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A Note on Closed-Loop Balanced Truncation

Geert Schelfhout and Bart De Moor

Abstract—Closed-loop balanced truncation is a model reduction method
that aims at preserving the closed-loop properties of the origina} con-
troller. YYe show that this method is equivalent to frequency-weighted
balanced truncation with certain weightings and that for observer-based
controllers, a significant amount of computation can be saved because of
the observer-state feedback structure of the controeller,

I, INTRODUCTION

Many authors have contributed model reduction methods that
take Into account the preservation of certain desirable closed-loop
properties. De Viltemagne and Skelton [8} proposed an approach
focused on putting the closed-loop controllability gramian in a form
that enables one to see which combinations of states are insignificant,
but does not employ balancing. This inspired the closed-loop balanced
truncation (CLBT) approach, an intuitive but remarkably useful
method of controller reduction proposed recentty by Ceton er al. [3],
{9}, {10]. In Section 11, we show that this method can also be viewed
as a frequency-weighted model reduction method with certain weights
chosen so as to retain closed-loop performance, Another contribution
of this paper is found in Section I, where it is shown how sigaificant
savings can be made in the number of computations in the important
special case of observer-based controliers. In the remainder of this
section, we recapitulate the idea of CLBT in the framework of the
standard plant configuration,

Below we employ the nofations

A | B},
2 CI-A'B4+D
¢ | D
A
£ [4, B, C, D).

Suppose the controller C{s) 2 {Ae, Bey Ce, D] stabilizes the
standard plant
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H”‘EMS&&)
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and yields a closed-loop transfer matrix H:w = Py + Py C(I -
P,.C)"' P,,, which is optimal or at lcast satisfactory in some sense.
Let n be the order of P(s) and n. the order of C{s). Note that
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we may assume without loss of generality that Dy, = 0, since if
P, (s) is not strictly proper, the problem may always be transformed
into another one where Py, (s} is strictly proper by means of a loop
transformalion. In such a case, one state-space representation for H,,,
is

H,.(3) )
A A B
¢ | D
A+ B.,D.C, B,C, By ++ BuD. Dy,
- B.C, Ac B:Dy..
C.4 D .DCy D.Ce Diyw+ D.uDoDy
)
The controllability gramian
58 | Pp P
P2k %]
and observability gramian
3 2 Qp QPC]
ot g %

for this realization of the closed-loop system are computed from
AP+ PAT + BBT = 0 and ATQ + QA + CTC = 0. To
reduce the order of the controller, while changing the closed-loop
transfer function as little as possible, CLBT performs tnuncation on
a realization of the controller C{s) in which P and Q., the parts of
these gramians relevant to the controller states, are balanced {3].

This procedure may be rather intuitive and (like many other
standard reduction techniques) cannot guarantee stability of the
reduced controller or of the closed-loop system after reduction,
but it compares very favorably with many well-known controlier
reduction methods, To provide some further motivation, we proceed
to show that CLBT is equivalent to Enns's well-known frequency-
weighted balanced truncation (FWBT) with certain performance-
oriented weights.

II. EQUIVALENCE WITH ENNS'S SCHEME

Often the inputs w and outputs z of the standard plant are
designed in such a way that good performance of the control system
is expressed, as well as possible, by the smallness of ||H..|]
in some norm, e.g., the H: norm or the He, norm. One may
argue, therefore, that a performance-oriented reduced-order controller
C, should make [[H...(C.)}| small, where H,.(C.) & P.. +
P Cr(I = PyuCy) ™' P,y this would result in a nonconvex opti-
mization problem over the parameters describing .. However, there
may be good reasons to resort to controller reduction, seeking to
keep H,w(Cr) — H.w(C) small; i.e., H..{C,) should approximate
the optimat (or satisfactory) closed-loop behavior H..{C) which
contains a lot of information about the controller dynamics one should
mimic, rather than approximate zero. One easily finds H,.{C.) —
Hew(C) = Pou(I — CP ) HC, — CY(I ~ PpuC) ! Py this
expression is correct up to first-order terms in Oy — C.

Enns’s FWBT [1], (4] aims at making [[\WV.(s)[G(s) —
Gu(s)PVi(s)|l small, where V¥; and ¥, are user-specified
frequency weights, For performance-oriented controller reduction, by
the argument above, a natural choice for these weighting functions

is Wo(s) & Pou(I - CP)~" and Wils) £ (I — PyuC) ™ Py

0018-9286/36305.00 @ 1996 IEEE




., IEEE'TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO, 10, OCTOBER [996

.
The fact that these are derived from a first-order expression also
indicales that this choice may be less appropriate for very small
reduced orders, where C; and C can be drastically different.
Enns’s scheme with these weightings first computes the controlla-
bitity gramian P of

C(s)Wils)
A+B,D.C, B.C. 0 Bu4 BuD.D,y,

B.C, - A 0 B.D,..

= B.C, 0 A, B.Dyuw

b.C, 0 C. D Dy

and the observability gramian @ of
1V.(5)C(s)
A+B.D.C, B,C. B.C. B, D.

B.C, Ao 0 0

= 0 0 Ae B,

C. + D:wD.C, D..C. D..C. j D..D,

balances the lower right n. x n, blocks of ¥ and @ and truncates
the controller accordingly.
Repiacing the state a; of the realization of C{s)TV;i(s) by Ty,

where
I 00
ne&lo 1o
. ¢ I r

yields a new realization which is seen, by inspection of (1), to have
5 8] for controllability gramian; likewise, teplacing the state 2, of
the reatization of WWo{s)C{s) by (T7 1) 2, yields a realization which

has {§ 8} for observability gramian. Thus
- P o
=17 [0 O}T‘
Pg_ Ppe P
=Pl P P,
B P. P
and

O=1F [‘3 g]T,
Qp Qpe Qe
Q,,c Q. Q.
QL. Q. Q.

Hence, both in F\WYBT with the weightings above and in CLBT, P.
and Q. are balanced, and the methods are equivalent; but as the size
of the gramians to be computed in CLBT is only n + n. compared
to n 4 2n; in FWBT, the former is more efficient. Moreover, with
CLBT there are no restrictions on the poles of the controtler; these
may be unstable or even lie on the imaginary axis. Even more savings
can be made when the controler is observer-based, as will be shown
in the next section,

111, OBSERVER-BASED CONTROLLERS

In many control design techniques, & controller is found as the
combination of a state feedback controller and a state observer,
e.g., when using pole placement or in linear quadratic Gaussian
(LQG) design. For this type of controller, the order of the controller
equals the order of the plant n; hence, the procedure above would
normally require the solution of two 2n X 2n Lyapunov equations.
However, in this case, the computation of the gramians P, and Q.
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may be simplified. Suppose the estimator state equation is given by
Fe = Arc + Buu + Ko (Cyxre — y) and the state feedback gain
s I, then the controller has state-space representation C'(s) =
{A+ BuK: + K.Cy, — K., K, 0), and for the closed-loop system
one finds

H..(s)

A B.K, B
= |-h.Cy A+ Bk, +K.C,

C. DK, [
With the definitions

'_Il-eDyw

Dy

one has ng(-‘i) [Ah Bl’ Ch 3w1 {AQ! BQ; C‘L’a zu] Now
let ﬁhP} -+ P]A] +Bl 1 =0 and Az Qz +Q2A2 +02 C? = (),
where ) and Q; are partitioned as before

5 A [ B FPea
h= [qu;l Fer ]
and
a2 (3 %)
th2 QC?

Since P = TP;TT and Q@ = T QT 7, it is secen that P =
Py and Q. = Q. Therefore CLBT is performed by solving
conseciitively the six Sylvester equations below

(A+ K.Cy)Po + Po(A+ K.C)F

+(Bw + KeDyu (B + K. Dy )T =0 o)
(A KeCy)YPper + Pt (A + Buk,)' — PuCTRT
—(Bu+ K. Dyu){(KeDyu)T =0 3
(A4 BuK }Poy + Pa(A+ BuR,)T ~ K.Cy Poa
PLCTRT + KDk Dyu)T =0 ()

and

(“‘1 + Bu I\'r')TQp‘z + Qp?(A + BuI\'r)

+(Ce + Do K )T(Co o+ Do) = 0 )
(A4 Bu L) Qper + Qpea (A + KoCy) -+ Que Bu ki

+{(Cy + D, K ) D, K, = 0 6
(A+ K.C) ' Qer 4+ Qea(A+ K.C) + KT BT Qe

+ Q,Ic? B.K, + KIDI D K, =0 (7

which will yield P} = P, and Qo = Q..

‘These computations may be done most efficiently if A4 B, i’ and
A+ K.Cy are first put in Schur form, then solving (2)(7) requires
enly two Schur decompositions instead of six. The operation counts
below are based on the assumption that the computation of a Schur




o

P
(3
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decomposition costs 25n° flops; this value is of course only approx-
imate {5, p. 380). 2n° flops are needed to solve a Sylvester eqmuon
orce the coefficient matrices have been put in Schur form (n® for
a Lyapunov equation). Counting this way, Po and Qs may be
computed using about 2% 251 +2x20° +4n = 58n° ﬁops, whereas
computing I* and § require 25(2n)° + 2(2n)* = 216n° flops.

A word of caution is in order w.r.t. the fact that only two’ Schur
decompositions are needed to solve (2)-(7). In principle any Schur
decomposition of A+ B,y and A+ K.C, may be used for solving
thise equations, but for large Sylvester or Lyapunov egquations the
eigenvalue ordering of the Schur matrices may be important. The
QR algorithm naturally yields an ordering with the eigenvalues of
the Schur matrix going from arge absolute values in the left upper
comer 1o small ones in the right Jower corner; this is numerically
beneficial for solving (3}-(7), but in equal degree numerically adverse
for (2)-(4) if the same Schur decompositions are used without any
reordering. Therefore, an inverse ordering, which is done using
onhogonal mnsformations only, may be advisabte for (2)—{4) but
requires about G6n® extra opemtions {51, {71, taking the cost to
compute P and Q. to 62n° operations. Note, however, that the
same remark applies to the computation of P and ; a reordering
is equally advisable here, but requlres 6(2n)® = 48r° operations,
adding up to a total cost of 264n* operations.

To avoid the trouble of reordering the Schur decompositions, one
might also opt to recompute the Schur decomposition of transposes;
in this c'lse our schemme has an operation count of 108n°, compared
to 416n® for the approach computing P and Q

It should be kept in mind that control design is a highly iterative
process so that this controller reduction may have to be repeated tens
of times over; accordingly, the savings gain importance.

If the eioenvalue decompositions A+ B = T, ' AT and A+
K.Cy =T, AT, are available (e.g., when using a pole placement
technique), solving each of the six equations (2)-(7) is done in O( n?)
flops; indeed, these represent similarity transformations that bring
A+ B K, and A+ K.C, into diagonal form. The price to be
paid for this, however, is a oss of numerical reliability, since these
transformations are no longer orthogonal. Note that it is trivial to
bring A+ B. K, and A + K. C, into real quasidiagonal form if one
wishes to stick to real computations.

The usual way of solving a Lyapunov equation AP -+ PAT 4
BBT = 0 is o bring A into (guasi-Wrizngutar, form by means
of a Schur decomposition and to solve the transformed Lyapunov
equation by means of forward or b'tciuv'lrd substitution 2}, {5] The
sphumv of the Lyapunov cqmuons AP+ AT + BBl =0
and A5 Qs + Qs As + €I Gy = 0. into three Sylvester equations

each, amounts to a block version of this substitution process. We
remark that this artifice is not really necessary. If A+ By and
A+ K. C, are pwt in real Schur form, ~l; and A2 wiil also have
the quasitriangular form suitable for the substitution process. The
only advantage of this splitting into three equations is the fact that
{2)—(7) may be solved consecutively so that one needs {o store at
most four # X n matrices into memory at one time, compared to
three 2n % 2n matrices without the splitting. The operation count is
identical for both ways, and w.r.t. accuracy, no remarkable differences
were recorded.

Once Py and Q.p are computed, the reduced-order controller may
be found. For this purpose, it is not necessary to actually balance Fei
and €.z instead, one may use, e.g., Safonov’s Schur method [6].

For easy reference, the overall procedure is recapitutated here.

» Consecutively solve (2)-(4) and (5}-(7).

+ Compute matrices V. and 1%, whose n, columns form bases for

the right and left eigenspaces of P Qe associated with the ¢
biggest eigenvalues.
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» Compute & smgular value decomposmon VB VT =171,

+ Defning L & £7 '“LTVT and R 2 V., Ve erYE 4, 2
L{A+BK.+L.C)R, B, = —LAc, C'r = K, R, the reduced-
order controller is Cr(s) & [Ar, Br, C, 0].

Evidently this reduced-order controller may be considered as
the series connection of a reduced-order observer {L{A + BN, +
K.C)T, —LK., T, 0] and the state feedback gain K.
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