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On the Equivalence of Constrained Total Least 
Squares and Structured Total Least Squares 

Philippe Lemmerling, Bart De Moor, and Sabine Van Huffel 

Abstract- Several extensions of the total least squares (TIS) method 
that are able to calculate a structured rank deficient approximation of 
a data matrix have been developed recently. The main result of this 
correspondence is the demonstration of the equivalence of two of these 
approaches, namely, the constrained total least squares (CTLS) approach 
and the structured total least squares (STLS) approach. We also present 
a numerical comparison of both methods. 

1. INTRODUCTION 
The total least squares (TLS) approach for solving an overdeter- 

mined system P.r % q is a very popular technique in linear parameter 
estimation problems. It can be formulated as follows: 

The standard procedure for solving this TLS problem involves the 
singular value decomposition (SVD) of the extended data matrix 
[ P  q]  [7]. However, the SVD does not preserve the structure of the 
extended data matrix [I' (11. This implies that the TLS approach will 
not yield the statistically optimal parameter vector .I' in the frequently 
occurring case where the extended data matrix is structured (Hankel, 
Toeplitz, sparse matrices, etc.). 

Therefore, different approaches have been proposed, in which the 
structure of [ P  + A P q + l q ]  can be made the same as the original 
structure of [ P  q ] .  In order to do so, some methods, such as the 
constrained total least squares (CTLS) method, impose a structure on 
[AP 1111, whereas other methods, such as the structured total least 
squares (STLS) method, impose a structure on [ P  + AI' q + l q ] .  

In this correspondence, we will focus on the CTLS [l], [2] and 
STLS 131, [4] approach. The structure of' the correspondence is as 
follows. In Section 11, we give a short overview of the formulation 
of the two approaches together with their solution methods. Section 
I11 contains the major contribution since it proves the equivalence 
of the CTLS and STLS approach under weak assumptions. Finally, 
in Section IV, we present a numerical example that illustrates the 
equivalence of both approaches. The convergence rate as well as 
the accuracy o f  the employed solution methods are briefly discussed. 
Further misleading arguments are dismissed and clarified. 
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I1 PROBLFM FORMULATION 
In this section, we briefly review the problem formulation of the 

CTLS and the STLS approaches as stated in [ l ]  and in [4] First, we 
introduce our notation Let P ,  1P E E3'71x1' ,  q ,  1 q  E IR""' Let 
S = [ P  q]  and 1 = [ P  + AP q + lqlwhere 

SI- ( : .  I )  

M ( I .  : )  
-If(/.  ) j  

? I ? ( / )  

A. CTLS 

cth column of the matrix )If 
cth row o f  the matnx 111 
entry on the I th row and in the 3 th column of the matrix 
_\I 
I th component of the vector nc . 

Let ,I E IR"x ' ,  F, E IR7""';, I = 1. . . . .  11 + 1, f E IRA'', and 
T I  E IRA '. The CTLS approach is the following 

iiiiii f t \ t 7 f  such that ( P  + LP).r  = q + l q .  (1) 
/ 2  

in which 11- is a diagonal weighting matrix, 1 P  = [ F l f  . . . F T I f ] ,  
and Aq = F,,+t f. In this representation, f is a noise vector of 
sufficient and minimal dimension. By sufficient, we mean that the 
dimension must be high enough to describe the errors on the different 
columns. The structure of 1P and Aq can be imposed by choosing 
appropriate matrices F,,  i = 1. . . . , I I  + 1. In [I]. it is proven. by 
using the method of Lagrange multipliers, that problem (1) can be 
solved by solving the optimization problem 

in which H ,  = E::, r(c)PL - F,,+I. The method we will use 
to optimize (2)  is a quasi-Newton method using the BFGS rule for 
updating the Hessian [6]. 

B STLS 

and T I  E I R A  ', which is a diagonal weighting matrix By taking X 
large enough and by choosing appropriate fixed matrices S,, we can 
representSbySo+C;=,  $(c)S, a n d T b y S a + ~ ~ = l  t ( i ) S ,  The 
STLS approach starts from the following formulation 

L e t s , ,  I = 0. . L E I R ~ ' ' ~ ( ~ ' + ' )  t , m"1, E mcJl+',"' 
> ,  

iriiii 
t .  y 

li-(i. i ) [ s ( ; )  - t ( i ) I 2  such thatTy = 0. y ' y  = 1. 
L =  I 

Observe that the structure of T is forced to be the same as the 
structure of S because we wrote T as an affine combination of the 
qame S, as we used for S 

In [4], the method of Lagrange multipliers is used to derive a 
problem that is equivalent to (3),  namely, find the triplet ( 1 1 ,  T 1 ) 
corresponding to the minimal T that satisfies 

where D,, is defined via D,,r = E:=, Si(utS,i)u, and likewise, 
D ,  is defined via D ,  II = E:=, S, (uLS,  I ) I  In 141, (4) and ( 5 )  are 
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Fig. 1 .  Iiuriii(.r--.copt) as a function of the iteration numbcr. For the CTLS approach a quasi-Ncwton mcthod is used with the BFGS rule for updating of 
thc Hessian. The STLS approach uses an inverse iteration algorithm. The start value for .T was .rslaZ.t = 7.644999395502275r - 01. The example 
is the modeling example described in Section IV. 

called the Riemannian SVD and are solved using an inverse iteration 
algorithm. 

Putting b L / h l  = 0, S L I S y  = 0, SL/tl t( i)  = 0, V i  > 0, and 
OLIhX = 0, we obtain 

111. PROOF OF EQUIVALENCE 
The major result of this section is the equivalence of STLS and 

CTLS. 
Lemma 1: Let .4 E IRgxx", y E IR"xl, Q, E R"'", where the 

elements of Q,, are quadratic functions of the components of y. Let 
f be a multivariable function of y : f ( y )  = yLA'Q;'Ay. Then, 

Proof.. By the definition of f, we have f ( t . ; y )  = 
( m l / ) t A ' Q ; i  A( ( 7 ~ ) ) .  Since the elements of QCry are quadratic 
functions of the components of oy, we have Qcr0 = c t2Qw, .  

Therefore, we have f ( a y )  = ~~yf-410-2Q;'d4:ya = 
yLAfQylAy = f ( y ) .  

Proposition 1: Let ,ropl E IR7rx'  be the vector that solves the 
CTLS problem formulation (l), and let yap, E IR("+l)xl be a 
vector that solves the STLS problem formulation (3), without the 
regularization constraint y ty  = 1. If y o 2 , t ( 7 1  + 1) # 0 and D ,  
nonsingular, we can find an yupt  such that .rapt = yopr (1 : 71 ) and 
;yo l I t (7 i  + 1) = -1, which proves the equivalence of the CTLS and 
STLS approach. 

Proof: To prove this proposition, we will show that under the 
weak assumption y O p t  ( n  + 1) # 0, we can derive from the STLS 
formulation an objective function equal to the one in (2). This implies 
that both methods yield the same parameter vector, which proves 
their equivalence. 

First, we write down the Lagrangian of the STLS problem formu- 
lation (3): 

f ( W )  = . f ( Y ) .  v n  # 0. 

V c i  # 0. 

sy = D,,7 
with 

(7) 

Stl = D I Y  
with 

Therefore, from (6) ,  we obtain 

1 = D i ' S y  (10) 

Using (7), (8), and (lo), the STLS objective function becomes 

L A 1 
ct ( L ,  / ) [ 5 ( l )  - t(L)]l  = I t  ~ s, (ltS,Y)Y 11-(1. 2 )  

% = I  2 = 1  

= ltD,l (11) 
= 2JtS'D;lSy. (12) 

Let H ,  = C:z; yl F, By using the latter definition, (7), and the 
fact that F, = [SI(:, c)Sz(:. 7 ) .  . . Skj:, L)], it is straightforward to 
find that H,Tt--'H; = D ,  Therefore, (12) becomes 

iylSf( H,TV-' H i ) - ' S y .  (13) 
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Fig. 2. norm(s-.r.),t) as a function of the iteration number for two different solution methods of the STLS approach. Both solution methods are inverse 
iteration algorithms, hut the full line represents the case in which we use the constraint t > f t ,  = 1, whercas the dotted line represents the case in which we 
use the constraint vi D,, r = 1. The example is the modeling example described in Section IV. 

If the condition yo,,f ( t l  + 1) # 0 is satisfied, we see that by applying 
Lemma 1 to (12), y (  t i  + 1) can be put equal to -1 without affecting 
the solution of the STLS problem. If we put y ( r !  + 1) = -1, then 
H ,  = H ,  , and (13) becomes equal to (2). This means that the STLS 
objective function (13) is the same as the CTLS objective function 
(2). The latter implies that both objective functions will attain their 

0 minimum in the same parameter vector y (  1 : I /  ) = .r, 

IV. FURTHER COMMENTS 
We use the example presented in [4]. In this example, we try to 

approximate a 3 x 2 Toeplitz matrix by a rank deficient one which has 
the same structure. The advantage of this example is that we know 
the exact solution. We take the following example: 

2 3 4 j G '  
=[1 2 3 4 51 

which we will try to approximate by the best rank 1 structure- 
preserving approximation 

to S such that E:,, T l - ( i .  i ) j S ,  - - - L ) 2  is minimized, where the 
diagonal of 15' is [l 2 2 2 2 11. In [4] and [SI, the optimal x 
value (see (2) and (12); note that the y value in (12) that corresponds 
to the .r value in (2) is y ( l  : t ? )  = s and { ~ ( J I  + 1) = -1) 
zOpf is calculated: .rapt = 0.762 923 015 074 321 8. In the CTLS 
approach, we use the quasi-Newton method, with the BFGS rule for 
updating the Hessian to optimize (2). The STLS approach finds the 
solution to (4) and ( 5 )  by using an inverse iteration algorithm [4]. 

In Fig. 1, we see that both methods converge to the same value. As 
expected, the convergence rate of the inverse iteration algorithm is 
linear, whereas the quasi-Newton method has a faster super linear 
convergence rate. However, a lot of research still has to be done 
on algorithms for solving the CTLS or STLS problem. One of the 
interesting developments in this research area are the continuous time 
algorithms that have recently been developed for the Riemannian 
SVD [ 5 ] .  

In Fig. 1 ,  we also see that the quasi-Newton algorithm is not 
as accurate as the inverse iteration algorithm. The reason for this 
inaccuracy can be found by comparing (2) ,  (4), and ( 5 ) .  The accuracy 
in (2) is lost because of the "squaring effect" of St  ( HrTi--' Hi. )-I S. 
In (4) and ( S ) ,  S does not appear in such a product in which S' and 
S are multiplied. In fact, this is the same reason why we would use 
an SVD of S and not the eigenvalue decomposition (EVD) of StS or 
SS' if we want to calculate the singular values of S. Intuitively, it is 
very easy to see a connection between the EVD and the SVD on one 
hand and the CTLS and STLS method on the other hand. Clearly, 
the STLS kemel problem can be seen as a nonlinear SVD, with 
smallest singular value T. From (4), (3, and Lemma 1, we see that 
/ '  can be found by minimizing I ' ~ S ' D , ' S P  = T~ with = 1, 3 
being positive definite. In the latter, we clearly recognize the CTLS 
objective function, and we see that is very similar to an EVD in 
which we try to find the smallest eigenvalue T ~ .  

As opposed to earlier claims in [4] and [9], Lemma 1 clearly proves 
that E can be any positive definite matrix. Fig. 2 illustrates this: We 
show the inverse iteration applied to (4) and ( 5 )  (dotted line) and the 
inverse iteration applied to (4) and ( 5 )  but with the I , ~  ( 1  = 1 as the 
only constraint (full line). 

Finally, we want to stress that solving (2) by applying an iterative 
eigenvalue decomposition (see [9]) to S'( H ,  TT--'HS ) - ' S  is bound 

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 14, 2008 at 06:50 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 1 I ,  NOVEMBER 1996 291 I 

to fail since this will lead to a stationary point .rSlcLt that satisfies Estimation of the Parameters of a Random 
Amplitude Sinusoid by Correlation Fitting 

Abstruct- In this correspondence, we consider the best asymptotic 
accuracy that can be achieved when estimating the parameters of a 
random-amplitude sinusoid from its sample covariances. An estirnator 
based on matching in a weighted least-squares sense the sample corre- 
lation sequence to the theoretical sequence is presented. The asymptotic 
properties of the estimator are analyzed. A lower hound on the estimation 
of the parameters from sample covariances is derived. This bound is 
shown to be attainable by appropriately choosing the weighting matrix. 
However, the unweighted nonhear least-swares estimate performance 
is shown to come close to the lower hound. The influence of the number 
of samples, the number of correlation samples, and the lowpass envelope 
characteristics are studied. Finally, a comparison with Yule-Walker (YW) 
methods is given. 

However, (14) is by no means a condition for optimality of (2). 

V. CONCLUSIONS 

In this we have proven the of the 
CTLS and the STLS approach. The equivalence was illustrated 
by a numerical example in which we also briefly discussed the 
convergence rate and the accuracy of the solution Further 
misunderstandings have been clarified. 
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instance, in the case of ARMA or sinusoids-in-noise processes, most 
high-resolution methods, such as high-order Yule-Walker (YW) 1.101, 
MUSIC [8], and ESPRIT [7] rely on the sample covariances of the 
process considered. Consequently, the following question naturally 
arises: What is the best accuracy that can be achieved by processing 
the sample covariances? This question has been addressed for the case 
of ARMA processes in [5] ,  [6], and [9] and for sinusoids-in-noise 
signals in [ll]. 

In this correspondence, we are interested in the best consistent 
estimation of the parameters of a random-amplitude sinusoidal signal 
from its sample covariances. For this type of application, derivation 
of the CRB is an open problem (see. however, [3] for related work). 
The objective of this work is threefold. First, we show how an 
asymptotically best consistent (ABC) estimate of the parameters can 
be obtained from sample covariances. We derive an algorithm based 
on matching, in a weighted least squares sense, a sequence of sample 
correlations to their theoretical values. The asymptotic covariance 
matrix of the estimation errors is derived. Second, we derive the 
lower bound on the covariance matrix of any estimator based on 
a finite number of sample correlations. It i s  shown that this bound 
can be attained by an appropriate choice of the weighting matrix 
in the correlation matching algorithm. The bound derived herein 
is believed to be of interest since it is a reference against which 
numerous methods could be compared. Third, we propose to use 
the unweighted least-squares estimator, which we call the nonlinear 
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