94- €5

94-65 v
Yi C., Dehaene J., De Moor B., “Computation of the structured singular value with gradient based .
optimization algorithms", in Proc. of the American Control Conference (ACC'95), Seattle, Washington, Jun. 1995, pp.

3034-3040., Lirias number: 180040.

Calculation of the structured singular value with
gradient based optimization algorithms

Cheng Yi, Jeroen Dehaene and Bart De Moor*
ESAT - Katholieke Universiteit Leuven,
Kardinaal Mercierlaan 94,

B-3001 Leuven (Heverlee), Belgium,
tel 32/16/22 09 31, fax 32/16/22 18 55,
jeroen.dehaene@esat.kuleuven.ac.be
cheng.yi@esat.kuleuven.ac.be
bart.demoor@esat.kuleuven.ac.be

1995 ACC

Abstract

The structured singular value problem, which is a basic problem in robustness analysis
and synthesis for control systems with structured uncertainties, can be formulated as an
optimization problem over the manifold of unitary matrices with a given structure. We
show how geometric optimization methods, such as the steepest ascent method and the
conjugate gradient method for optimization on a Riemannian manifold, lead to algorithms
with guaranteed convergence to a lower bound for the structured singular value.

Keywords: structured singular value (p), gradient based optimization.

1 Introduction

The structured singular value u is an important tool for the robustness analysis of systems
with structured uncertainty[1]. The underlying structure of the problem (see [2] for notational
conventions) is described by a set A of block diagonal matrices A € C"*", with s repeated
scalar blocks and f full blocks. Repeated scalar blocks have the form 6;f., where 6, € C
and I, denotes the identity matrix in C™*™*, k = 1,...,s. Full blocks are A; € C™*™,
l=1,...,f. Hence, the set A is defined as:

A = {diag[61],,,..., 8., , A1y, Af] 1 6 € A € C™HMY,

*Jeroen Dehaene is a research assistant with the N.F.W.O. (Belgian National Fund for Scientific Research).
Bart De Moor is a senior research associate of the N.F.W.0. The following text presents research results
obtained within the framework of the Belgian programme on interuniversity attraction poles (IUAP-17 and
IUAP-50) initiated by the Belgian State - Prime Minister’s Office - Science Policy Programming. The scientific
responsibility is assumed by its authors. The research work was supported by the F.K.F.O. project G0292.95.

Given a matrix M € C"*", and a structure A, the structured singular value is defined by

1
ralM) = o (A) Aot + MA) = 0’ (1)
where & denotes the maximal singular value. Equivalent definitions are [2)
M) = AM

#a(M)= max p(AM), (2)
where BA = {A € A :3(A) < 1} and p denotes the spectral radius,
and

ra(M) = max p(QM), (3)

where Q@ = {Q € A : QHQ = I} is the set of structured unitary matrices.

Remark 1 The presented results also hold for non square matrices M, by extending them
with zero rows or columns, making all blocks square.

To solve an optimization problem like (3), one can either apply general optimization algo-
rithms using function evaluations and possibly gradient information, to find a locally optimal
solution, or one can concentrate directly on the optimality conditions for the given problem.
If the optimality conditions cannot be solved analytically, an iterative scheme is needed to
solve them. The power iteration algorithm {PIA) of [2] is actually an iterative scheme to solve
the optimality condition of (3) from which a lower bound for u is then computed. PIA is
computationally efficient if it converges. However, up to this date, there is no formal theory
about convergence, As a matter of fact, current implementations do not necessarily converge
as is demonstrated with an example in section 5. {The continuous time counter part of PIA
[3] seems to have better convergence properties but also lacks a convergence proof). In this
paper we choose the approach of general optimization algorithms. Actually, such an approach
may be regarded as just another iterative algorithm to satisfy the equilibrium conditions,
but now one with guaranteed convergence. The approach also takes into account the highly
regular nature of the constraint in the optimization problem (3), by applying optimization
methods on Riemannian manifolds, making use of intrinsic properties of the manifold.

This paper is organized as follows. Section 2 defines the setting for the derivations in the
next sections, by introducing some theoretical concepts about the set Q of structured unitary
matrices. In sections 3 and 4 the steepest ascent algorithm (SAA) and the conjugate gradient
algorithm (CGA) for the structured singular value problem are derived. Section 5 summarizes
some numerical experiments and section 6 gives the conclusion.

2 The manifold @ of structured unitary matrices

The optimization methods discussed by Smith [5] generalize optimization methods over Eu-
clidean spaces to optimization methods over Riemannian manifolds by making use of intrinsic
properties of the manifold. Straight lines are replaced by geodesics, Tangent vectors at one
point are adapted to other points by parallel translations along geodesics. In this section
we establish some properties of the manifold @ of structured unitary matrices, which will
be needed further on in this paper. If one is willing to accept the formulas for geodesics
and parallel translation as God given, most elements of the next theorem are not needed to
understand the algorithms derived below. For the areligious or agnostic reader we offer:

Theorem 1 i) The manifold Q = {Q € A: QH¥Q = I} = U(n)N A is a Lie group, where
U(n) is the unitary group, !
i1} the tangent space at () € Q equals

TeQ = {TeC™*™T=5Q,5€ A,S"+85=0,}. (4)
The Lie algebra L of Q, identified with the tangent space at the identity, is given by
L£L={SeA|lsH+5=0} (5)

iii) the inner product of tangent vectors A= RQ € TpQ and B = SQ € TgQ with R, S € L,
given by

(4,B) = (R,S)=Te(R7S)=Tx(A" B) (6)
= 2 Z; Re(R;;)Re(S;;) + Im(R; ;) Im(S; ;) (7)
= zn: z"': RB(A;,J‘)RG(B,"J') + Im(A,-'J-)Im(B,-,_,-), (8)

i=1 j=1

defines a bi-invariant Riemannian metric on Q and corresponds to the inner product induced
by the standard inner product in the embedding space C***, identified with R*"’ (Tx(:) denotes
the trace of a matriz) .
v} Given the inner product (6) and the corresponding Riemannian connection, the geodesic,
parameterized by the real parameter t, emanating from @ = Q(0) in a direction SQ is given
by

Q) = exp(5H)Q. (9)
v) Parallel translation of a tangent vector RQ = R{(0)Q(0) € ToQ along the geodesic (9) is
given by

1 1
R(QU) = exp(3SOR() exp(~ £ 5)Q(). (10)
Proof: We refer the reader to [4] for the proof.

We are now in a position to derive a first algorithm to calculate a lower bound for pa.

3 The Steepest Ascent Algorithm

In this section we derive the steepest ascent algorithm (SAA) on the manifold @, solving the
optimization problem as defined by (3). The steepest ascent algorithm (SAA) is an iterative
algorithm, calculating in each step & = 1,2,... a new point ¢4 on the manifold @, given a
point Qr_1. To this end, a (one dimensional) optimization problem, often referred to as line
search, is solved, maximizing p(QM) along a geodesic on Q, emanating from Qx_y in the
direction of the gradient. To simplify some of the calculations, ®(Q) = (p(QM))* will be
used as an objective function, instead of p{QM).

However, (@) is not differentiable at all points @ € Q. Therefore, theoretically, three cases
are to be distingunished.

! For background material about Lie groups we refer to [8, 7).

3

case a: the spectral radius p{QM) corresponds to one eigenvalue of QM with algebraic
multiplicity 1.

case b: the spectral radius p(QM) corresponds to & > 1 eigenvalues of QM with algebraic
mulsiplicity 1.

case c: the spectral radius p(Q M) corresponds to an eigenvalue with algebraic multiplicity
greater than 1,

Case a is generic. Case b is likely o occur at isolated points of some geodesics (when the
absolute value of one eigenvalue crosses the absolute value of another eigenvalue). However,
since p(QM) is defined as max;|A;| where A; are the eigenvalues of @M, and since these
absolute values are smooth functions of @ in a neighborhood of points of case b, the maximum
of p(QM) cannot occur at a point of case b unless p(Q M) and $(Q M} are differentiable at
that point. Case c can be considered pathological and can in general be avoided by some
heuristics (remark 4). The following theorem gives a formula for the gradient in differentiable
points, and shows how the same formula gives an ascent direction (or 0 in a local maximum)
for points of case b. The use of non steepest ascent directions, could theoretically prevent the
ascent algorithm from converging to a local maximum, but only if the ascent direction would
converge to a direction of no change. However, this scenario is excluded by the exceptional
nature of both cases b and c.

Theorem 2 i) Let the spectral radius of X = QM correspond to one eigenvalue A of X
with algebraic multiplicity 1 (case a), and let p be a corresponding right eigenvector and v a
corresponding left eigenvector v, satisfying vFp = 1. The gradient of ®(Q) = p?(QM), at the
point Q € Q, with respect to the inner product (6) is given by

Vo® = 8(Q)GQ where G = n(vp! — po™), (11)
where m denotes the orthogonal projection on A and is given by
7{A) = diaglar]y, ..., oL, Ag 1y .,A;f,ff] for any A € C¥",

where ap = %’I‘I(A,.k,,.k),k =1,..,8 and Ay e k=1,...,8 and Ag 5,1 =1, +, f are the
submatrices of A with the same size and position as §¢ 1., and Ay of A € A respectively. That
is, T zeros elements that have to be zero in A, and averages elements that have to be equal in
A,

ii) If the spectral radius p(QM) corresponds to m > 1 eigenvalues of QM with algebraic
multiplicity 1, then p(QM) is the mazimum of m differentiable functions, corresponding to
the different eigenvalues. For any choice A among these eigenvalues, and the corresponding
right and left eigenvectors p and v, satisfying v¥p = 1, (Q)GQ is the gradient of one of
these m functions, and gives an ascent direction of p(QM) or gives O in a critical point. One
of these choices gives the steepest ascent direction,

Proof: i) Clearly, $(Q)GQ belongs to the tangent space T Q, since

&(Q)w(vp™ — pv¥) is skew Hermitian and belongs to A.

The only thing left to prove is that the directional derivative of & at @ in a direction $@ is
given by (Vo ®,5Q). Or equivalently, if Q(¢) describes some path in Q through ¢ = Q(0),
with velocity Q(0) = SQ € TpQ (thinking of ¢ as time), and &(2) = $(Q(1)) that

$(0) = (V¢®, 5Q) (12)

From X = QM it is clear that X = QM = SQM = SX. And since, by assumption the
spectral radius of X corresponds to only one eigenvalue A, A(t) is differentiable at ¢t = 0 and
MOY=vHXp=0HSXp = HSp 8, 2] Finally, $(0) = £(A*X) = A*X + A*A = X FSp +
A apHSHy = 3(Q)(vHSp — pT Sv) = (5, 8(Q)(vp" — po™)) = (n(5), 2(Q)(wp¥ — po¥)) =
(8, B(Q)m(vp" — pv™)) = (SQ, 8(Q)x(vp™ - pvH)Q), which proves (12).

it) In a neighborhood of @, ®{Q) can now be regarded as the maximum of m functions, that
are equal at Q. The gradient of each of these functions separately is given by ®(Q)GQ, with
one possible choice for A, and the corresponding p and v. These gradients give steepest ascent
directions (or 0 in critical points) for the individual functions, and therefore certainly give
ascent directions for the maximum @(@). One of the gradients corresponds to the steepest
ascent direction. O

Remark 2 Note that this theorem could be easily extended to include repeated full blocks
in the structure, analogous to repeated scalar blocks,

Application of the steepest ascent method to the present problem now yields the following
algorithm.

Algorithm 1 (Steepest Ascent)
1. initialize Qg
2 k=0
3. repeat
4 compute p = p(QrM)
and corresponding right and left eigenvectors p and v,
such that vfp =1
5 G = w(vpH — pofl)
6. t = arg maxeso p{exp{Gt)QrM)
7 Q41 = exp(G)Qx
8 k=k+1
g until convergence

Remark 3 Note that G in the algorithm and G in theorem 2 differ by a factor ${(Q). Since
only the direction of G is important for the algorithm this makes no difference. The exponen-
tiation of exp(Gt) = exp(®(Q)r(vpH — pvH)?) can be calculated from the block components
separately,

exp(Gt) = dia'g[exP(G!‘hfxt)’ e .,exp(G’,,,,.,t),exp(thht), fre exP(foJ_ft)]' (13)

For the caleulation of exp(Gqt) for different ¢, where the index O denotes one of the block
components in (13), the eigenvalue decomposition of Gy needs to be calculated only once. If
the eigenvalue decomposition of Gg is given by Ga = EiDEH, where E¥E = I and D is real
diagonal, exp(Got) is found as:

exp(Got) = Eexp(iDt)EX,

Note that for repeated scalar blocks one finds E = I. For full blocks, more efficient formulas
can be obtained also, by exploiting the fact that the block components of G have rank 2 (if
not 0), but the computational benefit is rather small compared to the cost of the repeated
computation of p, p and v.

Remark 4 For points of case c, calculation of an ascent direction is much more difficult than
for other points, In addition the effort is not worthwhile, as this case does not normally occur
and if it occurs, it can generally be avoided. In most cases, when a point of case ¢ is met
during the line search, one can simply take another point. In many cases points of case c
can be avoided by multiplying @ with U € Q, for which Up = p and U”v = ». In that
case ®(UQ) = ®(Q) but in general UQ will no longer be of case ¢. If none of this works the
algorithm is stopped (and possibly restarted from another initial value), After all, the point
of case ¢, can be a local optimum in contrived examples.

The computationally most expensive steps of the algorithm are the evaluations of the spectral
radius of X and the corresponding right and left eigenvector, These do not only occur in line 4
of the algorithm but mainly in line 6, during the line search. (Actually, except for the first
step in the iteration, nothing needs to be calculated in line 4, since p, p and v were calculated
already during the last execution of line 6). In order to minimize this cost, two things can be
done,

1. The number of eigenvalue/eigenvector calculations is kept low, using an efficient line search
algorithm by Fletcher [9, pp.33]. This algorithm finds a point, satisfying the (modified) Wolfe-
Powell conditions (normally given for minima instead of maxima)

B(t) = (0)+tpr52(0)
120 < opi2@) (14)

where pr and op > pr are fixed parameters, Typically o = 0.5 and pp = 0.01, for a
moderately accurate line search [9, p.30]. Fletcher’s algorithms are designed for smooth
objective functions, but can be easily adapted for the present case, because no optima occur
at-non differentiable points.

2. For the calculation of p, p and v, some profit can be taken from the fact that only the
principal eigenvalue and the corresponding eigenvectors are needed, and the fact that previ-
ous calculations for nearby X provide good initial estimations, Both the well known power
algorithm (not to be confused with the PIA for the structured singular value, called power
algorithm for its resemblance with the classical power algorithm) and the inverse iteration
algorithm can save a lot of computations. However, the power algorithm is not efficient if the
maximal eigenvalue of X is not well separated (in absolute value) from the other cigenvalues,
and the inverse iteration algorithm can converge to the wrong eigenvector with a bad initial
guess for the eigenvalue. Therefore, the prize of the computational improvement, is an amount
of heuristic rules to handle the distinction between different cases, or the loss of theoretically
guaranteed convergence to a local optimum. However, our experience shows that problems
are rare and efficiency can be increased, when the line search is made more robust against
inaccurate gradient information. In most numerical experiments however we have used the
MATLAB function “eig” [10], to calculate a full eigenvalue decomposition. Also in that case
the efficiency of the algorithm is fully acceptable,

4 The Conjugate Gradient Algorithm

In this section we derive the conjugate gradient algorithm (SAA) on the manifold @, solving
the optimization problem as defined by (3). For the conjugate gradient algorithm (CGA)
the search direction at a point 4 is determined in most steps by the gradient at Qj and

the previous search direction at Qx_1. In most versions, the gradient direction itself is taken
every n-th step (where » is the problem dimension). Smith proposes the following formula
for the search direction Hy@, at a point Qi using the gradients GrQ and Gr_1@ and the
previous search direction Hr_1Q. It is very similar to the classical formula for the CGA in
Euclidean spaces, but tangent vectors at the point Q1 from the previous iteration step, are
adapted to Q; by paralle] translation along the geodesic through Q. and Q.

Hiy =G +v7Hi
where
Ti = (Gk - TGA‘—I) Gk)
(Gk-—l s Hk—l)
where 7 denotes parallel translation from Qj_; to Q, applied to matrices § € £ representing

a tangent vector 5¢) at Q. It follows from theorem 1 that v Hy_y = Hji_;. To calculate 7G4
formula (10) is needed. This leads to the following algorithm,

Algorithm 2 (Conjugate Gradient)

1, inttialize Qo
2 k=0
3. repeat
y compute p = p(QxM)
and corresponding right and left eigenvectors p and v,
such that vip =1

5. Gy = ®(Q)n(vp¥ - pv)
é. if (k mod n) = 0 then Hy = Gy,
7. else TGp_y = exp(%Hk_lt)Gk...1 exp(-—%Hk,dt)
8 ¥ = Gr=7Gx_1,Gk

k=111
9. Hy=Gp+vHp
10. t = arg maxy o p{exp{Hit)Q M)
i1. Qr41 = exp(Hpt)Qx
12 k=k+1
138, until convergence

Remark § For the calculation of exp(H¢t) for different values of ¢, the same remark holds as
for the SAA (remark 3).

Remark 8 For the line search of line 10, the same strategy as for the SAA is used, However,
since the performance of the CGA is more sensitive to the quality of this line search, the
conditions (14) are made stronger by taking or = 0.1 (pp = 0.01) {9, p.85].

The CGA is known to have better convergence properties than the SAA. The additional
cost of computing the conjugate gradient search direction is small compared to the cost of
the function evaluations and gradient calculations, especially when the structured matrices
consist of small blocks, since these computations can be performed on the block components
separately. However, due to the stronger requirements for the line search (remark 6), indi-
vidual iterations may require more computations. In section 5 we show that for the present
problem, both algorithms are more or less equivalent. CGA can be preferred if accuracy is
important.

5 Comparison with the power iteration algorithm and nu-
merical experiments

In this section we support our theoretical results with numerical experiments, and give an
idea of the efficiency of our algorithms and compare them with the PIA as implemented in
the MATLAB p toolbox [11]. The MATLAB code, used for these experiments, is available
via anonymous {tp from gate@esat.kuleuven.ac.be in /pub/SISTA/dehaene/prog/cemu.

The derivation of the power iteration algorithm (2] starts from conditions for a locally optimal
value of s14, to obtain a computationally cheap iteration scheme, which, if it converges, finds
a local optimum. Convergence however is not guaranteed. Qur algorithms have been designed
in the first place as convergent algorithms, but require more computations, We propose to
use both algorithms together, for example first try the power iteration algorithm, and if it
doesn’t converge within a preset time limit, use the SAA or CGA.

In experiments below we have always used the same convergence test. The algorithm stops if
the norm of the gradient drops below 1E-3, or if the relative increase of ® drops below 1E-3
for 2 consecutive steps.

One example of a simple problem for which the PIA does not converge is

1.0308 0.7611 -0.3225
M =1 -07599 -0.1659 -0.3684
0.8741 0.3009 1.1479

with eigenvalues 0.8678 £ 0.7474i (corresponding to spectral radius p(M) = 1.1453) and
0.2773, and the block structure of s = 1, f = 1, 7y = 2 and my = 1 (one repeated scalar block
of dimension 2 X 2 and one full block with dimension 1 x 1. The PIA gives a lower bound of
1.2745, while inspection inside the MATLAB implementation of the algorithm reveals non-
convergent behavior. Fig, 1 shows the evolution of the variable 8 which should converge to a
locally optimal pza. The CGA and the SDA, with MATLAB complete eigenvalue/eigenvector
caleulation or with power iterations or inverse iterations (see section 3), all give answers
in the range [1.3840 1.3846). Real matrices with complex eigenvalues, often give rise to a
similar situation. It should be emphasized that these examples can be relevant for practical
applications.

Fig. 2 compares the computational cost of SAA, the CGA and PIA, for complex matrices with
different sizes and a similar block structure, consisting of two repeated scalar blocks of size
z and two full blocks of size z, where z = 1,...,10, 'The matrices were generated at random
and for each size the computational cost was averaged over 10 matrices. Experiments with
different block structures give no significant difference. Both the SAA and the CGA are less
efficient than the PIA. However the computational efficiency of the SAA or the CGA is still
acceptable. A considerable improvement is already realized by calculating the eigenvectors
and eigenvalues with power iterations or inverse iterations (see section 3). For both power
iterations and inverse iterations the same convergence test was used, stopping the iterations
if the change in one iteration of the eigenvector being calculated drops below 1E-3. For power
iterations a (seldomly reached) upper limit of 1000 iterations was set. For inverse iterations
this limit was set to 100 iterations. If the limit is reached the eigenvectors and eigenvalues
are calculated with MATLAB function “eig”. Fig. 3 shows the result for matrices of different
sizes, generated in the same way as for the comparison of the SAA and the CGA (figure 2),
Note that power iterations and inverse iterations require approximately the same number of
operations,

LB

1.45F

14t

5 1 A N I L L L 1 i
[} 5 19 15 20 25 30 35 40 45 50

Number of iterations

Figure 1: The evolution of the estimate 8 of the structured singular value in PIA algorithm
shows non-convergent behavior. § eventually evolves in a limit cycle

x10°

flops

Figure 2: Number of floating point operations for CGA (full line —), SAA (dashed line ———)
and PIA (dotted line .-}, for matrices with different sizes and a block structure, consisting
of two repeated scalar blocks of size z and two full blocks of size z, where 2 = 1,.. ., 10,

X190

o0

ﬂgps

Figure 3: Number of floating point operations for SAA, with full eigenvector/eigenvalue
computation with the MATLAB function “eig” (full line —), with power iterations (dashed
line — — —), with inverse power iterations (dotted line - - -) and for PIA (dash-dot line - —.—).

6 Conclusion

Using the theory of gradient based optimization on Riemannian manifolds, we have derived
steepest ascent and conjugate gradient algorithms for the structured singular value problem,
with acceptable efficiency and with guaranteed convergence to a locally optimal lower bound
for the structured singular value,

References

[1] J.C.Doyle, “Analysis of feedback systems with structured uncertainties”, IEE Proceedings,
Vol. 129, pp. 242-250, 1982,

[2] A. Packard, M.K.H. Fan J. Doyle, “A power method for the structured singular value de-
composition”, Proceedings of the 27th Conference on Decision an Control, Austin, Texas,
December 1988, pp. 2132-2137.

[3] YI Cheng and Bart De Moor, “Continuous time power iteration for computing lower bound
of p”, Proceedings of the 1994 American Control Conference, Baltimore, Maryland, June
29 - July 1, 1994, pp. 1416-1417.

[4] Jeroen Dehaene, Cheng Yi and Bart De Moor, “Calculation of the structured singular
value with gradient based optimization algorithms on a Lie group of structured unitary
matrices”, Internal report (ESAT-SISTA/TR 1994-46I), Departement Electrotechniek,
Katholieke Universiteit Leuven, 1994, submitted to IEEE Trans. AC.

[5] S.T. Smith, “Geometric Optimization Methods for Adaptive Filtering”, PhD, thesis, Har-
vard University, Cambridge, Massachusetts, May 1993,

10

(6] D.H. Sattinger and O.L. Weaver, “Lie Groups and Algebras with Applications to Physics,
Geometry and Mechanics”, Applied Mathematical Sciences, Vol.61, Springer-Verlag, New
York, 1993.

(7] S. Helgason, “Differential Geometry, Lie Groups and Symmetric Spaces.” Academic Press,
New York, 1978.

(8] Kato, T\ “A short introduction to Perturbation Theory for Linear Operators” Springer-
Verlag, 1982,

(9] Fletcher R., “Practical Methods of Optimization”, Wiley & Sons, Chichester, 2nd ed.
(repr.), 1993.

[10] The MathWorks Inc., “MATLAB Reference Guide”, Natick, Massachusetts, 1992,

[11] G.J. Balas, J.C. Doyle, K. Glover, A, Packard and R. Smith, “4-Analysis and Synthesis
Toolbox”, The Math Works Inc., 1993.

11

