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Abstract. In this paper, a new tool in multilinear algebra is highlighted: a higher-order generalization of the Singular

Value Decomposition. We will show that this decomposition can be used to solve the blind source separation problem

in Higher-Order Statistics. The derivation of the algorithm is established under noise-free conditions. It is indicated

how to proceed for noisy environments. The approach o�ers considerable conceptual insight, e.g. it allows a further

interpretation of Independent Component Analysis as the higher-order re�nement of Principal Component Analysis.

1 Introduction

This paper deals with the problem of blind source separation.

This problem can be stated as follows. Consider the linear

transfer of a zero-mean stochastic \source vector" X to a

zero-mean stochastic \output vector" Y when additive noise

N is present:

Y =MX +N (1)

The components of X are statistically independent and the

matrix M has linearly independent columns. The goal of

blind source separation now consists of the determination

of M and the corresponding realizations of X, given only

realizations of Y . We will assume for convenience that the

matrixM is square.

As illustrated in Section 4.1, only the column space of

M can be identi�ed when only second-order statistical in-

formation on Y is used and no extra constraints are added.

In \Principal Component Analysis" (PCA) the solution is

made essentially unique by selecting a matrix with orthonor-

mal columns. To solve the initial problem however, one has

to resort to the higher-order statistics of Y .

In recent years a lot of work has been done with respect

to blind source separation. The approaches of Comon and

Cardoso play a fundamental role here: starting from the ob-

servation that the higher-order statistics of a stochastic vec-

tor are higher-order tensors, they tackled the problem by the

development of multilinear decomposition techniques. These

decompositions are not only important for their application

in higher-order statistics; they can also be considered as fun-

damental new tools in the general framework of tensor al-

gebra. (We should motivate at this point the nomenclature

adopted in this paper. We will use the term \higher-order ar-

ray" to denote a higher-order table of numerical values. The

term \higher-order tensor" is reserved for higher-order arrays
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that behave in a particular way under coordinate transforma-

tions of an underlying vector space, e.g. the space on which

the stochastic vector is de�ned for the case of higher-order

statistics [1].)

In [2] the blind source separation problem is solved in a

two-step procedure. In the �rst step the estimated sources

are made uncorrelated by a congruence transformation of the

output covariance matrix. In the second step the remaining

statistical dependence is minimized by diagonalizing, as far

as possible, a higher-order output cumulant. This leads to

a higher-order extension of the Jacobi-method for computa-

tion of the Eigenvalue Decomposition (EVD) of a Hermitean

matrix. Due to the minimization of statistical dependence,

the way of analysis is called \Independent Component Anal-

ysis" (ICA). [3] follows a two-step procedure too. The second

step consists here of a generalized EVD of the fourth-order

output cumulant. In [4] it is proved that, although the con-

gruence transformation of a Hermitean matrix is underdeter-

mined and unicity usually obtained by putting orthogonality

conditions, the appropriate fourth-order generalization is es-

sentially unique under less stringent conditions of symmetry

and linear independence. The resulting \Super-Symmetric

Decomposition" o�ers the possibility to identify more sources

than there are sensors available, making use of higher-order

statistics only. [5, 6] describe a trade-o� for the same idea:

the assumption that the number of sources does not exceed

the number of sensors leads to an implementation that is

more robust towards perturbation of the data.

In this paper another tool in multilinear algebra is high-

lighted. For the the third-order case, the basics have been

developed in the �eld of Psychometrics [7]. We have inves-

tigated the proposed way of data analysis from an algebraic

point of view and proved that it yields a generalization of the

Singular Value Decomposition (SVD) to the case of higher-

order arrays. Many properties, like e.g. the link with the

EVD, have already been generalized. They all show a strong

analogy between the matrix and the higher-order case [8, 9].

The paper is organized as follows. Section 3 introduces

the concept of Higher-Order Singular Value Decomposition

(HO SVD). The model is �rst proposed for the general case

of an Nth-order array with complex elements. For reasons

of clarity, the furher discussion will be restricted to third-



order arrays with real elements. We will show the analogy

between the third-order decomposition and the classical ma-

trix decomposition, and demonstrate how the HO SVD can

be computed. In Section 4 we derive a new algorithm to

perform the blind source separation, based on HO SVD. It

will bring up an interesting relationship between PCA and

ICA.

2 De�nitions and notations

2.1 Scalar product, orthogonality, norm of

higher-order arrays

Geometrical conditions to be discussed in Section 3, that

replace the morphological constraint of diagonality of the

matrix of singular values in the second-order case, make it

necessary to generalize the well-known de�nitions of scalar

product, orthogonality and Frobenius-norm to arrays of arbi-

trary order. Consider two Nth-order (I

1

�I

2

� : : : I

N

)-arrays

� and 	 with complex elements, then we have:

De�nition 1 The scalar product h�;	i of two arrays �;	 2

C

I
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2
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in which � denotes the complex conjugation.

Due to the generalization of the scalar product it be-

comes possible to treat arrays in a geometrical way. We

have e.g.:

De�nition 2 Arrays of which the scalar product equals 0,

are mutually orthogonal.

De�nition 3 The Frobenius-norm of an array � is given by

k�k

def

=

p

h�;�i (3)

The Frobenius-norm can be interpreted as the \size" of

the array. The square of this norm can be seen as the \en-

ergy" in the array.

2.2 Multiplication of a higher-order array by a

matrix

De�nition 4 The n-mode product of � 2 C
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The n-mode product of a higher-order array and a ma-

trix is a special case of the inner product in multilinear al-

gebra [10] and, more generally, tensor analysis [11]. In lit-

erature it is mostly denoted using the Einstein summation

convention, i.e. the summation sign is dropped for the index

that is repeated. Especially in the �eld of tensor analysis

this approach is advantageous, since an Einstein summation

can be proved to have a basis-independent meaning. For our

purpose however, the use of the �

n

-symbol will more clearly

demonstrate the analogy between matrix and array SVD.

Corollary 1 Given the array � 2 C

I
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n
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(��

n

F)�

m

G = (��

m

G)�

n

F = ��

n

F�

m

G (5)

Corollary 2 Given the array � 2 C
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Example 1 For the real matrices F 2 R

I
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2
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3 The Higher-Order Singular Value De-

composition

3.1 The HO SVD-model

Theorem 1 Every complex (I

1
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)-array � can

be written as the product
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in which:
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of which the subarrays �

i

n

=�

, obtained by �xing the

nth index to �, have the properties of:

- all-orthogonality: two subarrays �
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- ordering:
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for all possible values of n.

The Frobenius-norms k�

i

n

=i

k, symbolized by �

(n)

i

, are

the n-mode singular values of � and the vector u

(n)

i

is the

ith n-mode singular vector.

Proof: see [9].

3.2 Interpretation

For clarity the interpretation as well as the further discussion

will be restricted to third-order arrays with real elements. So

consider � 2 R

I�J�K

and assume its HO SVD is given by:

� = � �

1

U�

2

V�

3

W (11)

in which the real matrices U;V;W are orthogonal and the

core array � is real, all-orthogonal and ordered. This de-

composition is visualized in Figure 1.
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Figure 1. Visualization of the HO SVD for a third-order

array.

Eq. (11) should be compared to the expression for the

SVD of a real (I�J)-matrix F, which in our notation reads:

F = S�

1

U�

2

V (12)

in which the matrices U;V are orthogonal and the \core

matrix" S is diagonal and contains r strict positive elements,

put in non-increasing order (see also Figure 2).

Clearly eq. (11) is a formal generalization of eq. (12).

Moreover, it can be proved that the HO SVD of a second-

order array boils down to its matrix SVD [9].

3.3 Calculation

Reorganisation of eq. (11) in a matrix format shows that the

matrices U, V and W can be calculated as the left singular

matrices of the (I � JK), (K � IJ) and (J � KI) matrix

unfoldings of �, de�ned in accordance with Figure 3.

The core array is obtained by bringing the matrices in

eq. (11) to the other side:

� = � �

1

U

t

�

2

V

t

�

3

W

t

(13)

The way of calculation and the ordening constraint on

the core array show that the HO SVD obeys analog unicity

properties as its matrix equivalent: in the generic case, the

singular vectors are determined up to the sign. When the

sign of a singular vector is changed, the sign of the corre-

sponding subarray in � alters too.

4 Application to blind source separation

We consider the noise-free version of eq. (1):

Y =MX (14)

The separation problem will be solved by factorisation of the

transfer matrix:

M = TQ (15)

in which T is regular and Q is orthogonal.
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Figure 2. Visualization of the matrix SVD.
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Figure 3. Unfolding of the (I � J � K)-array � to an

(I � JK)-matrix.

In a �rst stepT will be determined from the second-order

statistics of the output Y . The resulting degree of freedom,

the orthogonal factor Q, is recovered from the higher-order

statistics of Y .

4.1 Step 1: determination of T from the

second-order statistics of Y

The covariance C

Y

2

of Y is given by

C

Y

2

=MC

X

2

M

t

(16)

in which the covariance C

X

2

of X is diagonal, since we claim

that the source signals are uncorrelated. Assuming that the

source signals have unity variance, we get:

C

Y

2

=MM

t

(17)

This assumption means just a scaling of the columns of M

and is not detrimental to the method's generality: it is clear

that M can at most be determined up to a scaling and a

permutation of its columns.

We can conclude from eq. (17) that M can be deter-

mined, up to an orthogonal factor Q, from a congruence

transformation of C

Y

2

:

C

Y

2

=MM

t

= (TQ)(TQ)

t

= TT

t

(18)

One alternative is the computation, like in PCA, of the EVD

of C

Y

2

:

C

Y

2

= ED

2

E

t

= (ED)(ED)

t

(19)

When the output covariance is estimated following C

Y

2

=

A

Y

A

t

Y

in which A

Y

is an (I �N)-dimensional dataset con-

taining N realizations of Y , then the factor (ED) can be

obtained in a numerically more reliable way from the SVD

of A

Y

[12].

4.2 Step 2: determination of Q from the

higher-order statistics of Y

The third-order cumulant of Y is given by

C

Y

3

= C

X

3

�

1

M�

2

M�

3

M (20)

in which the third-order cumulantC

X

3

of X is diagonal, since

we claim that the source signals are also higher-order inde-

pendent. Substitution of eq. (15) in eq. (20) yields

� = C

X

3

�

1

Q�

2

Q�

3

Q (21)



in which the tensor � is de�ned as:

�

def

= C
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3
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(22)

Hence, due to the unicity property in Section 3.3, Q can be

obtained from the HO SVD of �. (Eq. (21) is the third-order

equivalent of the EVD of symmetric matrices.)

The transfer matrixM is now given by eq. (15). The (I�

N)-matrix A

X

, containing the corresponding N realizations

of X, is then obtained from the set of linear equations:

MA

X

= A

Y

(23)

5 Discussion and conclusions

� We generalized the Singular Value Decomposition of

matrices to the higher-order case. It was shown that

this decomposition provides a way to solve the blind

source separation problem.

� We want to stress the conceptual importance of the

new approach. It reveals an important symmetry when

considering the problems of PCA and ICA. In \clas-

sical" second-order statistics, the problem of interest

is to remove the correlation from data measured after

linear transfer of independent source signals. The key

tool to realize this, comes from \classical" linear alge-

bra: it is the matrix SVD. More recently, researchers

also aimed at the removal of higher-order dependence,

which is a problem of Higher-Order Statistics. We

proved that one can resort to a tool from multilinear

algebra, which is precisely the generalization of the

SVD for higher-order tensors.

� One could think of incorporating the symmetry prop-

erties of � in existing algorithms, when computing the

left singular matrix from the matrix unfolding of �.

This would lead to a speed-up.

� For the application in the presence of noise, we make

the distinction between the in
uence of Gaussian and

non-Gaussian noise.

Additive Gaussian noise in eq. (1) doesn't a�ect the

higher-order cumulant of Y . Hence its e�ect can be

neutralized by replacingC

Y

2

in Section 4.1 by the noise-

free covariance C

Y

2

��

2

I, in which �

2

is the noise vari-

ance on each data channel and I is the identity matrix.

In a more-sensors-than-sources setup, �

2

can be esti-

mated as the mean of the \noise-eigenvalues" of C

Y

2

.

The presence of non-Gaussian noise additionally makes

that the third-order cumulant of Y can no longer be di-

agonalized, but the HO SVD will still yield three equal

matrices of singular vectors, and the core tensor will be

all-orthogonal and symmetric (invariant under permu-

tation of its indices). The perturbation of the singular

vectors and the core tensor will for su�ciently high

signal-to-noise ratios be in the same order of magni-

tude as the perturbation of the third-order cumulant.

This is due to the fact that the Unordered-Unsigned

SVD (USVD) is analytic in the variation of parame-

ters [13, 14]. In [9] explicit perturbation expressions

have been derived for the HO SVD. One could possi-

bly think of an extra optimization step (like [2]), using

the perturbation results of the HO SVD as an analytic

lower-bound of performance.
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