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Abstract We define a nonlinear generalization of 
the singular value decomposition (SVD), which can 
be interpreted as a restricted SVD with Riemannian 
metrics in the column and row space. This so-called 
Riemannian SVD occurs in structured total least squa- 
res problems, for instance in the least squares a p  
proximation of a given matrix A by a rank deficient 
Hankel matrix B, which is an important problem in 
system identification and signal processing. Several 
algorithms to find the 'minimizing' singular triplet 
are suggested, both for the SVD and its nonlinear 
generalization. This paper reveals interesting con- 
nections between linear algebra (structured matrix 
problems), numerical analysis (algorithms), optimiza- 
tion theory, (differential) geometry and system the- 
ory (differential equations, stability, Lyapunov func- 
tions). We give some numerical examples and also 
point out some open problems. 

1. Introduction 

Since the work by Eckart-Young [la], we know how to  
obtain the best rank deficient least squares approx- 
imation of a given matrix A E R P X q  of fulI coIumn 
rank q.  This approximation follows from the SVD of 
A by subtracting from it the rank one matrix u.u.vT, 
where (U,  0, v) is the singular triplet corresponding to 
the smallest singular value c, which satisfies 

AV = uu ,ATu = V U ,  U ~ U  = 1 ,  vTv = 1 .  (1) 

Here U E Ikp and v E Rn are the corresponding left 
resp. right singular vector. When formulated as an 
optimization problem, we obtain 
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the solution of which follows from (1) as B = A - 
u.u.wT, y = PI. The vector y describes a linear rela- 
tion between the columns of the approximating ma- 
trix B ,  which therefore is rank deficient as required. 
This problem is also known as the Total (Linear) 
Least Squares (TLS) problem and has a long his- 
tory (see e.g. the references in [21]). Often, for 
applications in statistics, signal processing and sys- 
tem identification, the objective function in (2), IIA - 
Bll$ = xjQ=l(aij  - b i j ) 2 ,  is extended with user- 
defined 'elementwise' nonnegative weights wij  and, in 
addition, the approximating rank deficient matrix B 
is required to have some structure (such as Hankel, 
Toeplitz, etc.. .), in which case we have the structured 
total least squares problem: 

D O  

rank(B) = q - I 
B structured 

The results in this paper apply to so-called uBne 
matrix structures, i.e. structured matrices B that 
can be written as an affine (linear) combination of 
a given set {Bk; k = 0,. . . , N} of basis matrices as 
B = Bo + BlPl + . . . + BN,BN. Here, the coeffi- 
cients P k ,  k = 1, . . ., N 'parametrize' the structured 
matrix B. Examples of such structured matrices are 
(centro- and per-) symmetric matrices, (block-) Han- 
kel, (block-) Toeplitz, (block-) circulant, Brownian, 
Hankel + Toeplitz, etc . . . . Hankel matrices in par- 
ticular have important applications in systems and 
control theory. More specifically, when a Hankel ma- 
trix is rank deficient (of rank r ,  say), it contains the 
Markov parameters of an r-th order linear time in- 
variant system. But in general there are many other 
applications where it is required to find rank deficient 
structured approximants [8] [9] [lo]. For instance, a 
special case of (3) occurs when no particular struc- 
ture is imposed onto B, but there are still weights 
wi j  in the objective function. An example of such 
a weighted total least squares problem is given by 
chosing wij = l / c ~ ? ~ ,  in which case one minimizes (a 
first order approximation to) the sum of relative er- 
rors squared (instead of the sum of absolute errors 
squared as in (2)). Another example corresponds to 
the choice w i j  E (1, +CO} in which case some of the 



elements of B will be the same as corresponding el- 
ements of A (namely the ones that correspond to a 
weight wij = +CQ, see the Example in Section 4) .  Yet 
other examples of weighted TLS problems are given 
in [B ]  [9]. 
The main result in this paper, which was derived in 
[ B ] ,  states that the problem (3) can be solved by ob- 
taining the singular triplet ( U ,  U ,  U) that corresponds 
to the smallest singular value U in 

AV = D,uu , uTD,u = 1 ,  
T ATu = D,vu,  U D , v = 1 .  (4)  

Notice the similarity with the SVD expressions in 
(1). Here A is the structured data matrix that one 
wants to approximate by a rank deficient one. D, and 
D, are nonnegative or positive definite matrix func- 
tions of the components of the left and right singu- 
lar vectors U and v. Their precise structure depends 
on the weights and/or the required affine structure 
of the rank deficient approximant B. To give just 
one example, let us consider the approximation of a 
full column rank Hankel matrix A E R P X q , p  2 q ,  
rank(A) = q ,  by a rank deficient Hankel matrix B 
such that IIA - Bllg is minimized. In this case, the 
matrix D, has the form D, = T, W - l F  where 

W = d i a g [ l 2 3  . . .  q q  . . . q  . . .  3 2 1 1 ,  
( p - q + l )  times 

and T, is a banded Toeplitz matrix (illustrated here 
for the case p = 4, q = 3) of the form: 

211 212 U3 0 0 0 
0 211 212 U3 0 0 

0 0 0 211 212 U 3  

Similarly, D, = T,W-lC.  Obviously, in this exam- 
ple, both D, and D, are positive definite matrices. 
Observe that B has disappeared from the picture, as 
it does not appear in (4)  (neither does it in (l)), but 
it can be reconstructed as 

1 .  Tu= ( 0 0 211 212 U3 0 

B = A - multilinear function of ( U ,  U ,  U) . 
The modification to A no longer is a rank one matrix 
as is the case with the 'unstructured' TLS problem 
(2). Instead, the modification is a multilinear func- 
tion of the 'smallest' singular triplet, the detailed for- 
mulas of which can be found in [ B ]  [9]. We are in- 
terested in finding the smallest singular value in (4) 
because it can be shown that its square is precisely 
equal to the objective function: 

P Q  

C ( a i j  - b j j ) ? W j j  = Ukin . (5) 
i = l  j=1 

In the special case that D, = I, and D, = I, we 
obtain the SVD expressions (1). In the case that D, 
and D, are fixed positive definite matrices that are 
independent of U and U, one obtains the so-called Re- 
stricted SVD, which is extensively studied in [6] to- 
gether with some structured/weighted TLS problems 
for which it provides a solution. In the Restricted 
SVD, D, and D, are positive (or nonnegative) defi- 
nite matrices which can be associated to a certain in- 
ner product in the column and row space of A. Here 
in (4) ,  D, and D, are also positive (nonnegative) 
definite, but instead of being constant, their elements 
are a function of the components of U and U. It turns 
out that we can interprete these matrices as Rieman- 
nian metrics, an interpretation which might be useful 
when developping new (continuous-time) algorithms. 
For this reason, we propose to call the equations in 
(4), the Riemannian SVD ' .  
The remainder of this paper is organized as follows: 
In Section 2, we derive some continuous-time algo- 
rithms for the symmetric and non-symmetric eigen- 
value problem, or more precisely, vector differential 
equations that converge to the smallest eigenvalue 
and corresponding eigenvector. We also provide some 
(differential) geometrical and numerical interpreta- 
tions. These results are then applied in Section 3 
for deriving continuous-time algorithms for the small- 
est singular value of a matrix, which then leads to a 
heuristic algorithm for the smallest singular value of 
a Riemannian SVD, which is the subject of Section 
4. One of the goals of this paper is to point out sev- 
eral interesting connections between linear algebra, 
optimization theory, numerical analysis, differential 
geometry and system theory. Continuous time algo- 
rithms for solving and analyzing numerical problems 
have gained considerable interest the last decade or 
so (see e.g. [3] [4] [5] [ll] [15] [14] [20]). Roughly 
speaking, a continuous-time method involves a sys- 
tem of matrix or vector differential equations. The 
idea that a computation can be thought as a flow 
that starts at a certain initial state and evolves un- 
til it reaches an equilibrium point (which then is the 
desired result of the computation) is a natural one 
when one thinks about iterative algorithms and even 
more, about recent developments in natural infor- 
mation processing systems related to artificial neural 

'This name is slightly misleading in the sense that we do 
NOT want to suggest that there is a complete decomposition 
with min(p, q )  different singular triplets, which are mutual 'in- 
dependent' ('orthogonal') and which can for instance be added 
together to give an additive decomposition of the matrix A 
(the dyadic decomposition). There might be several solutions 
t o  (4) (for some examples, there is only one), but since each of 
these solutions goes with a different matrix D, and D,, it is 
not exaclty clear how these solutions relate to each other, let 
alone that they would add together in one way or another to 
obtain the matrix A.  
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networks ’. There are several reasons why the study 
of continuous time algorithms is important. Contin- 
uous time methods can provide new additional in- 
sights with respect to and shed light upon existing 
discrete time iterative or recursive algorithms. In 
many cases, continuous-time algorithms provide an 
alternative or sometimes even better understanding 
of discrete-time versions (e.g. in optimization, see 
the continuous-time version of interior point tech- 
niques in [13, p.1261, or in numerical analysis, the 
self-similar iso-spectral (calculating the eigenvalue de- 
composition) or self-equivalent (singular value decom- 
position) matrix differential flows (see e.g. 141 [15]). 
It is not our intention to claim that these continuous- 
time algorithms are in any sense competitive with 
classical algorithms from e.g. numerical analysis. Yet, 
there are examples in which we have only continuous- 
time solutions and for which the discrete-time itera- 
tive counterpart has not yet been derived. 

2. Continuous-time eigenvalue algorithms 

Let us now consider a continuous-time algorithm for 
the symmetric eigenvalue problem: Given a matrix 
C = CT E R P x P ,  find at least one pair (.,A) with 
x E R P  and X E R such that 

e x  = X X  , xTx  = 1 .  ( 6 )  

Here we will concentrate on power methods, both in 
continuous and discrete time. The continuous-time 
power methods are basically systems of vector differ- 
ential equations. Some of these have been treated in 
the literature (see e.g. [4] [14] [20]). Others presented 
here are new. The geometric interpretation of the 
symmetric eigenvalue is as follows: Consider the two 
quadratic surfaces xTCx  = 1 and xTx  = 1. While 
the second surface is the unit sphere in p dimensions, 
the first surface can come in many disguises. For 
instance, when C is positive definite, it is an ellip- 
soid. In three dimensions, depending on its inertia, it 
can be a one-sheeted or two-sheeted hyperboloid or a 
(hyperbolic) cilinder. In higher dimensions, there are 
many possibilities, the enumeration of which is not 
relevant right now. In each of these cases, the vec- 
tors C x  and x are the normal vectors at x to the two 
surfaces. Hence, when trying to solve the symmet- 
ric eigenvalue problem, we are looking for a vector I 
such that the normal at x to the surface xTCx = 1 
is proportional to the normal at x to the unit sphere 
xTx  = 1. The constant of proportionality is precisely 
the eigenvalue A.  The variational characterization of 
the minimal eigenvalue of a symmetric matrix, follows 
from the following optimization problem: 

min f ( x )  = x T c x  s.t. x T x  = 1 . 
x E R P  (7) 

2Specifically for neural nets and SVD, we refer to e.g. [I] 
[2] [5]  [16] [17] (and the references in there). 

The Lagrangian for this constrained problem is L ( x ,  A) 
= xTCx  + X ( l  - x T x )  , where X E R is a scalar 
Lagrange multiplier. The necessary conditions for 
a stationary point follow from V,L(x ,A)  = 0 and 
V x L ( x ,  A) = 0 ,  and will correspond exactly to the two 
equations in (6). Observe that these equations have 
p solutions (2 ,  A) while we are only interested in the 
minimizing one. We can also derive a so-called gradi- 
ent f low for this optimization problem, which is a set 
of nonlinear differential equations, which evolves on 
the manifold defined by the constraints. For the sym- 
metric eigenvalue problem (6 ) ,  the set of vectors that 
satisfies the constraints is the unit sphere, which is 
known to be a manifold M = { x E R P  I xTx  = 1 } . 
The tangent space at x is given by the vectors z that 
belong to T x M  = { z E R P  1 zTx  = 0 } . The direc- 
tional derivative Dxg(z )  is the amount by which the 
objective function changes when moving in the di- 
rection z of a vector in the tangent space: Dxg(z)  = 
xTCz.  Next, we can choose a Riemannianmetric rep- 
resented by a smooth matrix function W ( x )  which is 
positive definite for all x E M .  It is well known (see 
e.g. [14]) that, given the metric W ( x ) ,  the gradient 
V g  can be uniquely determined from two conditions: 
1. Compatibility: Dxg(z)  = zTCx  = z T W ( x ) V g ,  
and 2. Tangency: Vg E T x M  U xTVg = 0.  
The unique solution to these two equations applied 
to the constrained optimization problem (7) results 
in the (negative) gradient, given by the right hand 
side of the following gradient flow: 

) . (8) 
x T W ( x )  -1cx  

X T  W (  x )  - 1 2  
j. = - w ( x ) - l ( c x  - x 

It is easily seen that the stationary points of this sys- 
t.em must be eigenvector-eigenvalues of the matrix C. 
Convergence is guaranteed because one can easily find 
a Lyapunov function (essentially the norm of the gra- 
dient) using the chain rule (see [14] for details). Ob- 
serve that the norm Ilx(t)I( is constant for all t .  This 
can be seen by substituting (8) into 

Hence, if Ilx(0)II = 1,  we have Ilx(t)II = l , W  > 0.  An 
interesting open problem is how to chose the metric 
W ( P )  such that for instance the convergence speed 
could be optimized, or how an appropriate metric 
might lead to an elegant discrete-time integration al- 
gorithm. If we choose the Euclidean metric, W ( x )  = 
I,, , we obtain the following continuous-time power 
method: 

XTCX 
x = - c x  + x- 

X T X  (9) 

This flow can also be interpreted as a special case of 
Brockett’s [3] double bracket flow (see [15]). Another 
interesting interpretation is the following: Define the 
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residual vector ~ ( t )  = Cx - x ( r T C x / z T x ) .  Then the 
differential equation (9) reads 

(10) k = -r( t )  . 

Hence, the differential equation is driven by a residual 
error and when T ( t )  = 0, we also have x = 0 so that 
a zero residual results in a stationary point. More- 
over, using a little known fact in numerical anaylsis 
[18, p.691 we can give a backward error interpreta- 
t ion as follows. Define the rank one matrix M ( t )  = 
~ ( t ) . x ( t ) ~ .  Then we easily see that 

(C - M ( t ) ) x ( t )  = z(t)X(t)  

with X(t) = ( ~ ( t ) ) ~ C z ( t ) / ( x ( t ) ~ z ( t ) ) .  The interpre- 
tation is that, at any time t ,  the real number X ( t )  
is the exact eigenvalue of a modified matrix, namely 
C - M ( t ) .  The norm of the modification is given 
by IIM(t)ll = IIr(t)ll, which is the norm of the resid- 
ual vector and from the convergence, we know that 

The surprising fact about the nonlinear differential 
equation (9) is that it can be solved analytically. Its 
solution is 

IIM(t)ll + 0 as t + 00. 

which can be verified by direct substitution. If we 
consider the analytic solution at integer times t = 
IC = 0,1,2,. . . , we see that 

which shows that the continuous time equation (9) 
interpolates the discrete time power method. Obvi- 
ously, the stationary points (points where i = 0) are 
the eigenvectors of C ,  but there is only one stationary 
point that is stable (as could be shown by linearizing 
(9) around all the stationary points and calculating 
the eigenvalues of the linearized system). The solu- 
tion for the linear part in (9) (the first term of the 
right hand side) is x ( t )  = exp(-Ct)x(O). The second 
term is a normalization term which at each time in- 
stant projects the solution of the linear part back to 
the unit sphere. 
So far we have only considered symmetric matrices. 
However most of the results still hold true mutatis 
mutandis if C is a non-symmetric matrix. For in- 
stance, the analytic solution to (9) is still given by 
(11) even if C is nonsymmetric. For the convergence 
proof, we can find a Lyapunov function using the left 
and right eigenvectors of the non-symmetric matrix 
C. Let X E R P x P  be the matrix of right eigenvec- 
tors of C while Y is the matrix of left eigenvectors, 
normalized such that 

A X = X A ,  Y T X = I p ,  
ATY = Y A  , X Y T  = Ip . 

For simplicity we assume that all the eigenvalues of C 
are real (although this is not really a restriction). The 
vector ymin E R P  is the left eigenvector corresponding 
to the smallest eigenvalue. It can be shown that the 
scalar function ~ ( x )  = ( ~ * y , i ~ ) ~  / ( z T y y T z )  is a 
Lyapunov function for the differential equations (9) 
because L > 0,Vt .  Note that z = X ( Y T z ) ,  which 
says that the vector Y T x  contains the components of 
x with respect to the basis generated by the column 
vectors in X (which are the right eigenvectors). The 
denominator is just the norm squared of this vector 
of components. The numerator is the component of x 
along the last eigenvector (last column of X ) ,  which 
corresponds to the smallest eigenvalue. Since L > 0, 
this component grows larger and larger relative to all 
other ones, which proves convergence to the 'smallest' 
eigenvector. 

3. Continuous-time singular value flows 

We can exploit the insights obtained so far to con- 
struct a flow for the smallest singular triplet of a ma- 
trix A € R P x q ,  which 'solves' the total least squares 
problem (2). Consider the 'asymmetric' continuous- 
time power method: 

(+( 1% -aIq - " ) ( ; " ) + ( ; " ) U  

with Q = L Y ( U ~ U  - wTv) / (uTu + vTv) . Here a is a 
user-defined real scalar. When it is chosen such that 
a > umin(A) ,  U and v will converge to the left resp. 
right singular vector corresponding to the smallest 
singular value of A.  This can be understood by realiz- 
ing that the 2q (we assume that p 2 q )  eigenvalues of 

the matrix ( 1% - -cyI~  -A ) are = L J ~  

and that theie are p - q  eigenvalues equal to a. Hence, 
if o > ui, the corresponding eigenvalues Xi are real, 
else they are pure imaginary. So if a > amin,  the 
smallest eigenvalue is X = -d= to which the 
flow will converge. This is illustrated% Figure 1. 
The problem with this asymmetric continuous power 
method is that we have to know a scalar Q that is an 
upper bound to the smallest singular value. Here we 
propose a new continuous-time algorithm for which 
we have strong indications that it  always converges 
to the 'smallest' singular value, but for which there is 
no formal proof of convergence yet. 
Let A E R P x q  ( p  2 q )  and # E R be a given (user- 
defined) scalar satisfying 0 < # < 1. Consider the 
following system of differential equations, which we 
call Christiaan's pow 3: 

( : ) = - ( g$ -u#Iq - A  ) ( : ) (12) 

'... after one of our PhD students Christiaan Moons who 
one day just tried it out and to his surpise found out that it 
seems to converge always. 
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Figure 1: Convergence as a function of time of 
the components of u( t )  and w(t) of the asymmetric 
continuous-time power method of Section 3, for a 4 x 3 
’diagonal’ matrix A with diagonal elements (5’3,l) .  
The initial vectors u(0) and v(0) are random. Shown 
is the behavior for a = 2, which is larger than the 
smallest singular value and therefore there is conver- 
gence. Here as well as in the other figures, the simu- 
lation was done with Matlab’s numerical integration 
routine ’ode45’. 

1, I I I 8 I 

I I L I 
‘0 0.5 1 1.5 2 2 5  3 3.5 4 

Figure 2: This picture shows the dynamic behavior 
of the asymmetric continuous-time power method of 
Section 3, applied to the same matrix A as in Figure 
1, with the same initial random vectors, but for cr = 
0.5. Because this is smaller than the smallest singular 
value of A, there is no convergence but instead, there 
is a nonlinear oscillation. 

42 
0 1 2  3 4 5 6 7 8 g 10 

Figure 3: Example of the convergence behavior of 
Christiaan’s flow (12) for the same matrix A and ini- 
tial vectors u(0) and w(0) as in the first Figure. The 
full lines are the components of U ,  the dashed ones 
those of w. Both vectors converge asymptotically to 
the left and right singular vectors of A corresponding 
to the smallest singular value. 

with CT = (uTAv) / (uTu) .  Numerical simulations show 
that the triplet ( ~ ( t ) ,  a@), v ( t ) )  converges to the small- 
est singular triplet of A. The convergence behavior 
can be influenced by q5 (for instance, when q5 -+ 1, 
there are many oscillations (bad for numerical inte- 
gration) but convergence is quite fast in time; when 
q5 -P 0, there are no oscillations but convergence is 
slow in time). There are many similarities with the 
continuous-time algorithms discussed so far. When 
we rewrite these equations as ti = Aw - u u  and v = 
-q5(ATu-wc), we easily see from (1) that both equ% 
tions are ’driven’ by the (scaled) residual error (com- 
pare to the interpretation of equation (10)). Another 
intriguing connection is seen by rewriting (12) as 

with W = ( -; q5; ) , which compares very well to 

(81, except that the metric W ( z )  here is constant and 
indefinite! As for a formal convergence proof 4, there 
are the following facts: It is readily verified that the 
singular triplets of A are the stationary points of the 
flow. When we linearize the system around these sta- 
tionary points, it is readily verified that they are all 
unstable, except for the stationary point correspond- 
ing to the ’smallest’ singular triplet of A .  

4We offer a chique dinner in the most exquis restaurant of 
Leuven if somebody solves our problem. 
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4. Algorithms for the Riemannian SVD 

In this section, we present some undeveloped and pre- 
mature ideas about continuous time algorithms for 
the Riemannian SVD (4) and hence for the struc- 
tured total least squares problem (3). The ultimate 
challenge would consist of deriving a gradient flow 
for the Riemannian SVD, as we have done for the 
eigenvalue problem in Section 2. As this seems more 
involved than one would think at first sight, we will 
only present here the heuristic idea of Christiaan's 
flow of the previous section, this time applied to the 
Riemannian SVD. It should be noted that we have 
derived a heuristic iterative discrete-time algorithm 
for the Riemannian SVD in [8], the basic inspiration 
of which is the classical power method. While this al- 
gorithm works well in most cases, there is no formal 
proof of convergence nor is there any guarantee that 
it will convergence to (an at least local) minimum. 
Of course, all of the insights presented here ideally 
would lead to a discrete-time algorithm with guaran- 
teed convergence to a local minimum. It seems that 
the following generalization of Christiaan's flow (12) 
works very well to find the minimal singular triplet 
of the Riemannian SVD (4). 

with Q = (uTAv)/(uTu), and with q5 E R a user- 
defined number satisfying 0 < I#J < 1. The only dif- 
ference between (12) and (13) is the introduction of 
the positive definite metric matrices D, and D,. It 
can be readily verified that in a stationary point, the 
necessary conditions (4) are satisfied. From numeri- 
cal experiments, we have noticed that the system of 
differential equations converges to a local minimum of 
the objective function. As an example, let A E R6x5 
be a given matrix (we took a random matrix), that 
will be approximated in E'robenius norm by a rank de- 
ficient matrix B,  by not modifying all of its elements 
but only those elements that are 'flagged' by a '1' in 
the matrix 

V =  

0 1 0 0 0  
1 0 1 0 1  
0 0 1 1 0  
1 1 1 0 1  
0 1 1 1 1  
0 0 1 1 1  

, 

Let W be be the elementwise inverse of V (with the 
convention that 1/0 = +CO). It contains the weights 
wij of (3) and the element +CO means that we impose 
an infinite weight on the modification of the corre- 
sponding element in A (which implies that it will not 
be modified and that the corresponding element in 
B will be equal to that in A ) .  It can be shown [9] 

1 ,  , , , , , , , ,  

::I , , , ,p 
-1 

0 2 4 6 8 10 12 14 16 18 20 

Figure 4: Vectors u(t) and v(t)  as a function of time 
for Christiaan's flow of Section 4, which solves the 
problem of least squares approximation of a given ma- 
trix A by a rank deficient one, while not all of its ele- 
ments can be modified as specified by the elements in 
the (0,l)-matrix V. The vector differential equation 
converges to the same solution as the one provided by 
the discrete-time algorithm of [9], which on its turn 
is inspired by the discrete-time power method. 

that the metric matrices D, and Du of (4) for this 
problem are diagonal matrices given by 

2 2 2 2 2 T  Du = diag(V(v, 'U2 'U3 v4 215) ) , 
D, = diag(VT(uq U: U: U: U;  U,")') . 

Here vi and ui denote the i-th component of v, resp. 
U and U; and vi" are their squares. As an initial vec- 
tor for Christiaan's flow (13) we took [u(O)' v ( O ) ~ ]  = 
[ eT / f i  e f / f i ]  where ek E Rk is a vector with all 
ones as its components. The resulting convergent be- 
havior as a function of time is shown in Figure 4. 

5. Conclusions and future research 

In this paper, we have discussed several continuous- 
time algorithms to find a minimizing solution to the 
total (2) or the structured total least squares problem 
(3). There are many applications for structured to- 
tal least squares problems in statistics, system theory 
and signal processing, which makes it an important 
problem (see e.g. [7] [8] [9] [lo] [ll] [19]). Of course, 
since (3) is a nonlinear constrained optimization prob- 
lem, one could apply 'classical' algorithms, such as 
Gauss-Newton, to find a local minimum of the objec- 
tive function. However, the ultimate challenge here 
is to find a continuous-time or discrete-time (itera- 
tive) algorithm, that exploits the inherent structure 
of the structured total least squares problem (3) ,  as it 
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is for instance revealed in the Riemannian SVD (4). 
One possible idea to pursue is the following: If D, 
is nonsingular, it is straightforward to show that the 
objective function (5) is equal to u2 = vTATD;'Av. 
The gradient with respect to v would be the first term 
in a gradient flow, the second term being the projec- 
tion on the manifold generated by the constraints in 
(4), which are quadratic in the components of U and 
U. This idea however remains to be explored in future 
research. 
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