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ABSTRACT

In this paper1, we present some recent results on structured total least squares prob-

lems, the solution of which can be derived from what we have called a Riemannian

singular value decomposition. This is a nonlinear generalization of the singular value

decomposition. There are many applications in statistics, signal processing and sys-

tem identification, but we will concentrate on Hankel matrices, showing how to ap-

proximate, in a least squares sense, a given Hankel matrix by a rank deficient one.

The importance of this problem originates in the well known equivalence between

rank deficient Hankel matrices, realization theory and linear systems. Another ap-

plication is the least squares fit of a given matrix by an observability matrix. We

discuss several properties and characterizations of the optimal solution and illustrate

our results on a certain time series related to Thomas Kailath’s scientific activities.
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and Production) and the European Commission (Human Capital and Mobility Network SI-
MONET: System Identification and Modelling Network). Bart De Moor is an associate
professor at the Katholieke Universiteit Leuven, a Senior Research Associate with the Na-
tional Fund for Scientific Research and the main advisor on Science and Technology of the
Flemish minister-president.
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1 INTRODUCTION

The total linear least squares problem for a given matrix A ∈ Rp×q, which is of
full column rank (without loss of generality, we assume throughout that p ≥ q),
is to find a rank deficient least squares approximation B ∈ Rp×q:

min
B∈Rp×q , rank(B)=q−1

‖A−B‖F , (1.1)

where ‖.‖F is the matrix Frobenius norm. It is well known that the solution
can be found from the singular value decomposition (SVD) of the matrix A, by
removing from its dyadic decomposition, the term corresponding to the small-
est singular value [12] [14] [23]. While the problem is certainly not new2, the
technique has quite recently been popularized in the mathematical engineering
community by the books [13] [22].

Often, for applications in statistics, signal processing and system identifica-
tion, the objective function ‖A − B‖2F =

∑p
i=1

∑q
j=1(aij − bij)2 is extended

with ’elementwise’ nonnegative weights wij and, in addition, the approximat-
ing rank deficient matrix B is required to have some structure, such as for
instance a Hankel or Toeplitz structure, in which case we have the structured
total least squares problem:

min
B∈Rp×q , rank(B)=q−1 , B structured

p∑

i=1

q∑

j=1

(aij − bij)2wij . (1.2)

While in this paper, we will concentrate on Hankel matrices, most of our re-
sults carry through (mutatis mutandis) to so-called affine matrix structures, i.e.
structured matrices B that can be written as an affine (linear) combination of a
given set {Bk; k = 0, . . . , N} of basis matrices as B = B0 +B1β1 + . . .+BNβN .
Here, the real coefficients βk, k = 1, . . . , N ’parametrize’ the structured matrix
B. Examples of such structured matrices are (centro- and per-) symmetric ma-
trices, (block-) Hankel, (block-) Toeplitz, (block-) circulant, Brownian, Hankel
+ Toeplitz matrices, matrices with a certain zero structure (sparsity pattern),
etc . . . .

This paper treats the optimal least squares approximation of a given Han-
kel matrix by a rank deficient one. We have omitted all proofs and have kept
the discussion informal. For more details and proofs, we will refer to the lit-
erature. In Section 2, we elaborate on the relation between rank deficient

2In the statistics community, total least squares is known as ’orthogonal regression’ and
’errors-in-variables’, with first references going back to the previous century [2] [3] [19].
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Hankel matrices, linear systems and realization theory. We also give a small
motivating example on rank deficient approximation of Hankel matrices from
given data, a problem which is one specific instance of a structured total least
squares problem. In Section 3, we discuss the solution of structured total least
squares problems in terms of a so-called Riemannian singular value decompo-
sition, which is a nonlinear generalization of the SVD. We present its structure
for the Hankel case and discuss several characterizations and properties of the
optimal solution. In Section 4, a numerical example is given, where we model
the cumulative number of publications of Thomas Kailath. In Section 5, we
show how the least squares approximation of a given data matrix by an ob-
servability matrix, also leads to a structured total least squares problem, this
time for a block Hankel matrix. Finally, some summarizing conclusions and
perspectives for future research are presented in Section 6.

2 HANKEL MATRICES AND
REALIZATION THEORY

Hankel matrices play an important role in linear system theory, modelling and
identification, ever since the path breaking work by many authors in the sev-
enties and eighties on realization theory for linear systems. One of the central
problems is how to obtain a state space model of a linear system from observed
impulse response data.
An intriguing result here states that the rank deficiency of a Hankel matrix
with data is equivalent with the fact that these data can be modelled as the
impulse response of a linear dynamic time-invariant system. This basic result
links the properties of systems being linear and time-invariant to the field of
(numerical) linear algebra, in which the rank of a matrix, and also its structure
(such as Hankel structure) are central notions. Indeed, the minimal system or-
der (i.e. the minimum number of states) for the ’realization’ of the given data
sequence as a linear system, is exactly equal to the rank of the Hankel matrix
(see e.g. [15]) (It seems that this result was already known to Kronecker in the
context of rational approximation).
In practical situations however, where measurements are obtained using finite
precision sensors, data are always observed inaccurately, i.e. they are perturbed
by measurement noise. Therefore, any p × q Hankel matrix with p ≥ q, con-
structed from these data, either directly or after a deconvolution, will be of full
column rank q. It is then meaningful to approximate the ’observed’ Hankel
matrix A, by a least squares rank deficient approximation B. However, just
calculating the SVD of the given Hankel matrix A, and then putting to zero the
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q-th singular value (the smallest one), will give the best least squares rank defi-
cient approximation, but the reconstructed matrix will not be a Hankel matrix
and hence, ’Kronecker’s’ result cited above does not apply. Let us illustrate
this point with a simple numerical example. Consider the 3× 2 Hankel matrix
A, which obviously is of rank 2 (its 2 singular values being σ1 = 6.5468 and
σ2 = 0.37415), and its best least squares rank deficient approximation C, which
is obtained from the SVD of A by putting its smallest singular value to zero:

A =




1 2
2 3
3 4


 , C =




1.2608 1.8193
2.0534 2.9630
2.8460 4.1067


 .

Obviously, C, while being of rank 1, is not a Hankel matrix. Next consider the
following two rank one Hankel matrices:

B1 =




1.3299 1.9448
1.9448 2.8441
2.8441 4.1593


 , B2 =




1.2734 1.8827
1.8827 2.7835
2.7835 4.1155


 , (1.3)

The first one is the solution to the optimization problem

min
B , rank(B)=1 , B Hankel

‖A−B‖F ,

and can be found using our power method for the Riemannian SVD, discussed
below. Its largest singular value is equal to 6.5430 which is not too differ-
ent from the largest singular value of the original A. Note that due to the
Hankel structure, certain elements are counted twice in the objective function
‖A − B‖F . In the case that we only count them once, the least squares rank
one approximation, which can also be obtained from the Riemannian SVD by
introducing the appropriate weights, is given by B2, the largest singular value
of which is 6.4144.

So far for the small example, which illustrates the fact that the singular value
decomposition does not preserve the Hankel structure (nor does it with any
other structure, except for symmetry) when used as a rank deficient approx-
imation tool. Existing realization methods for ’inaccurate’ data, such as the
SVD based methods of Zeiger-McEwen [24] and Kung [16] are therefore heuris-
tic, although they often seem to work surprisingly well in practice. Other
authors, such as Cadzow [4], have tried to retain the idea of a rank deficient
approximation via the SVD while preserving the Hankel structure. The result-
ing iteration converges, but not to a fixed point which is optimal in any sense
(as shown in [8] where we also show that ’classical’ iterative methods, such as
Steiglitz-McBride and Iterative Quadratic Maximum Likelihood, do not con-
verge to an optimal solution).
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In this paper, we formulate and solve the following least squares realization
problem:

Given a sequence of scalar data points ai ∈ R, i = 1, . . . , N
(collected in a vector a ∈ RN ) and a user-defined integer q ≤
(N + 1)/2. Find the impulse response bi, i = 1, . . . , N (compo-
nents of the vector b ∈ RN ) of a linear time-invariant system of
order at most q − 1, which is nearest to the given data in a least
squares sense.

Mathematically, we have the following problem:

Structured Total Least Squares problem:

min
bi,i=1,...,N,y∈Rq

N∑

i=1

(ai − bi)2 subject to





B y = 0 ,
yT y = 1 ,
B is a p× q
Hankel matrix
with N = p + q − 1

(1.4)

Observe that the rank deficiency of B is guaranteed by the existence of a
non-trivial vector y in its null space, and from the Hankel structure of B it is
guaranteed that the data bi, which are the elements of B, can be realized exactly
by the impulse response of a linear time-invariant system of order at most q−1.
As a matter of fact, the q−1 poles of the approximating linear system could be
found from the components of the vector y if it were known, because they are
the coefficients of the characteristic polynomial of the underlying linear system.
Observe also that the number q of columns of B, is a user-defined integer that
determines the order of the ’approximating’ linear system, whose minimal order
will be at most q− 1. This implies that the user is free to specify q (as long as
p ≥ (N + 1)/2 or equivalently (N + 1)/2 ≥ q, a condition that guarantees that
p ≥ q).
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3 THE RIEMANNIAN SVD

Problem (1.4) is a constrained optimization problem and necessary conditions
for an optimal solution in the unknowns bi, i = 1, . . . , N , y ∈ Rq can be obtained
by introducing a vector l ∈ Rp of Lagrange multipliers for the p constraints,
By = 0, and a scalar Lagrange multiplier λ for the constraint yT y = 1. From
the Lagrangian, by setting all the derivatives to zero, one obtains a set of
nonlinear equations in the unknowns b ∈ RN , y ∈ Rq, l ∈ Rp and λ ∈ R
(see [7] [8] for details). It turns out that λ = 0 and that the vector b can be
eliminated. After some rescalings and renormalizations, one obtains a set of
nonlinear equations, which was called the Riemannian SVD in [11]:

Riemannian SVD for Hankel matrices

A v = Dv u τ , uT Dvu = 1 ,

AT u = Du v τ , vT Duv = 1 ,

vT v = 1 . (1.5)

Here u ∈ Rp and v ∈ Rq are a left, resp. right singular vector
and τ ∈ R is the singular value. Du ∈ Rq×q and Dv ∈ Rp×p are
banded symmetric Toeplitz positive definite matrix functions, the
elements of which are quadratic in the components of u, resp. v
as

Du = TuTT
u , Dv = TvTT

v ,

where Tu ∈ Rp×(p+q−1) is a banded Toeplitz matrix with the
components of u as

Tu =




u1 u2 . . . . . . up−1 up 0 . . . 0 0
0 u1 u2 . . . up−2 up−1 up . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0 u1 . . . . . . up




(1.6)
and Tv ∈ Rp×(p+q−1) is constructed similarly from the compo-
nents of v.

The relation between this Riemannian SVD and the optimal least squares so-
lution to the noisy realization problem, follows from the following observations.

Fact 1: The singular value squared is exactly equal to the value of the ob-



Structured Total Least Squares 7

jective function in (1.4):

τ2 =
N∑

i=1

(ai − bi)2 ,

which implies that we need to find the minimal τ satisfying (1.5).

Fact 2: The structured rank deficient least squares approximation B can be
reconstructed as

B = A−




u1 u2 . . . . . . . . . up 0 . . . 0 0 0
u2 u3 . . . . . . up 0 0 . . . 0 0 u1

u3 u4 . . . up 0 0 0 . . . 0 u1 u2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
up 0 . . . . . . 0 u1 . . . . . . . . . up−2 up−1




×τ ×




v1 v2 . . . vq

0 v1 . . . vq−1

0 0 . . . vq−2

. . . . . . . . . . . .
0 0 . . . v1

. . . . . . . . . . . .
vq 0 . . . 0

vq−1 vq . . . 0
. . . . . . . . . . . .
v2 v3 . . . 0




(1.7)

which means that the difference A−B is the product of a Hankel matrix with
the elements of u, a Toeplitz matrix with the elements of v (note the ’circulant’
structure in both matrices) and the scalar τ 3.

Fact 3: There is an interpretation to the singular vectors u and v. The right
singular vector v satisfies

Bv = 0 , vT v = 1 . (1.8)

and therefore, its components are the coefficients of the characteristic polyno-
mial of the approximating linear system (Actually, v can be taken equal to y

3It is interesting to observe that every p × q Hankel matrix A of full column rank q can
be factorized in such a Hankel × Toeplitz product, i.e. when one puts B = 0 in (1.7), there
exist u ∈ Rp, v ∈ Rq and τ ∈ R such that A is factorized as prescribed. Such a triplet

(u, τ, v) will satisfy the Riemannian SVD equations (1.5), with τ =
√∑N

i=1 a2
i but is not

optimal in any sense. For instance, for the 3×2 Hankel matrix A in Section 2, we have uT =
(0.35235, 0.12310, 0.85386),vT = (0.51816, 0.85529), τ = 5.4772 =

√
(1+22 +32 +42), which

satisfies the equations (1.5). This solution however does not correspond to the minimizing
one.



8 Chapter 1

in (1.4)). The left singular vector u is the vector of Lagrange multipliers l,
normalized so as to satisfy the norm constraint in (1.5). This implies that u
can be used in analysing the first order sensitivity properties of the structured
total least squares optimization problem.

Fact 4: It can be shown that the optimal approximating impulse response,
which is contained in the vector b, and the original data vector a, satisfies the
following orthogonality property: (a− b)T b = 0 . As this is a (structured) least
squares approximation problem, it is not too surprising to see that the vector
of residuals a− b is orthogonal to the vector of approximants b.

Fact 5: The minimal singular value τmin and the corresponding left and right
singular vectors u and v, and hence the optimal Hankel matrix B in (1.7), can
be calculated by an algorithm, described in [7] [8]. The source of inspiration for
this algorithm is the good old power method [25] for calculating the dominant
eigenvalue and corresponding eigenvector of a symmetric matrix and seems to
work well in practice 4. Its asymptotic convergence rate is linear, as asymptot-
ically it behaves exactly like the power method. A numerical example is given
in Section 4.

Fact 6: When Dv is invertible, it is straightforward to show that

τ2 = vT AT D−1
v Av , (1.9)

which would be a quadratic form in v, if Dv were a matrix independent of v,
which is not the case though. Yet, this observation is the basis of the con-
strained total least squares method, described in [1], which is basically applying
Gauss-Newton to the nonlinear optimization problem. The equivalence with
the problem (1.4) is discussed in [10].
Another possible algorithm is suggested in [21]. It starts from the observation
that the Riemannian SVD can be rewritten as a generalized eigenvalue problem
of the form

AT D−1
v Av = Duvτ2 , vT Duv = 1 .

When fixing Du and Dv, one can solve this problem for the minimal eigenvalue
τ2 and corresponding eigenvector v, determine a corresponding u, update Du

and Dv and then restart the whole process until convergence 5. Yet, our ex-
perience shows that convergence here occurs less often than with our power
method. An intuitive explanation for this is that the power method only does

4Several Matlab .m files are available from the author.
5Remark that, when in (1.5) Du and Dv would be ’constant’ matrices (i.e. independent

of u and v), then, the Riemannian SVD would coincide with the Restricted SVD discussed
in [5].
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one little step towards the minimal τ and corresponding eigenvector v, for fixed
Du and Dv instead of going ’all the way’. In a certain sense, the power method
updates the matrices Du and Dv more frequently than in the eigenvalue method
outlined above. Of course, this is only an intuitive explanation which deserves
further investigation.
In [11] we have discussed continuous time methods for structured total least
squares problems.
Finally, in [8] we have investigated other methods, such as Cadzow’s method
and Iterative Quadratic Maximum Likelihood, with a demonstration that they
deliver suboptimal results. In [17] we have shown the equivalence between
Abatzoglou’s [1] constrained total least squares solution and the structured to-
tal least squares approach presented here.

Fact 7: Let â ∈ RN be the vector of ’exact’ data (i.e. containing the im-
pulse response of a linear system of order q − 1), ã ∈ RN be a vector of i.i.d.
normally distributed zero mean white noise with variance σ2 and let the ob-
served data sequence be a = â + ã. The structured total least squares problem
(1.4) is then the maximum likelihood formulation of the realization problem.
It’s interesting to observe that one can also motivate the objective function
(1.9) in a heuristic way as follows. Let A = Â + Ã be the p× q Hankel matrix
with observed data (with obvious definitions for Â and Ã as Hankel matrices).
Let’s assume that rank(Â) = q − 1, rank(A) = rank(Ã) = q. Let v ∈ Rq be a
vector in the null space of Â. Then

Av = Âv + Ãv = Ãv = e ,

where the vector e ∈ Rp can be considered as a vector with the equation errors.
It seems natural to minimize the so-called equation error, which is the norm
of e. However, we have to take into account the correlation structure of the
elements of e, which is induced by the Hankel structure in the matrix Ã. The
covariance matrix is obtained as

E(e.eT ) = E(Ã.v.vT .ÃT ) = Dvσ2 ,

which is precisely the banded symmetric positive definite Toeplitz matrix of
the Riemannian SVD (1.5), up to within the scalar σ2, which is the white noise
variance. Since we now know the structure of the noise covariance matrix, we
can minimize the weighted equation error as

eT D−1
v e = vT AT D−1

v Av ,

which is exactly the expression (1.9). Actually, this heuristic insight leads to
a ’quick and dirty’ way of calculating the structure of Du and Dv for any
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structured total least squares problem of the form (1.2) as long as the matrix
structure involved is affine.

Fact 8: Another interesting property is the following

N∑

i=1

(ai − bi) = (
p∑

i=1

ui) τ (
q∑

i=1

vi) .

4 A NUMERICAL EXAMPLE:
PREDICTING THE CUMULATIVE
NUMBER OF TK’S PUBLICATIONS

Consider the data sequence of Figure 1 which is the cumulative number of
journal publications of Thomas Kailath, starting from 1960 (actually the year
when I was born) up to 1995. There are 36 data points. We decide to fit
these data by impulse responses of linear systems of increasing order, start-
ing with order 1 (in which case the data Hankel matrix A of the Riemnan-
nian SVD is (p = 35) × (q = 2) 6, up to order 17 (where p = 19 and
q = 18). Therefore, we have calculated the minimal singular value of the
Riemannian SVD (1.5), for p× q data Hankel matrices A, where q varies from
2 up to 17. As can be expected, we get a better and better approximation
as the order of the ’approximating’ system increases. As is obvious from Fig-
ure 1, all of these realizations are unstable. For instance, the poles for the
fifth-order approximation, which corresponds to the case p = 31, q = 6 are
{1.0972, 1.0062 ± 0.20505j, 0.91204 ± 0.63262j }. They can easily be obtained
by rooting the characteristic polynomial, the coefficients of which are given by
the components of the right singular vector v of the Riemannian SVD (1.5).

6Actually, an impulse response of a first order linear system can be parametrized by two
real numbers β and λ so that the optimization problem becomes an unconstrained one:
minβ,λ

∑N
i=1(ai − βλi−1)2. Setting to zero the derivative with respect to β, results in∑N

i=1(ai−βλi−1)λi−1 = 0, and the derivative w.r.t. λ gives
∑N

i=2(ai−βλi−1)(i−1)λi−2 = 0.
Observe that β appears linearly in both equations. When eliminated from one and sub-
stituted in the other, one obtains a polynomial in λ, which can be rooted. One of its
real roots will generate the minimizing first order impulse response (see [8] for details).
For instance, for the example (1.3), one then obtains the polynomial of degree 7 in λ:
3λ7 + 0λ6 + 3λ5 − 6λ4 − λ3 − 12λ2 − 5λ − 2 = 0, which has 3 pairs of complex conju-
gated roots and only 1 real one, which is 1.4785, corresponding to the 3× 2 optimal Hankel
matrix B in (1.3)
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5 LEAST SQUARES APPROXIMATION
BY OBSERVABILITY MATRICES

A structured total least squares problem that often occurs in signal processing
(e.g. in Direction of Arrival problems such as ESPRIT) or in system identifi-
cation (subspace methods such as N4SID), is the following:
Given a data matrix A ∈ Rm×n, m > n. Find the least squares approximation
G ∈ Rm×n that is an observability matrix, i.e. a matrix for which the i-th row
gT

i ∈ R1×n is given by gT
i = hT .Hi−1 where h ∈ Rn and H ∈ Rn×n.

Stated as an optimization problem, this becomes:

min
h∈Rn , H∈Rn×n

‖A−




hT

hT H
hT H2

...
hT Hm−1



‖2F . (1.10)

One could also introduce elementwise weights into the objective function but
we will consider the unweighted case only. We now show that this problem is
equivalent with a structured total least squares problem, this time for a block
Hankel matrix, as follows. Let the components of the vector y ∈ Rn+1 be the
coefficients of the characteristic polynomial of the matrix H. Then, it is easy
to show that

Ty




hT

hT H
...

hT Hm−1


 = 0 ,

where Ty ∈ R(m−n)×m is a banded Toeplitz matrix as in (1.6). If we put
gT

i = hT Hi−1, then this relation is equivalent with

TyG = 0 ⇐⇒




g1 g2 . . . gn gn+1

g2 g3 . . . gn+1 gn+2

g3 g4 . . . gn+2 gn+3

. . . . . . . . . . . . . . .
gm−n gm−n+1 . . . gm−1 gm




. y = 0 , (1.11)

where G is a matrix for which the i-th row is gT
i . The block matrix to the

right is a block Hankel matrix with m−n block rows, each of dimension n, and
n + 1 columns, which will be denoted by B ∈ R(m−n)n×(n+1). Such a matrix
is an affinely structured matrix, which is required to be rank deficient. Hence,
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we have shown that the least squares approximation of a given matrix A by an
observability matrix as in (1.10) is a structured total least squares problem

min
gi ∈ Rn, i = 1, . . . , m ,
y ∈ Rn+1

‖A−G‖2F subject to





B y = 0 ,
yT y = 1 ,
B block Hankel as in (1.11).

.

The solution can be obtained from a Riemannian SVD as in (1.5), but with
metric matrices Du and Dv, whose structure is different from the ones in (1.5).
It can easily be obtained, for instance with the heuristic ’noise’ trick, outlined
under ’Fact 7’ above.

6 CONCLUSIONS

In this short paper, we have discussed the total least squares approximation
of Hankel matrices, with as an additional constraint that the approximant be
Hankel too. The insights here have been elaborated upon in detail in [7] [8] [9]
to which we refer the reader for more details. Actually, the Riemannian SVD
is quite a general result for rank deficient matrix approximation for weighted
and structured matrix problems, as long as the matrix structure is affine. For
instance, in [7], we also show how instead of minimizing the sum of absolute
errors squared in the objective function, one can also minimize (a first order
approximation to) the sum of relative errors squared. If the data ai are already
samples from an impulse response of a (high-order, say r) linear system and if
the number of rows p →∞ while q < r is fixed, the Hankel approximation prob-
lem treated here is equivalent to the H2 model reduction problem. Z-domain
iterations have been described in [11] [20]. In [9] [10] we have discussed the
application of this framework for the identification of linear dynamic systems
from input-output data, when both the inputs and the outputs are corrupted
by noise (errors-in-variables).
The structured total least squares problem could be treated as a nonlinear con-
strained optimization problem and ’classical’ minimization algorithms could be
applied to come up with numerical solutions. Yet we feel that our interpreta-
tion in terms of a Riemannian SVD reveals that there is quite some structure
in the solution, which is reminiscent of the solution of the unstructured case.
We hope to reveal in the future more useful properties which maybe ultimately
lead to a globally convergent algorithm.
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