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Abstract

We treat the extension of Total Linear Least Squares
to single-input single-output dynamic systems. It is
shown that the L2-optimal model for a given dataset
has some remarkable properties:

The given data sequence can be decomposed into
two sequences, the L2-approximations and the
residuals, which are orthogonal to each other
(in diagonal inner products derived from given
weights).

It is shown how certain block Rankel matrices
Wi constructed from the weighted residuals are
always rank deficient and hence, the residuals
themselves can be considered as being generated
by a linear system.

One can find completions Wicomof the block Ran-
keImatrices Wi with the L2-approximations, such
that W,comWT = 0 (which is a more general type
of orthogonality than the first one mentioned).

, The results of this paper are just a special application
of a general theory to approximate in a least squares
sense, a given structured matrix, by one which has the
same structure and is rank deficient. The main result
of this theory says that, when the matrix structure is
affine, the solution is generated in terms of a Rieman-
nian SVD, which is a 'nonlinear' generalized singular
value decomposition (see De Moor B., Linear Algebra
and its Applications, Vo1.188-189,pp.163-207, 1993).
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1 IntroductÎon and notatÎon

Let Wk E JR2,k = 0,..., N be a given vector se-
quence of data where the scalar sequences Uk and
Yk are defined as Wk = (Uk Ykl (a superscript
capital T denotes 'transpose'). One could con-
sider the first component of Wk to be an input
sequence Uk and the second component to be an
output sequence Yk or the ot her way around. Our
task now is to find least squares approximations
Vk of the Uk, and Zk of the Yk, such that Vk and
Zk are related by a linear model of given order n
with real coefficients:

n n

l:O:;Zk-; + l:13;vk-' = 0, k = n,..., N, (1)
;=0 ;=0

and Vk and Zk minimize

N

J = 2)(Yk - zk)2hk + (Uk- Vk)2gk] , (2)
k=O

where 9k and hk, k = 0, . . ., Nare given positive
weights, subject to

n n

l: o:~ + l: 131 = 1 .
;=0 ;=0

(3)

It is assumed that N 2: 3n + 1 to make constraint
(1) meaningful.

The minimization problem (2) with constraints
(1) and (3) will be called the dynamic totallinear
least squares problem.

Let us observe that all the observations are
treated 'symmetrically' in the sense that not only
the outputs are modified, as is the case in equa-
tion error methods, but that also the inputs are
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modified. Said in other words, there is no a pri-
ori distinction between inputs and outputs and
causality is not imposed. The weights 9k and hk
are god-given or, for the areligious or agnostie
reader, specified by the user. In the case that
9k = hk = 1, "Ik, the formulation corresponds to
the statistical errors-in-variables problem, whieh
is maximum likelihood when the input-output
data of the unknown linear system are corrupted
by additive white Gaussian noise and one wants
to find from the observations the difference equa-
tion that models the system.

This paper is organized as follows: In Section 2,
we state one of the main results, namely that the
solution to the dynamic tot al least squares prob-
lem follows from a so-called Riemannian SVD,
which is a nonlinear generalization of the Singu-
lar Value Decomposition (SVD). In the remain-
ing sections, we treat several properties of the 50-
lution: Orthogonality of residuals and approxi-
mations (Seetions 3 and 5) and the fact that the
residuals themselves are generated by a linear sys-
tem (which at least to one ofthe authors was quite
surprising).

We will use the notations

( Uk )
.

( vk )Wk = Yk ' Wk = zk

and

W _ ( Uk-Vk)9k )k - (Yk - Zk) hk '

for the given data, the optimal approximations
and the weighted residuals respectively. By Wi
we denote the 2i X (N + i) block Hankel matrix
constructed from the sequence Wk:

WN_l WN

)

WN 0
... (4)
o 0
o 0

Here, i is a user-defined integer which is assumed
to be larger than n (the order in the difference
equation (1». The bloek Hankel matrix Wi is
constructed similarly from the weighted residuals
Wk. Note that the first bloek row has i -lleading
zero vectors. We'll also use the data sequences
w, W and W, all of which are in IR(N+1)x2:

wT =( Wo Wl ... WN-l WN ) ,

and w and w are constructedsimilarly. The se-
quencesU,y, v and z, all in IR(N+1),are defined

as:

The vectors a and b contain the coefficients (ti
and {3iof the linear model. The transfer function
associated to the difference equation (1) will be
denoted by b(z)/a(z).

2 Solution as a Riemannian
SVD

The statie tot al least squares problem for a given
data. matrix A E IRpxqcan be formulated as

min IIA - Bil subject to ~y =:. 01
'

B.II Y Y - .
The two constraints ensure the rank deficiency of
the approximating matrix B. As is well known,
the solution can be calculated via the 'smallest '

singular triplet of A (see [5], [8]), i.e. the triplet
(u, 0',v) corresponding to the smallest singular
value 0', which satisfies

Av= UO',

AT U = VO' ,

UTU = 1 ,
- vT v = 1 . (5)

For 0' the smallest singular value of A, the matrix
B is given by a rank one modification of A as

B =A - u(j~T .

It turns out (see [2] [3] [4]) that the solution of
the dynamic totalleast squares problem is given
by the following Theorem:

Theorem 1
The vectors a and b that contain the coeffidents
of the difference equation (N which is the solution
of the dynamic totalleast squaresproblem, follow
/rom the 'smallest' singular triplet of a generalized
('nonlinear') singular value decomposition of the
form

(Y U) (~) = (Da+ Dr) UT,

( ~~ ) U = Du(~ )T ,

in which Y and U are Rankel matrices of dimen-
sion(N - n + 1) X (n + 1) that are built up with
the output and input data; Da, Dr and Du are
positive definite matrices, the elements of which
are certain quadraticfunctions of the components
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w;=u

0 .. . 0 0 Wo Wl
0 .. . 0 Wo Wl ... WN-l
...

r Wo ... WN-l WN 0 0
Wo Wl . .. WN 0 0 0

UT = (uo Ul ...UN-l UN),
yT = (yo Yl "'YN-l YN),
vT = (vo Vl ...VN-l VN),
zT = (zo Zl "'ZN-l ZN)'



of a, b resp.u. The veetors u and (aT 'bT)T are
normalized sueh that

uT(Dïr+ ~)u =1 and (aT 'bT)Du (~ )=1 .
(6)

The minimum value of the object function (2) is
given by the smallest singular value T. The vee-
tors a and b from the differenee equation (1) ean
be obtained from a simple sealing of a and 'b so
that they satisfy (3). The data sequeneeszand v
ean be obtained from the smallest singular triplet
and the original data (see [2Jfor detailedformu-
las).

Before we present an outline of the proof of this
result, let us make the fol1owingremarks:
First note the ressemblance between the SVD for
the statie case in (5) and the 'generalized' SVD
in Theorem 1. Both are in terms of the given
data (A in the statie case and the matrix (Y U)
in the dynamic case). As a matter of fact, the
SVD of Theorem 1 would be a wel1-known gener-
alized SVD (the restricted SVD, see [1]) in case
that Du, na and Dr would be constant matrices.
Because of the fact that, on the one hand these
matrices are not constant as they are a function
of the singular vectors to be found, and because
they are always positive definite, we propose to
cal1 the generalized SVD of Theorem 1 a Rieman-
nian singular value deeomposition (Also because
of the fact that it seems possible using ideas from
differential geometry, to design optimization al-
gorithms such as steepest descent or conjugate
gradient, on the manifolds described by the con-
straints (6)).
In [2] we demonstrate that the dynamic total
least squares problem is a special case of the
more general struetured totalleast squares prob-
lem (STLS), which can be solved via a Rieman-
nian SVD. The main conclusion of Theorem 1 is
that the transfer function b(z)ja(z), associated
with the optimal model (1) that solves the dy-
namic total least squares problem, can be ob-
tained from a Riemannian SVD.
The intermediate steps in the proof of this result
[2], which is obtained via the technique of La-
grange multipliers, are instrument al in the deriva-
tion of the properties of the dynamic tot al least
squares solution to be stated below. To mention
just one property: The difference of the Hankel
matrices Zand V, which contain the 'modified'
output and input data of equation (1), and the

Hankel matriees Y and Y is a mult~near func-
tion of the singular triplet (u, T, ("lJ;T"5)T). Recall
that in the statie case this is similar as the differ-
ence A - B is a rank one matrix. In the dynamic
case, the rank is however larger than one.
A heuristic algorithm which is inspired by the
method of in verse iteration is described in [2] [3J

(which also contains much more details about the
derivation and other additional properties).

Proof of Theorem 1 (outline):
The Lagrangean for the L2-optimal modelling
problem is

.c( Vk, Zk, ai, /3;, Ik, À)
N n

= J + E Ik-n(E[aizk-i + /3ivk-iJ)
k=n i=O

n

+À(l - E[a~ + /31]),
i=O

where Ik,k = 0,..., N - n and À are scalar La-
grange multipliers and J is the object function
(2).
Setting now to zero all the derivatives of the La-
grangean results in the fol1owing conditions (with-
out 1055of generality, we write out the equations
for the case n = 2):

Derivatives with respect to Vk:

(UN_2 - VN_2)gN_2

(UN-l - VN-!)gN-l
(UN- VN)9N

= IN-4PO + IN-3/11 + IN-2/12

= IN-3!JO + IN-2/11

= IN-2{iO. (7)

Derivatives with respect to zk:

(YO- zo)ho =
(Yl - zl)h1 =
(Y2 - z2)h2 =

'002

'ooI + h02

1000 + '101 + h02

(YN-2 - ZN-2)hN-2 =
(YN-l - zN-dhN-l =

(YN - zN)hN =

INL.400 + IN-301 + IN-202

IN_300 + IN-201

IN-200 . (8)

Derivatives with respect to ai:

IOY2+ IIY3+... + IN-2YN = oo~
10Yl+ hY2+... + IN-2YN-l = Ol~

loyo+11Yl+...+IN-2YN-2 = 02~ (9)

Derivatives with respect to /3i:

IOU2+ '1U3+... + IN_2UN
IOUl+ hU2 +... + IN-2UN-l =
'ouo+hul+...+IN-2UN-2 =

Derivatives with respect to Ik and À: wil!
just result in the constraints.
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(uo - vo)gO = '0/12

(UI - Vdgl = '0/11+ '1/12

(U2 -V2)g2 = '0/10+ '1/11+ h/12

(U3- V3)g3 = '1/10+ '2/11+ '3/12



Note that equations (7) and (8) imply that the
weighted residuals are generated by linear Fm
systems, with the Lagrange multipliers as inputs.
In what follows, we will use the vectors

the diagona! matrices G, HE R(N+1)x(N+1):

and the banded Toeplitz matrices
T. E R(N-n+1)x(N+1) and Tb E R(N-n+1)x(N+1),
wtere e.g. for n = 2:

(

a2 al aD 0 0 ... 0 0 0 0

)

o a2 al aD 0 ... 0 0 0 0

TG= .~. .~. ~~ ~l. ~~ ::: .~. .~. .~. .~.
o 0 ... ... ... ... a2 al aD 0
o 0 ... ... ... ... 0 a2 al aD

and Tb is defined similarly. Define the vector of
Lagrange multipliers I E RN-n+1:

IT = ( 10 h .. .IN-n-l/N-n) ,

and the banded ~oeI?litz matrix Li E Rix(N-nH)
constructed from It, I.e.:

Observe that, if at least one of the elements of I
is non-zero, rank(Li) = i.
Let U,Y, V and Z E R(N+1-n)x(n+1)be the Han-
kel matrices constructed from the sequences UA;,
Yk, Vk and Zk, for instance:

We will frequently use the following trivia!

Lemma 1 The 'exchange' ~emma

In words, the transpose of the Hankel matrix Z
times the vector I, equals the band Toeplitz ma-
trix Ln+1 times the vector z. The transpose of
the band Toeplitz matrix Ln+1 times the vector
a equals the transpose of the band Toeplitz ma-
trix Ta times the vector I and finally, the Hankel
matrix Z times the vector a is the band Toeplitz
matrix Ta times the vector z.

Equations (7)-(8) can be written as:

U- v = G-I L;+1b ,
Y - Z = H-l L;+1a . (11)

Equations (9)-(10) together with the constraints
(1) and (3) lead to the conelusion that À=0:

VTI =bÀ ,
ZTI =aÀ ,
Za + Vb = 0 ,
aT a + bTb=1 ,

À=o. (12)

We can eliminatethe matricesV and Z by using
the exchangeLemma:

ZTI = Ln+1z= Ln+1(Y- H-1L;+1a)= 0
=? yTI = (Ln+1H-1L;+1)a= D{la,(13)
VTI = Ln+1v=Ln+1(u-G-IL;+1b)=O

=? UTI= (Ln+1G-1L;+1)b= Dfb ,(14)

with an obvious definition for D{l and Df, which
are in R(n+1)x(n+1)and are both symmetric posi-
tive definite matrices. Also

with obvious definitions for t'he matrices Da and
Db (which are in R(N-n+1) x(N-n+1) and which are
both symmetric positive definite). We can now
write

(Y U) ( : ) = (Da + Db)1,

(~~)/=(Dr ~G)(:)
aTa + bTb= 1. (15)

The object function (2) can be written as

(y - zlH(y - z) +(u - vlG(u - v)
aT Ln+1H-1 L;+1 a + bT Ln+1 G-1 L;+1 b

aTD{la+ bTDfb.
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c-
'1 '2 .. . "-1 .. . IN-n

L,= .:.
10 11 ... ',-2 .. . IN-n-1
...
0 0 .. . 10 .. . IN-n-'+1

0 0 .. .

,L)
IN-n 0 .. .

Zo zl .. . zn-l zn

Zl Z2 .. . zn zn+l

Z=I

Z2 z3 .. . Zn+1 Zn+2

zN-n-l zN-n .. . zN-2 zN-l
zN-n zN -n+1 ... zN-l ZN

ZTI =

L;+1a =
Za =

Za + Vb = Taz+ TbV
= Ta(Y - H-1L;+1a)

+Tb(U- G-1 L;+1b)
= 0

=?(YU)(:) = (TaH-1T;+ TbG-1TT)1
= (Da + Db)1 ,

J =
=
=



. . ,

By using another normaJization (see [2] for de-
tails), the set of equations (15) can be converted
to the Riemannian SVD of Theorem 1, for which
the minimum singular value the object function
(2). This normaJization turns the vectors a, b
and 1 into the vectors ä, 1) and u of Theorem 1.

We will now turn to the enumeration of same of
the properties that are satisfied by a solution to
the dynamic totalleast squares problem. We will
not present the proofs here in full detail, as they
will be written out elsewhere and because they
are more or less a straightforward application of
the expressions obtained in the proof of Theorem
1.

3 Orthogonality of ÛJand ij;

When in optimization problems, a criterion to be
optimized is a sum of squares, orthogonality is
never far away. For instance, for the statie total
least squares problem, there is a property of or-
thogonaJity of the residuals and the data in the
approximation matrix B, as the column and row
spaces of both matriees are perpendicular:

(A - B)BT =0 and (A - Bl B =0 .
This is equivalent with

(vec(A - B)l vec(B) =0 .
(The operator vec(.) stores the columns of the ma-
trix between brackets in a long column vector).
A similar orthogonaJity property holds true for
the dynamic total least squares problem, for
which one can prove:
Theorem 2

wTw=O or (:~ )(G(u-v) H(y-z))=O,

where G and H are diagonal matrices with the
(' weightsgk and hk.

4 Rank deficiency of the resid-
uals

Let i be a given integer for which it is assumed
that i > n where n is the order in the differ-
enee equation (1). Consider the weightedresidual
matrix Wi E jR(2ix(N+i))construeted from the se-
quenee Wk as in (4). Then one can show:

Theorem 3
H rank[a b]= 2, then:

rank(Wi) =n + i , 'Vi> n .

The fact that rank [ab]=2 is quite natural since
it implies that the transfer function ofthe system
is not just a constant.
This Theorem has somefarreaching consequences.
It is wel1known that, when the rank of a block
Hankel matrix behaves as in the Theorem for in-
creasing i, the data in the matrix (which in this
case are the column vectors of the sequence w
padded with the appropriate number of zeros) are
generated by a linear system of order n. Hence,
Theorem 3 really means that the vector sequence
w with the weighted residuals (and padded with
zeros) is generated by a linear time invariant sys-
tem. As a matter of fact, we can prove that this
system is described as follows:

Corollary 1
The linear system that generates the weighted
residuals w is given by

arev(z)
- brev(z)

Here, arev(z) and brev(z) are the polynomials ob-
tained from a(z) and b(z) by reversing the order
of the coefficients.

From Theorem 2 and 3 we can now give the fol-
lowing interesting interpretation to the solution
of the dynamic totallinear least squares problem
(where for simplicity we assume that the weights
gk and hk are alll): The given data Wk(whieh can
be 'arbitrary') are split into two sequence Wk and
Wk,whieh are not only orthogonal to one another
(Theorem 2) but whieh are also generated by two
linear systems: The transfer function b(z)ja(z)
for Wk can be obtained from a Riemannian SVD
as in Theorem 1, while that for Wk is then given
by _arev(z)jbrev(z).

One might be surprised about the fact that the se-
quence of weighted residu als is highly structured,
in the sense that it can be modelled by a linear
system. However, compared to the statie case this
is not really surprising: There, the matrix of resid-
uals A - B E jRPxqis a rank one matrix, henee ean
be 'modelled' with q-llinear relations. So also in
the statie ease the matrix with residuals is highly
struetured. In the dynamic case however it is sur-
prising that the residuals themselves also behave
as a linear system.

5 Orthogonality of residuals
and approximations

Let i be a given integer satisfying i > n. Let
w!=omE jR2ix(N+i)be a bloek Hankel matrix eon-,
structed from an extended sequence

(
-com

)
T

(
- - - - -

W = W-i+l W-i+2 ... W-l Wo .. .WN
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)~, ~. 'WN+1 ... WN+i-l ,

in which we call (W-i+1" . .,W-l) a past extension
and (WN+lI' . ., WN+i-l) a juture extension.

Theorem 4
There exists a unique extension (w_n,...,w-d
in the past and an extension (wN+1, ...,WN +n)
in the future such that

Wicomwt= 0 , 'Vi> n. (16)

This characterization of orthogonality of the op-
timal solution is quite remarkable. As a special
case it implies the orthogonality stated in The-
orem 2. But Theorem 4 says that in addition
certain sums of products of vectors of wcomand
w (which, because of the bloek Hankel structure
of Wicomand Wi, are finite discrete convolutions)
are zero. Hence this corresponds to a certain 'dy-
namic' orthogonality. The required extensions of
the past and the future can be obtained from a re-
cursion, which is completely characterized by the
foilowing

,.....
Corollary 2

k W-com +
..

ran i =n t,t>n.

Hence, the extensions can be calculated from the
difference equation (1) once the solution to the
dynamic totalleast squares problem has been ob-
tained from the Riemannian SVD in Theorem 1.

6 Conclusions

Wehave been describing the extension of the weil-
understood Tota! Linear Least Squares problem
for matrices, to the identification of linear dy-
namic SISO systems. The main idea is to rephrase
this problem as one of approximating an affinely
structured matrix (in this case the 'double' Han-
keI matrix (Y U) with the data as in Theorem

(1), by a rank deficient one with the same struc-
ture. Algorithms to solve the Riemannian SVD of
Theorem 1 are described in [2] and [3], but there
are also very interesting connections with some
recent work on continuous time algorithms and
optimization on Riemannian manifolds by Brock-
ett and co-authors.
When one tries to apply the ideas of this paper to
systems with several outputs (instead ofjust one),
there is a problem of parametrizations. Therefore,
the algorithms in [6] [7], where fuil state space
models are identified (and not just transfer func-
tions or matrices) seem to provide good alterna-
tives. The relations with the results presented
here are still not completely worked out yet.
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