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A continuous time power iteration method
for computing a lower bound of u*

Yi Cheng

Abstract

A lower bound of y may be calculated via power iteration
method1]. However this algorithm sometimes suffers from a
limit cycling problem. In this short paper, a continuous time
power iteration scheme is proposed. The acheme is based on
building a continucus time dynamic system for power itera-
tion, and then solving it by automatic step integration meth.
ods. Numerical examples show that convergence properties are
promising.

1 Introduction

For computing a lower bound of the structure singular value g,
a power iteration scheme was developed for the purely complex
case in {1) {we will refer to it as the standard power iteration or
SPI). The iteration scheme appears to have good convergence
properties, and each iteration step of the scheme is very cheap,
80 that the resulting lower bound algorithm is very fast. How-
ever, the lower bound power iteration is not always guaranteed
to converge because of limit cycling, In this short paper, a con-
tinuous time power iteration acheme is proposed, We construct
a continuous dynamic system for the power iteration, such that
if the continuous dynamic system is stable for some initial val-
ues, that is, the continuous power iteration is convergent, then
the solution can be found from the steady states.

2 Characterization of lower

bound of 4

Let a matrix M € C"*" be given, and let the block structure
contain two blocks: a repeated scalar block(s = 1) and a full
block (f = 1)with dimensions r and m (r + m = n) respec-
tively, then the lower bound of u(M)(see (1) for the definition
of 4(M)), B, satisfies the following equations[1):

(1.a)
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ﬁw-— M z, b: = a;wl a1, ba = ]I—w—z-ﬂ-ﬂm (lub) -
where a = [af af]', = (b} 84]%, w = [wf wi]" and » = [sf sl
with nonzero vectors £1, w1, b1, a1 € C" and 2, wa, b3, qp ¢
C™, and wia: # 0. Now by eliminating = and b, we can rewrits
(1) aa:

P a | _ 0 M di1 dia a
w - M' 0 dn daz w
' w . wioy
where dus = diag(Orxr, 38 Im), diz = diag(riaytr, Omxm),

dn = dia-g(lé":—:rfnomxm); d2z = diag(orxr:ﬁ;—:“Im). By
separating real and imaginary parts, it can easily be checked
that (2) is equivalent to the following equation:
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where a, = real(s), ai = imag(a), wr = real(w), wi =

imag{w) and
0 0 M =M diy 0 df, -d;7 7
_ 0O 0 M M ] 0 dn djy df;
A= M M} 0 o} D= df, --d;‘ das 0
M M 0 o d, d, 0 dn

with M, = real(M), Mi = imag(M) and df; = real(dss), J
diz = imag(di2), dj; = real(da;), db; = imag(dz;). Now letting
z = [a} af w} wf}' and D(z) emphasize the fact that D is a
function of #, we obtain:

AD(z)z = Bz (4)

Basically there is no difference between (1) and (4). However
the matrices and vectors are real in (4), while they are complex
in (1), This formulation can be easily generalized to the cases
of s > 1 and f > 1. It can be done by modifying the matrices
di1, dia, das and dz2. The matrix D(z) here contains all the
structure information, -

3 Continuous time model of

power iteration

Now we consider the following continuous time dynamic sys
tem: d
z

= AD(z)z - fiz,f = z'AD(::)z (s)




aqeziss yector function of the time t. For this dynamic
gystemts one property is that the vector z has a constant
orm of 1 if the initial value of the norm is 1. We can see

by taking the derivative of |izL[’: dl|z|?/dt = 2z° %% =
g(l-z‘z)(x'ADz), 50 we have d||z][*/dt|ysja1 = 0. Thusif we
take the initial vaiue [|z(0)|| = 1, ||zl is constant and equal to
.+ 1, The second property is that in any equilibrium point where
dgfdt =0 (5)is the same as (4}, and thus B is a lower bound

NS}; wa can see that a power iteration can be formed by dis-
cretizing the continuous dynamic system of (8) plus normal-
},iﬁé;.'the norm of the state vector in each step. Let (5) is
discretized as: ‘

£k+&;; Tk — AD(zx)zx — 2x(zkAD(zx)21) (6)
iy};qre\, Aty is the integration step at time ik and zx is the
vector 7 at time tx. Suppose 2y AD(za)zx > 0 and let Aty =
1/(zkAD (zx)zx), then by normalizing the norm of zx41 to 1,
" (6) can be arranged as ,

_ _ _AD(zK)z
S = IIAD(z:)=:lI M

- “Tha power iteration (7) is actually the same as SPI (see [1]
for details of SPI), if some intermediate results in each iter-
ation are not used and if fre1 = |AD(zk)2]l- Note that if
L AD(zx)zx < O the above explanation does not hold, How-
ever it can be proved that if the continuous time power iteration
ia'convergent, z° AD(z)}z > 0 always near an equilibrium point.
Though numerical simulation of the continuous time dynamic
system is also discrete, it is different from SPI, as the former
can choose integration steps according to the desired accuracy
by, for example, automatic step Runge-Kutta integration, the
latter only uses a special integration law of (6), for which the
integration steps can be possibly very large. One result is that
limit cycling in SPI could be eliminated in the continuous time
power iteration, which will be shown by an example later.

4 Numerical examples

We simulated the continuous dynamic system of (6) using
MATLAB function 'ode23’, which uses the automatic step
Runge-Kutta-Fehlberg integration method. The desired ac-
curacy of the solution is set to 10~°, For most of examples we
tested with nonzero initial vectors a, ai, wr and w;, the simu-
lations were convergent, by which we mean that both the state
vector z and the scalar § evolve to constant values, even in the
case where SPI has limit cycling, Here is one of the examples.
The matrix M is generated in random, by MATLAB ’rand’
with format normal’, as:

1.0308 07611 —0.3226
M= | -0.759% —0.1659 ~—0.3684
0.8741 0.3009  1.1479

ﬂ}e block structure consists of one repeated scalar block with
dimension r = 2 and one full block with dimension s = 1.
We first use SPI to calculate the lower bound of p with the
MATLAB function "mu’ [2). The initial values of the vectors
b and w are the same and generated randomly as: —0.7896 ~
0.00984, 0.5648 ~ 0.0515i, 0.0321 — 0.2317i. For this special
case, limit cycling appears during SPI, as shown in the upper
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Figure 1: Upper plot: Standard power iteration.
Limit ¢ycling occurs in iterations, Bottom plot:
Continuous power iteration. 3 evolves to an equi-
librium point 1.384 in 102 steps
plot of Fig.l. Now we calculate B by solving the differential
equation (5) with the MATLAB function ade2d’. The matrix
M is exactly the same as above. The initial value of the vector
2 Is calculated from initial values of the vectors b and w via (1).
That is, we use the same initial values as those for the power
iteration as shown above, We do this for comparison of the
two methods, The bottom plot of Fig. 1 shows the simulation
result, B now evolves rather smoothly and converges to an
equilibrium value 1,384 in 102 steps (the number of all forward
and backward steps are 306).

5 Conclusion

From numerical experiences, we found that the convergence
properties of the continuous time power iteration are good,
even in the case where the limit cycling happens in SPL How-
ever the results presented here are very preliminary. The sta-
bility property of the continuous time dynamic system of the
power iteration is not proved yet for a general block structure.
It is a subject of current ongoing research. Actually we have
found that in a special case where the Jacobian matrix of (5)
at a certain equilibrium point has purely imaginary eigenval-
ues, then limit cycling could happen for some initial values.
The continuous time power iteration is in general slower than
SPI {if SPI is convergent), so it is suggested only to use the
continuous time power iteration in the case where SPI is not
convergent or is very slow.
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