
Pergamon 00051098(95)00071-2 

Aummokz. Vol. 31, No. 12, pp. 1877-1883. 1995 
Copyright 0 1995 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
WOS-1098195 $9.50 + 0.00 

Choice of State-space Basis in Combined Deterministic- 
Stochastic Subspace Identification* 

PETER VAN OVERSCHEE? and BART DE MOORt 

Choice of basis in subspace identijication. 

Key Words-System identification; subspace methods; model reduction; state-space models: 
multivariable systems; state-space methods; linear algebra. 

Abstract-This paper describes how the state-space basis of 
models identified with subspace identification algorithms can 
be determined. It is shown that this basis is determined by 
the input spectrum and by user-defined input and output 
weightings. Through the connections between subspace 
identification and frequency-weighted balancing, the state- 
space basis of the subspace-identified models is shown to 
coincide with a frequency-weighted balanced basis. 

1. INTRODUCTION 

The identification problem considered in the 
combined deterministic-stochastic subspace id- 
entification papers by Larimore (1990) Van 
Overschee and De Moor (1994), Verhaegen 
(1994) and Viberg et al. (1993) is the following: 
let uk E [w”, yk E l@ be the observed input and 
output generated by the unknown system 

x k+,=AXI,+BUk+Wk yk=cXk+DUk+t&, 

(1) 

with 

E[(;)(w:- d-,] = (s ;s)sk180? (2) 

and A, Q E Iw”““, B E Iwnx”, C E IWlxn, D E 
lW’xm, S E [Wnx’ and R E [w’x’ (here E denotes the 
expected-value operator and &[ the Kronecker 
delta). uk E [w’ and wk E [w” are unobserved, 
zero-mean, white noise vector sequences. {A, C} 

and {A, [B Q”7> are assumed to be observable 
and controllable respectively. The main iden- 
tification problem is then stated as follows. 
Given N input-output measurements generated 
by the system (l), (2), find A, B, C, D, Q, R 
and S up to a similarity transformation. Several 
solutions of this problem have been described 
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by Larimore (1990), Van Overschee and De 
Moor (1994), Verhaegen (1994) and Viberg et 
al. (1993). Although the solutions look very 
different at first sight, it was shown by Van 
Overschee and De Moor (1995) that these 
algorithms use the same basic subspace, but 
weighted in a different way. In this paper the 
effect of these weights will be further explored. 

It will be shown that the state-space basis of 
the identified model corresponds to an input- 
output frequency-weighted balanced basis as 
described by Enns (1984). The weights in 
the frequency domain are a function of the input 
(uk) applied to the system and of the weighting 
matrices W, and W, introduced by Van 
Overschee and De Moor (1995). The main 
theorem introduces specific choices for these 
weighting matrices, such that the system is 
identified in a predefined state space basis. As a 
special case, we will investigate the state-space 
basis of the N4SID algorithm of Van Overschee 
and De Moor (1994). 

A nice side result is the lower-order 
identification problem. Since the basis in which 
the state-space matrices are identified is well 
defined and is frequency-weighted balanced, it is 
very easy to truncate the model after identifi- 
cation to a lower-order model. This corresponds 
exactly to the technique of frequency-weighted 
model reduction of Enns (1984). 

The paper is organized as follows. In Section 2 
we introduce some notation and background. 
Section 3 briefly introduces the concepts of 
frequency-weighted balancing. In Section 4 the 
main theorem is presented. Section 5 addresses 
the problem of reduced-order identification. 
Finally, Section 6 contains the conclusions. 

2. NOTATION AND BACKGROUND 

In this section we introduce the notation used 
throughout the paper: input and output block 
Hankel matrices, system related matrices and 
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weighting matrices. We also briefly revise some 
results on subspace identification. 

Throughout this paper, we shall consider the 
model (l), (2) in its forward innovations form as 
(Pal, 1982) 

Xk+l = & + BUk + &?k, yk = ‘hk + hk + Fek, 

E[ekeTl = ISklt (3) 

with E E IWnx', F E [w'x', and the innovations 
ek E R’ uncorrelated with uk_ The transformation 
from the system (l), (2) to this innovations 
model can be done through the solution of a 
Riccati equation (Pal, 1982). The steady-state 
Kalman gain is given by K = EF-' E IWnx'. 
Subspace identification algorithms make exten- 
sive use of input and output block Hankel 
matrices. We define 

\ 

. . 

Ui-1 Ui *a* . I ui+j--2 

/ 4 Ui+] **m Ui+i- 1 
\ 

uf dgf "i-+1 "i-+2 . . . 1: : ui+j . 

: I . 
\U*i-1 u2i . . . u2i+j-_2/ 

Somewhat loosely, we denote U,, as the past 
inputs and Uf as the future inputs. Through a 
similar definition, Yp and Yf are defined as the 
past and future outputs respectively, and E, and 
Ef as the past and future innovations respec- 
tively. We assume that Z-, CC throughout the 
paper, and that all sequences are ergodic. The 
time-averaging operator Ej is defined as: 

The covariance matrix of the past inputs R, 
will 

1: 
lay an important role in several derivations: 

RpE Ej[UpU;fl dzf L, ' L;f, where L, is a lower- 
triangular square root of R, obtained, for 
example, via a Cholesky decomposition of R,. 
The extended (i > n) observability matrix Ti is 
defined as 

ri~f(CT (CA)= , . . (CAi-')T)T. 

The extended (i > n) reversed deterministic A: 
and stochastic AT controllability matrices are 
defined as 

Afgf(Ai-‘B ._. AB B), 

A;%f(Ai-i . . _ AE E). 

Furthermore, we define the block Toeplitz 
matrices containing the Markov parameters of 
the deterministic and the stochastic system as 

The (non-steady-state) Kalman filter state 
sequence Wi is defined as in Van Overschee and 
De Moor (1994): 

~j~f(~i ~i+l _fi+2 . . . Zi+j_j). 

Each of its columns is the output of a 
non-steady-state Kalman filter (for more details, 
see Van Overschee and De Moor, 1994, 1995). 
The 3 transforms (initial state equal to zero) of 
uk and yk are denoted by u(z) and Y(z) 
respectively, while the spectral factor of ek is 
denoted by E(z). From (3), we then find 
Y(z) = G(z)U(z) +H(z)E(z), with G(z)=D + 
C(zZ-A)-'B and H(z)=F+ C(zZ-A)-'E. 
The spectral factor of uk is denoted by 
S,(z): U(z)UT(z-')=S,(z)S~(z-'), with all 
poles of &(z) and S;‘(z) inside the unit circle. 
We define the input and output weighting 
matrix functions as 

W,(z)gfDu + C,(zZ -A,)-%,, 

IQ(z)~~ZI~ + C,(zZ - AJ'B,. 

From the Markov parameters of these functions, 
the weighting matrices W:l and WY can be 
formed: 

0 
. I . 7 

\ C,,A;,-2B,, C,,A:,-3B,, . . . D,, 'I 

IIA denotes the operator that projects the row 
space of a matrix onto the row space of A (which 
is assumed to be of full row rank): ITA dgf 
AT(AAT)-'A. The projection of the row space of 
B onto the row space of A is defined as 
B/AgfB. 111, = BAT(AAT)-'A. The orthogonal 
complement of the row space of A is denoted by 
Al. 
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The unifying theorem of Van Overschee and 
De Moor (1995) describes how the extended 
observability matrix Ti and the states xi can be 
recovered directly from the input-output data uk 
and yk. The theorem introduces two weighting 
matrices W, E lRfix’i and W, E lRjx’ that will play 
an important role in this paper. The main results 
of the theorem (Van Overschee and De Moor, 
1995) are that the system order it and the 
matrices Ti and zi can be determined from an 
infinite number of input-output data through the 
non-zero singular values and the left and right 
singular vectors of the matrix: 

which has a singular-value decomposition given 

by 

u, . s, - VT. (4) 

Fi and xi then follow from 

w, * ri = u,sy, wj * w, = syv;. (5) 

We refer to Van Overschee and De Moor 
(1995) for more details. It is known from linear 
systems theory that Ti and Xi are only 
determined up to within a non-singular similarity 
transformation T E Rnxn: Ti triT and zj t 
T-‘zi. This implies that the following question 
makes sense: In which state space basis are Ti and 
_%fj determined when a subspace method is used to 
estimate them? In what follows, we shall show 
that this basis is a function of the weights W, and 
W,, and that, by a proper choice of these 
weights, the basis can be altered in a 
user-controlled manner. Furthermore, it will be 
shown that the singular values S,, (4) used to 
determine the system order have a clear 
interpretation from a linear system theoretical 
point of view. 

3. FREQUENCY-WEIGHTED BALANCING 

In this section we recapitulate the results of 
Enns (1984) for frequency-weighted balancing. 
We also show how the frequency-weighted 
Gramians introduced by Enns can be calculated 
from the extended observability and con- 
trollability matrices and from the weighting 
matrices. The notion of ‘balanced realization’ is 
well known in system theory (Moore, 1981). 
Enns has developed a frequency-weighted 
extension of this result. The idea is that input 
and output frequency weights can be introduced 
as to emphasize certain frequency bands in the 
balancing procedure (Fig. 1). Instead of using 
the regular controllability and observability 
Gramians, Enns uses frequency-weighted 
Gramians. 

Definition 1. Frequency-weighted Gramians. The 
solution P,, of the Lyapunov equation 

+(T xy 
is called the W:,(z) 
Gramian, and is denoted 

(6) 

weighted observability 
by P[WL,(z)]efP,,. The 

solution Q,, of the Lyapunov equation 

+ (DyC CJT(D,C C,J= (,“a “,;I) (7) 

is called the W,(z) weighted observability 
Gramian, and is denoted by Q[WY(z)]efQ,,. 
Just as for the classical balancing procedure, a 
similarity transformation can be found that 
makes both Gramians diagonal and equal to 
each other. In that case the system is said to be 
frequency-weighted balanced. 

Definition 2. Frequency-weighted balancing. The 
system (3) is called [W*(z), WY(z)] frequency- 
weighted balanced when P[&(z)] = Q[W,(z)] = 
C, where C = diag [a,, (TV, . . . , a,]. The diagonal 

ek n 

w,(4 . 

uk 
- Wuk) - * ‘3%) 

Fig. 1. Cascade system used for the interpretation of fequency-weighted balancing. The weights W,,(z) and WY(z) are 
user-defined. Note that the noise input (the input to H(z)) has no extra weight, since, from an input-output view, this weight is 

indistinguishable from H(z). 
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elements ffk are called the frequency-weighted 
Hankel singular values and will be denoted by 

gk[w,,(z), wy(z)]* 

Even though (6) and (7) are easily solvable for 
P[K(z)] and Q[W,(z)], we present a different 
way to compute these weighted Gramians. These 
expressions will enable us to make the 
connection between subspace identification and 
frequency weighted balancing. 

Lemma 1. With A asymptotically stable, we 
have 

P[W,,(z)] = lim [A: . WY . (WY)’ . (Af)T + A3 . (A:)‘], 
i-r 

(8) 

Q[W,(z)] = lim [r: - (Wj’)’ * (Wj’) * r,]. (9) 
id= 

A proof can be found in the Appendix. 

4. SUBSPACE IDENTIFICATION AND FREQUENCY- 
WEIGHTED BALANCING 

In this section we consider the connection 
between frequency-weighted balancing and sub- 
space identification. We show how the weights 
W, and W, influence the Gramians P[Wu(z)] and 
Q[W,(z)] corresponding to the state-space basis 
of Ti and z;. 

4.1. Main result 

Theorem 1. Main theorem. With A asympto- 
tically stable and i+ ~0 (note that first j+ CC 
through the operator Ej, after which i+ w), we 
have, with 

W, = W;, W, = U;fR,‘W:L,‘U, + II,+ (10) 
that the wL(z) weighted controllability Gramian 
and W,(z) weighted observability Gramian of 
the state-space basis corresponding to Ti and x’, 
are given by (with S, from (4)) 

fvK(z)l = Sl = erwyw1. (11) 
The proof can be found in the Appendix. The 
theorem implies that the state-space basis of Ti 
and 2; for the choice of W, and W, given by (10) 
is the [K,(z), W,(z)] frequency-weighted bal- 
anced basis. It also implies that the singular 
values S, are the [W,,(z), W,(z)] frequency- 
weighted Hankel singular values. 

4.2. Special cases 
Even though the weighting matrices Wiy and 

WY can be chosen arbitrarily, there are some 
special cases that lead to algorithms published in 
the literature. 

N4SZD. This stands for ‘numerical algorithms 
for subspace state-space system identification’ 
(Viberg et al. 1993; Van Overschee and De 
Moor, 1994). With the results of Van Overschee 
and De Moor (1995), it is easy to show that 

N4SID delivers the following choice of weighting 
matrices in Theorem 1: WY = L, and WY = I. 

It is easy to verify that (for i+ a) the 
lower-triangular matrix L, corresponds to the 
Toeplitz matrix generated by the Markov 
parameters of the spectral factor &(z) of uk. 
This implies that (for N4SID) the input weight 
Wu(z) in the frequency-weighted balancing 
procedure corresponds to the special factor 

S,(z). 

Balanced realization. With the weighting mat- 
rices WY = I and Wj’ = Z, we find P[Z(z)] = S, = 
Q[Z(z)]. Now it is easy to verify that P[Z(z)] and 
Q[Z(z)] are equal to the unweighted con- 
trollability respectively observability Gramian. 
This implies that the basis of Ti and zi is the 
classical balanced basis as described by Moore 
(1981). A similar result for pure deterministic 
systems was obtained by Moonen and Ramos 
(1992). 

5. CONSEQUENCES FOR REDUCED-ORDER 
IDENTIFICATION 

In this section we apply the results of the main 
theorem to the identification of lower-order 
systems. The connections with frequency- 
weighted model reduction are exploited. 

As has been proved in this paper, subspace 
identification of a model of order n (the exact 
state-space order) leads to a state-space system 
that is [Wu(z), W,(z)] frequency-weighted bal- 
anced. This nth-order model can then be easily 
reduced to a model of lower order r by 
truncating it as follows: 

r n-r m 

1 

r n-r El 

c = ICC, G), 

EJ 

( 1 n-r E2. 
The reduced-order model is described by the 
matrices A,, , B,, C,, D, El and F. The reduced 
transfer functions are denoted by G(z) = D + 

C,(zZ -A,,)-% and Z?(z) = F + C,(zZ - 
A,,)-’ El. Enns (1984) made the following 
conjecture: when truncating a [w,(z), W,(z)] 
frequency-weighted system, the infinity norm of 
the difference between the original and the 
reduced system can be upper-bounded by the 
neglected weighted Hankel singular values. In 
the framework of this paper (see also Fig. l), this 
conjecture becomes 

IIW,(z)]G(z) - ~k)lK~(4 1 W,kWW 

- A(z)]llS2 i ak[wLt(z), wy(dl(l + a)~ 
k=r+l 

a >o. (12) 
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The conjecture consists of the fact that (Y is 
‘small’. Let us ponder a bit about this conjecture. 
We have tried to find a simple expression for cr, 
but (just like Enns) did not succeed (as far as we 
know, no one else has either, even though the 
problem has been open since 1984). Even 
though the result is ambiguous (a has never 
been proved to be bounded, let alone to be 
small), the ‘heuristic’ model reduction technique 
seems to work very well in practice (Anderson 
and Moore, 1989; Wortelboer and Bosgra, 1992). 
It turns out that, even though it is not a real 
upper bound, twice the sum of the neglected 
singular values (a = 0) gives a good indication 
about the size of the error. More importantly, 
(12) states that the fit of the truncated 
lower-order model will be good where WU(z) and 
W,(z) are large. This implies that by a proper 
choice of Wu(z) and W,(z) the distribution of the 
error in the frequency domain can be shaped. 
We find for the special cases the following. 

For N4SID, 

II]G(z) - ~‘(4l&i(z) 1 [H(z) - ~(z)lllr 

k=r+l 

For a balanced basis, 

We can conclude that the error of the model will 
be small where the frequency content of the 
input is large. This is a very intuitive result: a lot 
of input energy in a certain frequency band leads 
to an accurate model in that band. Note also that 
the error on the noise model can not be shaped 
by the user. 

II[G(z)-e‘(Z)] 1 [H(Z)-fi(Z)]1132 i ak. 

k=r+l 

Note that in this case setting a = 0 is justified, 
since for (unweighted) balanced model reduction 
twice the sum of the Hankel singular values is 
actually a proved upper bound for the truncation 
error (see Al-Saggaf and Franklin, 1987). 

6. CONCLUSIONS 

We have shown that the state-space basis of 
the subpsace-identified models corresponds to a 
frequency-weighted balanced basis. The fre- 
quency weights are determined by the input 
spectrum and by user-defined input and output 
weighting functions. 
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APPENDIX-PROOFS 

Proof of Lemma 1 
We first prove (8). We consider the different 

sub-blocks of the weighted controllability Lyap- 
unov equation (6): 

P,, =AP,,A=+ EE=+AP;,C:B=+ BC,,P2,AT 

+ B(CuP,,C;r + &D:)B=, (A.1) 

PZI = AuPnAT + (A&C: + BuD;f)B=, (A.2) 

62 = AJ%A: + BuB;r. 63) 

We first prove that, with A: = (A:,-‘B,, . . . 

A,,B,, B,,), we have 

Pz2 = lim [Af . (A:!)‘], 
i--t= 

P2, = lim [A: . (WY)’ * (A!)‘]. 
i--r= 

(A-4) 

(A.% 

Proof of (A.4). 

= AJAy_, . (A;-,)=]A: + B, . B;f. (A.6) 

For stable A,, (lim;,, Ai6-’ = 0), we also have 



1882 P. Van Overschee and B. De Moor 

lim [A:. (A:)=] 
i+m 

= A * lim [A:-, - WY__, . (W;_,)’ . (A:_,)’ 
i-cc 

= lim [A:-, - (A;_,)= + A’;‘B,B~(A~e,)T] 
i-w - , 2 

+O +O 

= lim [A:-, + (A:-,)‘]. (-4.7) 
i+m 

Taking the limit as i+ UJ on both sides of (A.6), 
we find with (A.7) that lim,,, [(AY(Ar)T] is the 
solution of the same Lyapunov equation (A.3) as 
Pz2, and thus prove (A.4). 0 

Proof of (AS). 

A: . (WY)= . (A”)’ 

(W;_,)‘l (A:_,)‘C: 
=&A:-, I&)( o 1 DT 

u 
) 

x ((&‘-,):a’) 

= A, . [A:-,(WF-,)’ * (A:_,)=] * AT 

+ {AJAy_, . (A:_,)=]C: + B,D2BT. (A.8) 

For stable A, and A, we have 

lim [A: * (WY)’ * (A”)‘] 
i--rP 

= ;iir [A:_, . (IV;-,)‘. (A:-,)=]. 

Taking the limit as i+ ~0 on both sides of 
(A.8), we thus find, with (A.4), that 

lim [A: * (WY)’ . (A:)‘] 
i+x 

= A,, * lim [A: * (W~)T * (A”)‘] - AT 
i+r 

+ PLP,,C~ + B,D:)B=, 

which proves that lim,,, [A: - (W~f)’ * (A:)‘] is 
the solution of the same equation as Pz,, (A.2), 
and thus proves (AS). 0 

Proof of (8). 

lim [A! * WY. (WY)= * (A!)= + A; * (A:)‘] 
i-cc 

+ A;_, * (A:_,)=]A= + EE= 

+ A * lim [A:-, . WY-, . (Ay_,)‘]CzBT 
i-r 

+ BC, . lim [A:_, * (WY-,)’ * (Ay_,)T]AT 
i-cc 

+ B C, . lim [A:-, * (A:-,)‘]CT + D,D;f 
t 

BT 
i-+30 

= A * lim [A:_, . I%‘~_, * (We-,)’ . (A:-,)= 
i&+x 

+ A;_, . (A:_,)=]A= + EET 

+ AP;,C:BT + BC,,P,,A= 

+ B(CuP& + D,D;)B=. (A.9) 

Through similar reasoning as before, it is easy to 
prove that, with A and A, stable, 

lim [A: * WY * (WY)‘. (A!)= + A;. (A;)‘] 
i-x 

= lim [A:-, . WF-, . (WY-,)’ * (Ay-,)T 
i-cc 

+ A;_, . (At-,)‘], 

which proves with (A.9) that 

lim [A” * WY * (WY)= . (A”)’ + Ai - (As)=] 
i+s 

is the solution of the same equation as P,, , 
(A.l), and thus proves (8). The proof of (9) is 
analogous to the proof of (8). cl 

Proof of Theorem 1 
From Van Overschee and De Moor (1994) we 

have 

8, = ((A’ - Q;l?,)S(R-‘), em; + A! - QiHf 1 Qi) 

(A.lO) 

For the meaning of the symbols, we refer to 
Van Overschee and De Moor (1994). The only 
properties we use here are (from Van 
Overschee and De Moor (1994), for stable A) 

lim (A’ - Qiri) = 0 lim (QJ;) = 0, 
i-z i-z 

lim [QiHj * (Hf)‘QT] = heir [A: * (As)=]. 
(A.11) 

i-r 
Using Yp = Fix, + HfU, + H;E,, where X, are 
the past states of the forward innovation model 
(3) (see Van 0 verschee and De Moor, 1994), we 
can rewrite (A.lO) as 

with 

X; = 1!4; + A$J, + QiHfEp, (A.12) 

Mi ef (A’ - Qiri)S(R-‘),~,Jlp + QiriXp 
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Since the input uk and the noise ek are 
uncorrelated, we also know that (see Van 
Overschee and De moor, 1994) 

Ej[L'p . Wz * WT * E;fl = 0, 

Ej[M; * Wz. WT. Ez] = 0, 

Equation (A.12) combined with the expression 
for W, in (10) leads to 

= Ej[(M; + AfUr + QiH;E,) . Wz 9 WT 

X (M; + ApUp + QiHIE,)‘] 

+ QiHIEj[E,. W,. WT. E;fl(H))‘QP 

+ Ej[(Mi + APUP). Wz * WT * E$](Hf)TQT 
, , 

=O. (A.13) 

+ Q;HyEj[Ep . Wz * WT * (Mi + AyUp)T] 
\ , 

=O.(A.l3) 

, c I 

= R, = R, 

X L,T(Wr)TRi’Ej[UpU;f](AP)T 
\ , 

= R, 

+ Q;H;Ej[E, . W, . W: . E;fl(H;)=QT + Cj 
\ I 

= 1. (A.13) 

= A~Wy(W:!)‘(A~)’ + Q;H:(H:)‘QT + C;. 

(A.14) 

Using (A.11) it is easy to show that limi,, Ci = 
0. Taking the limit as i+ m on both sides of 
(A.14) thus gives (using A.ll)) 

lim Ej[gi . W, * Wz * _j?T] 
i-+x 

= lim [AfWy(W:‘)T(Ay)T + A:(Az)‘]. (A.15) 
i-+=c 

On the other hand, we know from (5) that 

lim Ej[B, . W, . WF * XT] = lim (.S]‘*VfV,S]‘*) 
i-X i-+x 

= s,. (A.16) 

Finally, from (A.15) and (A.16) we find 

lim [A” . Wi! . (WY)’ . (A:)= + As . (As)=] = Sr . 
i*= 

From Lemma 1, we know that the left-hand side 
of this expression is equal to P[W,,(z)]. This 
leads to P[W,(z)] = S, which is exactly the first 
part of (11). 

From (5), we know that rTWTW,ri = 
s:“u~u,s:” = s,. Combining this with 
Lemma 1, (9) and with W, = WY, (lo), we find 

Q[W,(r)] = lim [I?:. (WY)’ * Wj’ * I’,] 
i--*s 

= lim (rTw:w,rj) = S,, i--r= 
which is the second part of (11). 


