However, compared to the static case
this is not really surprising: There, the matrix
of residuals A — B € RP*{ is a rank one matrix,
hence can be ‘modelled’ with ¢—1 linear relations.
So also in the static case the matrix with residuals
is highly structured. In the dynamic case however
it is surprising that the residuals themselves also
behave as a linear system.

5. ORTHOGONALITY OF THE
WEIGHTED RESIDUAL MATRIX AND
THE COMPLETED MATRIX WITH
APPROXIMATIONS

Let i be a given integer satisfying ¢ > n. Let
Weom g R¥*(N+) be a block Hankel matrix con-
structed from an extended sequence

~

(!bcom)T = ( W_i41 Wiz ... oy thy ... 0N
WN41 - DNGi-1) s

in which we call (¥-¢41,. .., h-1) & past extension
and (WN41,. .., WN4i-1) & future extension.

Theorem 4

There ezists a unique exztension (W_n,...,W-1)
in the past and an ertension (ON41,...,WN4n)
in the future such that

WemWwE =0, Vi>n. (6)

This characterization of orthogonality of the opti-
mal solution is quite remarkable. As a special case
it implies the orthogonality of Theorem 2. But
Theorem 4 says that in addition certain sums of
products of vectors of 19°°™ and % (which, because

of the block Hankel structure of A¢°°m and W, are
finite discrete convolutions) are zero. Hence this

corresponds to a certain ’dynamic’ orthogonality.




The required extensions of the past and the fu-
ture can be obtained from a recursion, which is
completely characterized by the following

Corollary 2

rank’Vl7,-°°m=n+a',i>n.

Hence, the extensions can be calculated from the
difference equation (1) once the solution to the
dynamic total least squares problem has been ob-
tained from the Riemannian SVD in Theorem 1.

6. CONCLUSIONS

We have presented the L;-optimal solution to the
so-called dynamic total least squares problem for
SISO systems. There are nice properties that
characterize the optimal solution such as a ’dy-
namic’ orthogonality of the approximating data
and the residuals and the fact that also the resid-
uals are highly structured as they are generated
by a linear system.

Much work remains to be done to find the rela-
tions between the existing identification methods
for linear dynamic systems in which all observa-
tions are assumed to have been corrupted by ad-
ditive noise. It remains to be investigated how
this particular solution to the dynamic errors-in-
variables problem fits into ’Frisch-like’ descrip-
tions of the solution sets.
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