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A new subspace algorithm results in the fast and accurate identijication of state 
space models from given power spectra. 
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Abstract-In this paper we present a new subspace algorithm 
for the identification of multi-input multi-output linear discrete 
time systems from measured power spectrum data. We show 
how the state space system matrices can be determined by taking 
the inverse discrete Fourier transform of the given data and 
applying the result to a new realization algorithm. Special atten- 
tion is paid to ensure the positive realness of the identified power 
spectrum. The computational speed is improved by applying 
a Lanczos algorithm. T’he algorithm is illustrated with two 
practical examples. 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Identification of multi-input multi-output (MIMO) 
systems from a measured power spectrum is still 
considered to be a challenge. This type of data 
typically arises when modeling disturbances, in 
which case the frequency domain power spectrum 
is often easily obtained. The algorithm described in 
this paper determines a state space realization of 
this power spectrum. For disturbance modeling, 
the spectral factor of this power spectrum can then 
be used for instance in the design of an optimal 
disturbance rejection controller (Boyd and Barrat, 
1991). 

For time domain measurements, a vast number 
of state-space subspace identification algorithms is 
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available (Larimore, 1990; Van Overschee and De 
Moor, 1994; Verhaegen, 1994; Viberg, 1995; De 
Moor and Van Overschee 1995; Van Overschee 
and De Moor, 1996a). The major advantage of 
subspace identification algorithms over the classi- 
cal prediction error methods (Ljung, 1987) is the 
absence of non-linear parametric optimization 
problems. Indeed, subspace identification algo- 
rithms are non-iterative, and thus never get stuck in 
local minima or suffer from convergence problems. 
In short, they always produce a (sub-optimal) re- 
sult, which is often surprisingly good for practical 
data. 

Subspace identification algorithms for the identi- 
fication of frequency domain data have already 
been extensively described in the literature (Liu et 
al., 1994; McKelvey et al., 1996; Van Overschee 
and De Moor, 1996b). These techniques are how- 
ever not directly usable for the identification of 
frequency domain power spectra. 

The problem addressed in this paper is the one 
of fitting a linear discrete time power spectrum 
through given measured frequency domain power 
spectrum samples. A parametric approach to this 
problem would consist of using a non-linear least 
squares criterion, that is then optimized using 
a non-linear search in the parameter space. How- 
ever, the typical disadvantages of the time domain 
prediction error methods also carry through to this 
frequency domain setting i.e. an a priori given par- 
ametrization is needed (which is especially hard to 
find for MIMO systems), non-linear parametric 
optimization is required and convergence problems 
could occur. 

The major contributions of this paper are the 
following: 

l We show how the inverse discrete Fourier trans- 
form of the given power spectrum can be ex- 
pressed as a function of the system matrices. 
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A realization theory, similar to the one in Ho and 
Kalman (1966) and Kung (1978) and based on the 
results of McKelvey et al. (1996) is then devised to 
obtain the system matrices from this inverse dis- 
crete Fourier transform. An important observa- 
tion is that the computed singular value spectrum 
determines two times the system order (instead of 
once the system order for the classical realization 
algorithms). A detailed step by step description of 
the algorithm is provided. 
A given set of system matrices does not neces- 
sarily describe a valid power spectrum. Indeed, 
a power spectrum has to be positive real to be 
physically meaningful. We recognize this prob- 
lem and solve it through a slight modification of 
the basic subspace power spectrum identification 
algorithm. The identified power spectrum is 
always positive real. 
We illustrate the practical relevance of the prob- 
lem treated in this paper with two examples 
which solve an acceleration sensitivity and an 
acoustic power spectrum modeling problem. 

This paper is organized as follows: In Section 2 the 
discrete time power spectrum subspace identifica- 
tion problem is described and the notation is intro- 
duced. In Section 3 we derive the main theorem 
and show how this leads to a subspace identifica- 
tion algorithm. Section 4 addresses the problem of 
positivity of the identified power spectrum. The 
practical examples, illustrative of the algorithm 
described in this paper, are contained in Section 5. 

2. PROBLEM DESCRIPTION AND NOTATION 

In this section we dejine the power spectrum, the 
spectral factor and the general notation. We also 
introduce the main identification problem. 

Consider the 1 x 1 dimensional square discrete 
time system: 

xk+l = AXk + BUk, (1) 

In Caines (1988) it is shown that the power 
spectrum S(z) can be split into the sum of two 
system transfer matrices as follows: With P the 
solution to the discrete Lyapunov equation: 

P = APAT + BBT, (6) 

and G and A0 defined as 

Gkf APCT + BDT, (7) 

A,, kf CPCT + DDT, (8) 

the power spectrum S(z) can be decomposed into 
the sum of two transfer matrices as 

S(z) = H(z) + HT(z- ‘), (9) 
with 

H(z) ‘kf +A0 + C(zl, - A) - ‘G. (10) 

The problem treated in this paper can now be 
stated as follows: 

y, = Cxk + DUk, (2) 

with AER”~“, BEFF’~‘, C~[W”~and D~R’~~non- 
singular. The vector sequences uk, yk E R’ are the 
input and output sequences, respectively. The 
system (l)-(2) is assumed to be stable and strictly 
minimum phase: all eigenvalues of A and A - 

BD - ‘C lie strictly inside the unit circle. The matrix 
pairs {A, B} and {A, C> are controllable and ob- 
servable, respectively. The matrix A is assumed to 
be non-singular. The system (l)--(2) is thus a mini- 
mal stochastic system. The transfer function of the 
system (l)(2) is denoted by G(z): 

Given N + 1 matrices Sk E @’ ‘I of the power 
spectrum S(z) evaluated in N + 1 equidistant 
points over the unit circle: 

Sk = S(ej(Znk’2N)), k = 0, . . . , N. (11) 

Find: 

l The system matrices A, G, C, A0 describing the 
power spectrum. 

l The system matrices A, B, C, D describing the 
spectral factor (l)-(2) 

G(z)Ef D + C(z I, - A)- ‘B. (3) *A 2 B if A - B is a non-negative definite matrix. 

The power spectrum associated with (l)-(2) is de- 
noted by S(z) E C’ ’ ’ and is defined as 

S(z) kf G(z) GT(z - ‘). (4) 

The original system (l)(2) is called the innovation 
form, unity variance, minimum phase spectral 
factor associated with this power spectrum S(z). 
From (4) we find that for all z on the unit circle 
(lzl = 1) the power spectrum satisfies* 

S(z) > 0, IZI = 1. (5) 

This is the positive realness condition which will 
play an important role in this paper. Indeed, this 
condition imposes a constraint on the given data 
samples & (each of them has to be a positive defi- 
nite matrix), as well as on the identified power 
spectrum S(z) (which has to be a positive real 
spectrum). 
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We define the inverse discrete Fourier transform 
vk of a given complex signal ‘Vk = V(ej(Znk’2N)), 
k =O, . . . . 2N - 1 as: 

(12) 

AT is the transpose of a matrix A, while A* denotes 
the complex conjugate transpose. IJAIIF is the 
Frobenius norm of A and At the Moore-Penrose 
pseudo inverse. &?(A) and 9(A) are the real and 
imaginary parts of a complex matrix A, respective- 
ly. 1(A) denotes the real eigenvalues of a square 
Hermitian matrix A. 

The permutation matrix II E lRfN ’ IN is given by 

It is trivial to see that the eigenvalues of C+.z, b, c) 
are given by 

eig(Q(a,b,c)) = at, . . . ,a,, bi +jcr, . . . ,b, kjc, 

with j = n_ 

3. IDENTIFICATION OF POWER SPECTRA 

In this section we show how the subspuce power 
spectrum identijcution problem can be solved. The 
main theorem states how the system order and the 
observability and controllability matrices can be de- 
termined. The system matrices are then step by step 
derived from this theorem. The jinul algorithm is 

0 0 . . . 11 

..’ . . . . . . . . . 

0 Ii . . . 0 

I[ 0 . . . 0 

The extended observability matrix 
rqE lF81qxn (4 2 n) and reversed extended observ- 
ability matrix f,~ [WC’” (r 2 n) are defined as 

summarized in Fig. 1. 

3.1. Inverse discrete Fourier transform and the main 
theorem 

Before we start the derivation of the algorithm, 
we expand the N + 1 given points Sk to 2N points 
as follows: 

C 

rq Ef 
CA 

. . . 

CAq-l 

The extended controllability matrix A, E R” ’ Ir and 
reversed extended controllability matrix b, E R” ’ I9 
are defined as 

A,kf(GAG . . . A’-‘G), 

6,EfAqI-I = (A“-‘G . . . AG G). 

Note that since the system (l)-(2) is minimal, the 
matrices Iq,f(,. and A,,L%~ are, respectively, of full 
column and row rank n. 

Finally, given n, real numbers al, . . . , a, and 2n, 
real numbers bI, . . . , b,, cl, . . . ,c,< we define the 
matrix @a, b, c) as 

Q(u, b, c) ‘!E* 

SN,, = $$-k, k=l,...,N-1. (13) 

From now on, Sk denotes this signal of length 2N. 
The first theorem shows how the inverse discrete 
Fourier transform sk of the sequence Sk can be 
expressed in terms of the system matrices. 

Theorem 1 (Inverse discrete Fourier transform). With 
M = (I, - AZN)- ‘, the inverse discrete Fourier 
transform sk E [w’ ” of the given power spectrum 
Sk is given by 

sO = A,, + CA’“- ‘MG + GT(AT)2N- ‘MTCT, 

(14) 

sk = CA’-‘MG + GT(AT)2N-k-1MTCT, 

k=l, . . . . 2N-1. (15) 

A proof of this theorem can be found in Ap- 
pendix A. Note: 

l Due to the specific form of the expansion in (13), 
it is easy to prove that, even though the original 
power spectrum sequence Sk is complex, the re- 
sulting sequence sk is real. 
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l For N+ ocl, we find with A asymptotically 
stable that 

lim A4 = I,. 
N+Q2 

The effect of the matrix M is thus due to the finite 
number of data. 

Theorem 1 is the base for the extraction of the 
system order and matrices from the given data Sk. 
In the following theorem the block-Hankel matrix 
s E H’4 x lr play an important role: 

St St s3 . . . 3, 

S2 S3 s4 *.. S,+1 

S3 S4 sg . . . S*+2 

. . . . . . . . . . . . . . . 

% Sq+l Sq+2 ... S*+q-1 

3 (16) 

with the number of block rows 4 2 2n and the 
number of block columns r 2 2n, and r + q c 2N. 
With this block-Hankel matrix S and the results of 
Theorem 1, the main theorem which is proved in 
Appendix B can now be stated: 

Theorem 2 (Main theorem). The block-Hankel 
matrix S can be decomposed as 

which leads to the following results: 

l The rank of S is equal to 2n (two times the 
system order). 

* The column space of S can be expressed in 
terms of the system matrices as 

column spaces = column space (I, 5:). 

l The row space of S can be expressed in terms 
of the system matrices as 

row space S = row space 
A, 0 f+: . 

This theorem is what would be qualified as a typi- 
cal subspace theorem: it defines a matrix, the rank 
of which will determine the system order n, and 
the column and row space of which will generate 
estimates of the system matrices, respectively. 
Other typical subspace algorithms of this type are 
summarized in Van Overschee and De Moor 
(1996a). This theorem serves as a starting point of 
the step by step extraction of the system order and 
matrices. These steps are described in the following 
subsections. The final algorithm is summarized in 
Fig. 1. 

Power Spectrum Subspace Identification Algorithm: 

l Expand the N + 1 given points & to a signal of length 2N: SN+* = 

S~_,fork=l;.. .N-1. 
l Compute the 2N points inverse discrete Fourier transform .Q of the 

signal Sk. 
l Form the block-Hankel matrix S as in equation (16). 

l Compute the Singular Value Decomposition: 

l The number of singular values S, different from zero is equal to two 

timer the system order. 

l Determine U and V as: U = CA.S, “* and ), = S”*.If’. 1 L 
l Determine the eigenvalue spectrum of@.ii or find the symmetric spee 

trum from the characteristic equation (23). The stable eigenvalues of 

this spectrum are denoted by 0’1,. , on, and /A + jr,, , On, f h,. 
Determine the system matrix A as ii = n(a,fl,r). 

l Determine the matrix M = (I, - AZ”)-‘. Determine the real matrix 

To= (‘Pz$ from the eigewectors of @.a. 

l Solw the following linear rquatian for the elements &, At and pk. 

u+.n.v = T;.M.n”(6,X,p)(~‘)” + T;.n(b. X,p) M“ (TP)’ 

l Determine the system matrices C and G’ as the 1 x n top left respec- 

tively bottom right suhmat.rires of- 

(u.+LT,o.n(6, A, p,) 

l Determine A0 = sg - CA2”m’fiIG - G?‘(_4T)2N-‘MTC~. 

l Find P through the solution of the Riccati equation (X)-(32) and 

determine B and D as: 

B = (G - AR?).(Ao - CPC”)-I’* , D = (A0 - CPCT)“2. 

Fig. 1. Subspace algorithm for the identification of a given 
discrete time frequency domain power spectrum. 

3.2. Singular value decomposition and determination 
of the system order 

As described in Theorem 2, the matrix S is rank 
deficient and can be factored into system related 
matrices. This factorization is achieved with the 
Singular Value Decomposition (SVD) of S: 

s = WI u2,(“d i) (;;), (18) 

where S1 E Hz” x 2”, U1~Rq1X2n and I/~EBB”~~“. 
Two times the system order (2n) can thus immedi- 
ately be determined from the number of singular 
values different from zero. The singular vectors of 
the SVD (18) also lead to the definition of the 
important matrices @ and -Y: 

@ Ef &$‘2, ~d;fSi/2~r 
1 1. 

We find from the SVD (18) and Theorem 2 that 
(with T E R2” ’ 2n a non-singular matrix): 

% = (r,&;)T-‘, (19) 

3.3. Determination of A 
In classical realization theory of Ho and Kalman 

(1966) and Kung (1978), for instance, the range of 
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the extended observability matrix I, is determined 
from the SVD of the impulse response block- 
Hankel matrix. The system matrix A is then deter- 
mined through the shift structure property of this 
extended observability matrix I,, which essentially 
states that 

where x and & denote the matrix X with the 1 first 
and last rows deleted, respectively. 

From (19) we know that for the power spectrum 
identification of this paper, the range of the block- 
Hankel matrix determines not the range of I,, but 
the range of (I, a;f). We thus resort to an alternative 
shift structure formulation: 

- (r, 25;) = (r 3’) q q (;4 (AT;-l). 
Using (19) this last equation can be converted to 

g+% = T(; (&)P. (21) 

The left-hand side of this equation can be com- 
puted from the singular value decomposition of S. 
Clearly, the spectrum of this matrix is equal to the 
combined spectrum of A and (AT)- ‘. Since we 
know that A is stable, the stable eigenvalues of 

@%? determine the eigenvalue spectrum of A. 
The matrix A can thus be constructed as follows. 

Let ,@% have n, real stable eigenvalues al, . . . , u.,, 
and n, = $(n - n,) pairs of complex conjugate 
stable eigenvalues pi + jyi, . . . ,/I., + jy,. The 
matrix A can then be set equal to 

A = Q(a, B, Y). (22) 

Note that, for simplicity, we have assumed that 
A has distinct eigenvalues. If this is not the case, the 
definition of S&x,/I, y) can be extended to also in- 
clude block-Jordan forms for repeated eigenvalues. 
This would only slightly complicate the discussion 
to follow. 

In practice, when the data are perturbed by 
noise, the simple solution (21) is not guaranteed to 
have n stable and n unstable eigenvalues. An alter- 
nate solution, which avoids this problem, is to fit 
the null space of 9 as in Viberg et al. (1997). Indeed, 
in Viberg et al. (1997) it is shown how a basis for the 
null space of the extended observability matrix can 
be parametrized as a function of the coefficients of 
the characteristic polynomial. Similarly, we can 
parameterize the null space of @ with the coef- 
ficients of the symmetric characteristic polynomial: 

Z2” + u1z2”-l + u2z2n-2 + ... + u,_iZ”+l 

(23) 
+ a, zn + u”_lZ”-l + . . . + u2z2 + UlZ + 1, 

which for each root rk also has a root l/rk. In this 
way the solution will always have n stable and 
n unstable eigenvalues. A drawback of this method 
is that it is not as numerically reliable as (21). 

3.4. Determination of C, G and A0 
Once A is determined from (22) we have to 

determine the matrix T appearing in (19)-(20).* 
The first equation which T has to satisfy follows 
from (21): 

T--‘@%T = (b” (A;_l). (24) 

One matrix To satisfying this equation can be easi- 
ly found from the eigenvalue decomposition of 

2%. A real matrix To is constructed as follows: 

l For every real eigenvalue and associated real 

eigenvector ok of g+%, the corresponding column 
in To simply equals ok. 

. For every complex conjugate eigenvalue pair and 
associated COIUpkX COI’IjUgate CigeUVeCt0r.S ok and 
* 
vk of 2%) the corresponding COhnUS in 
To equal @(uk) and $(ok). 

The matrix To, however, is not unique in the 
sense that any matrix T = T OF with: 

Fzf W,P,V) ( 0 
0 > w44P) ’ 

(25) 

also satisfies equation (24). Here we have introduc- 
ed 2(n, + 2n,) = 2n real numbers (kk, &,&) and 
(6k,&, vk). However, the number of degrees of 
freedom in the model, after fixing A (22) is only n: 
any similarity transformation transforming A into 
itself is of the form fl(u, b, c) and has only n free 
parameters. We thus need a second equation to 
eliminate n degrees of freedom from T. 

This second equation, which determines the coef- 
ficients of F follows from the combination of equa- 
tions (19) and (20). With T = (T, T,) and T” = 
(Ty T$ where T1, T2, T?, Ty E R 2n x n, we find (see 
Appendix C): 

@+l-ITT = TIMT; + T2MTT;. (26) 

Using T = T°F and equation (25), this leads to 

%‘l-IYT = T:R(lc, p, v)MOT(6, 1, /I)(T;)~ 

+ T@(#, ;1, p)MTfiT(q p, v)( T f)‘. (27) 

*Note that in the classical realization theory of Ho and 
Kalman (1966) and Kung (1978) the matrix T does not have to 
be determined. This is because, in that case, C and Gr are 
determined as the first 1 rows and columns of the extended 
observability and controllability matrices, respectively. The rea- 
son why we have to determine T for this identification problem 
is that C and G appear both in (19) and (20), and thus cannot be 
determined independently from each other. 
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We can now fix n degrees of freedom in equation 
(27) by setting Q@, ,u, v) = I,: 

This equation is linear in the parameters &, & and 
Pk, which implies that, even though a little tricky, it 
is straightforward to solve for the unknowns.* 
Equation (19) now becomes 

= (%T~JQT;Q(6,A,p)). (29) 

The system matrices C and GT can be determined as 
the I x n upper left sub-matrix and lower right sub- 
matrix of (29), respectively. 

Once A, G and C are determined, A0 easily 
follows from (14) as (with M = (I, - AzN)- ‘): 

A0 = so - CAZN- ‘MG _ GT(/tT)ZN- lj@‘CT, 

(30) 

3.5. Determination of B and D 
The second part of the identification problem 

consists of the determination of the system matrices 
B and D of the spectral factor (l)(2). As explained 
in Caines (1988) and Van Overschee and De Moor 
(1996a) this can be done by solving the following 
Riccati equation for P: 

P = APAT + (G - APCT) (A0 - CPCT)- ’ 

x (G - APCT)T. (31) 

The positive definite solution of the Riccati 
equation (31) can be found from the generalized 
eigenvalue problem: 

AT-CTAilGT 

- GA- ‘GT 0 

= A (32) 

as P = W2WL1. A contains the n stable (i.e. inside 
the unit circle) eigenvalues of the generalized eigen- 
value pencil. The matrices B and D can then be put 
equal to: 

B = (G - APCT)(Ao - CPCT)- l”, (33) 

D = (A0 - CPCT)“‘. (34) 

The fact that B and D are computed through the 
solution of the Riccati equation (31) guarantees 
that the resulting system is minimum phase, i.e. that 
the eigenvalues of (A - BD- ‘C) are all stable. 

This concludes the description of the steps of the 
power spectrum identification problem. The final 
algorithm is summarized in Fig. 1. 

3.6. Consistency 
We now discuss briefly how the algorithm be- 

haves in the presence of noise. Assume that the 
given data & are corrupted as 

Sk = s(e j(ZN2N)) + nk, 

where nk is a zero mean complex random variable 
with covariancet 

We thus assume that the perturbations between 
different frequency points are independent and 
that the real and imaginary parts at a fixed fre- 
quency point are also independent. Furthermore, 
we assume the covariance Rk to be uniformly 
bounded. 

Following the derivation in McKelvey et al. 
(1996) and with 

$=S+AS 

we then find that for the number of data iV going to 
infinity (N + co), the Frobenius norm of the per- 
turbation goes to zero IIASIIF -+ 0. This is intui- 
tively clear from the averaging effect when taking 
the inverse discrete Fourier transform which will 
zero out the noise contributions. This observation 
has as a direct consequence (McKelvey et al., 1996) 
that the algorithms presented in this paper are 
strongly consistent. 

4. ENSURING THE POSITIVE REALNESS OF THE 

POWER SPECTRUM 

In this Section, we investigate the consequences 
of the fact that every physically meanin& power 
spectrum should be positive real (5). In practice, when 
the data are corrupted by noise, this property is not 
guaranteed by the algorithm of Fig. 1 and should 
thus sometimes be forced afterwards. This section 
describes two optimal ways to do so. 

As already stated in equation (5), each of the 
given data matrices Sk has to be positive definite. 
When this is the case, and when the data Sk are 
noise free data generated by a linear system of 

* Note that when the data are perturbed by noise, the equa- 
tion is not exactly solvable and should thus be solved in a least 
squares sense. 

tE denotes the expected value operator and 6,, the 
Kronecker delta. 
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a finite order, the identified power spectrum will 
also be positive real and satisfy (5). 

However, problems arise when the given data 
were not generated by a finite dimensional linear 
system or when the finite data sample is noise 
corrupted, which is the case for all practical prob- 
lems. In this case, there is no guarantee that the 
identified power spectrum, which is determined by 
A,G, C and A, is positive real and thus satisfies 
equation (5) for all points on the unit circle. One 
important implication of this is that when the iden- 
tified sequence is not positive real, the Riccati equa- 
tion (31) has no positive definite solution and the 
spectral factor cannot be computed. See also Van 
Overschee and De Moor (1996a) for more details 
on positive real spectra and sequences. 

In this section we present two possible solutions 
to this problem. Both of these solutions start from 
given matrices A and C (determined from the algo- 
rithm in Fig. 1). The solutions then state how G and 
A,, are determined through the solution of an op- 
timization problem which guarantees a positive 
real identified power spectrum. 

4.1. Linear matrix inequalities 
Given the system matrices A and C from the 

algorithm in Fig. 1, a positive real identified power 
spectrum can be guaranteed by solving the follow- 
ing constrained optimization problem (see also Van 
Overschee and De Moor, 1996a): 

Given the known transfer matrix 

Solve 

L(z) = (C(ZZ” - A)- ‘11J. (35) 

ZN-1 

x LT(e -j(2nWN))[j& 

Constrained to 

(36) 

(37) 

The system matrices G and A,, can then be found by 
solving the set of equations: 

P=APA=+Q, G=APC=+S, 

A0 = CPC= + R. 

The constraint (37) guarantees that the resulting 
identified quadruple A, G, C, A0 leads to a positive 
real power spectrum (Van Overschee and De 
Moor, 1996a), which in turn implies that the Riccati 
equation (31) has a positive definite solution and 
that the spectral factor can be computed. 

The optimization problem (36)-(37) can be con- 
verted to a linear matrix inequality (Boyd et al., 
1994) (LMI), which means that it has a unique 

solution. The LMI software obtainable from 
anonymous ftp (Boyd, 1995) is a good tool to find 
a numerical solution. The drawback of this ap- 
proach however is that the software in Boyd (1995) 
is not really suited (yet) for solving large problems. 
That is why we present a second approach. 

4.2. Non-linear least squares 
Given the system matrices A and C from the 

algorithm in Fig. 1, a positive real identified power 
spectrum can be guaranteed by solving the follow- 
ing unconstrained, non-linear least squares opti- 
mization problem (with L(z) defined in (35)): 

ZN-1 

min 1 II& - L(e 
B,D k=l 

j(2WZW) : (~r~r) 
0 

x LT(e -j(2nWW)II;, (38) 

which can be solved by a non-linear least squares 
solver. The optimization problem (38) guarantees 
a positive real power spectrum. To insure a mini- 
mum phase model, the equations (6)-(s) can be 
solved for G and &,, after which a new B and 
D (guaranteeing a minimum phase model) can be 
computed through the solution of the Riccati equa- 
tion (31) and equations (33) and (34). 

Our experience with this method is that it con- 
verges well, when good initial guesses for the system 
matrices B and D are provided. This is the topic of 
the next subsection. 

4.3. About initial guesses 
To solve the non-linear optimization problem 

(38) we need an initial guess for the matrices B and 
D. However, when the power spectrum associated 
with the identified quadruple (A, G, C, A,,} is not 
positive, the matrices B and D cannot be computed 
since the Riccati equation (3 1) has no positive defi- 
nite solution. In this subsection we describe how 
the identified matrix A0 can be perturbed to 
a matrix &, so that the power spectrum associated 
with the resulting quadruple {A, G, C, &,} is posi- 
tive real. Assume the perturbed & is of the form: 

il, = Ao + rl,, 

where r > 0. Taking z large will trivially ensure 
positive realness of the power spectrum. However, 
we would like to keep r as small as possible. This 
problem can be posed as an LMI as follows (see 
also constraint (37)): 

min r 

subject to Z>O 

P > 0, 

P - APA= G - APC= 

G= - CPA= A0 - CPC= + tl, > 
>O 

(39) 
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Power Spectrum Subspace IdentiLlcation Algorithm 

. Repeat all but the last step of the algorithm in Figure 1. 

. When the power spectrum is not positive, solve (4.3) for T and replace 
h with Ac + 7.1,. 

l Find P through the solution of the Riccati equation (31)-(32) and 
determine initial B” and Do matrices as: 

B” = (C - APCT).(Ao - CPCT)-“’ , Do = (A0 - CPfl)“’ 

l Solve the non-linear least squares optimization problem with B” and 
Do as start-up values for the son-linear optimization procedure: 

l To ensure B minimum phaw model, solve (6)-(g) for G and Ao. Fkcom- 
pute B and D through the solution of the Fliccati equation (31) and 
equations (33) and (34). 

L 

Fig. 2. Subspace algorithm for the identification of a given 
discrete time frequency domain power spectrum. This algorithm 
ensures a positive real power spectrum and finds the optimal 

matrices B and D. 

and P symmetric. This LMI can be easily solved 
with the software of Boyd (1995). Note that 
this LMI even lends itself to introduce general 
perturbations on AZ & = A,, + T, where the 
Frobenius norm of T could be minimized with 
respect to the above constraints. We will however 
not pursue this in this paper. 

The Riccati equation associated with 
{A, G, C, &,] can now be solved. This leads to ma- 
trices B” and Do which can serve as initial guesses 
for the optimization problem of Subsection 4.2. 

Given data 

1 2 3 
Frequency 

Second Order 

I 

0.5 1 
Frequency 

The steps of the resulting algorithm are sum- 
marized in Fig. 2, which is the final power spectrum 
identification algorithm of this paper. 

5. EXAMPLES 

In this section we consider two practical power 
spectrum identijcation probZems which illustrate the 
capabilities of the algorithm described in this paper. 

5.1. Modeling human sensitivity for car comfort 
analysis 

In a first example we model the human sensitivi- 
ty for accelerations, to predict the comfort of a car 
as experienced by the driver. The measured data 
consists of a quantitative sensitivity index as a func- 
tion of the frequency the car is excited with (the 
data here are for vertical accelerations). A high 
index implies high sensitivity at that frequency and 
vice-versa. Naturally, this data does not contain 
any phase information and is thus suitable for the 
algorithm described in this paper. Fig. 3 (a) shows 
the measured power spectrum (the sensitivity index 
as a function of the frequency). The spectrum con- 
sists of 512 measured amplitude samples. We have 
applied the algorithm of Fig. 2 to these data (with 
r = q = N = 512). Figure 3(b) shows the singular 
value spectrum which determines (two times) the 
system order. We choose a system order equal to 
2 and 7. The identified power spectra were both 

Singular Values 

r 

5 10 15 20 
System Order x 2 

Seventh Order 

Frequency 

Fig. 3. (a) Given road disturbance power spectrum. (b) Singular value spectrum which determines two times the system order. We 
selected order 2 and 7 (which corresponds to the bar at 4 and 14 in the plot). (c) and (d) Second and seventh order fit (full line) and 
original data (dotted line). Note that we cut the frequency axis to zoom in on the more relevant part of the power spectrum. The seventh 

order model fits the flat part of the spectrum very well. 
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Singular Values 
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Fig. 4. Singular values associated with the radiation efficiency model. A fifth order system (bar 10) gave a reasonably good result, but 
a tenth order system (bar 20) resulted in the best fit of the numerical integral solution (equation (41)). 

positive real, so no extra correction was needed. 
The resulting fits are shown in Figs 3(c) and (d). 

The computationally most demanding step in the 
algorithm of Fig. 2 is the computation of the Singu- 
lar Value Decomposition of SE RrNxlN (a 512 x 512 
matrix for this example). Most of the computed 
singular values and vectors are however never used, 
since we only need the smaller matrices U1 E I@~‘~, 
SiEIRnx” and Vi E R’Nxn in the algorithm. Instead of 
using the direct algorithm for the SVD as in Golub 
and Van Loan (1989) it is much more efficient to use 
a Lanczos algorithm which only computes the most 
significant singular values St and vectors iY1 and Vr. 
For this example, only 20 singular values and vec- 
tors were computed with the software package 
ARPACK (Lehoucq et al., 1995). With the Lanczos 
algorithm, the attained computational speed-up fac- 
tor in the SVD step was approximately 35 (compared 
to the full SVD of Golub and Van Loan (1989)). 

5.2. Modeling of an acoustic power spectrum 
Efficient active reduction of the noise radiated by 

a structure requires an accurate model of the radi- 
ation efficiency which relates the dynamic response 
of the structure to the total acoustic energy radi- 
ated* (Baumann et al., 1991). It can be shown that, 

*The total acoustic energy is the time-integral of the acoustic 
power radiated through a surface enclosing the vibrating struc- 
ture. It depends on the squared sound pressure on the con- 
sidered enclosing surface, which in turn depends, via the 
Rayleigh-integral expression, on the velocity distribution of the 
structure. 

when the velocity distribution of the structure can 
be decomposed as an expansion of P mode shapes, 
this total acoustic energy E equals: 

s 

m 
E= ‘I’* (jo)M(jo)Y(jo) do, (40) 

0 

with the matrix M(jo) containing the radiation 
efJiciencies dejned as 

2m 00 

M(jo) = 
ss 

H*(jw)H( jw)sin(@ dfI d& (41) 
0 0 

where 

‘IYjo) = ($,(jo) $2(jm) . . . vQdjd)T, 

H(jw) = (h(j4 h2(j4 . . . Mjd). 

$i(jo) denotes the modal velocity of the structure 
corresponding to mode i and hi(jo) the transfer 
function relating Il/i(jo) to the sound pressure on 
the surface. The angles 0 and 4 describe the integra- 
tion points on the surrounding surface and o de- 
notes the frequency in radians per second. Active 
reduction of the radiated noise can now be 
achieved by controlling the modes t//i(jO) of the 
structure in such a way that the total radiated 
energy E(40) is minimized. To solve this pro- 
blem, an analytic expression of M(jo) as a de- 
composition G(jo)GT( - jw) is needed. This is 
achieved by numerically evaluating equation (41) 
in a number of frequency points MO = M(jw,), 
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Measured (‘) and ldenttfled (-) Radiation Efficiencies 
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Fig. 5. Original (stars) and tenth order identified (full line) radi- 
ation efficiencies. There is hardly any difference between the 
numerical integral solution (equation (41)) and the model (only 
the elements (7,4) and (4,7) differ a bit at higher frequencies). The 
subspace identification algorithm identifies these data very well. 

Ml = M(jo,), . . . ) MN = M(jmN). With the Nyquist 
frequency equal to o,/27c, we can now model the 
points Ml as a discrete* power spectrum with the 
algorithm of Fig. 2. 

As an example, consider a rectangular plate 
modeled by its first 8 modes (P = 8). We evaluate 
equation (41) in 50 frequency points which results 
in 50 8 x 8 matrices Mi. These matrices are used as 
the input to the algorithm of Fig. 2. Once again, we 
used the AFE’ACK software (Lehoucq et al., 
1995) to compute the 40 most significant singular 
values and vectors. The speed up factor attained 
with the Lanczos algorithm in the SVD step was 
equal to 6 for this example. The singular value 
spectrum is shown in Fig. 4. We choose the order 
to be equal to 10. For this example, the identified 
power spectrum was not positive, so we had to 
apply the corrections and non-linear least squares 
optimizations of the algorithm in Fig. 2. The identi- 
fied spectrum is shown in Fig. 5. 

6. CONCLUSIONS 

In this paper we presented a new subspace algo- 
rithm for the identification of multi-input multi- 
output linear discrete time systems from measured 
power spectrum data. We showed how the inverse 
discrete Fourier transform of the given data can be 
used in a new realization algorithm which determines 

*After modeling, the discrete power spectrum can be trans- 
formed back to the continuous domain using the inverse ZOH 
transformation. When the bilinear transform is preferred, the 
original frequency axis has to be pre-warped. See also McKelvey 
et al. (1996). 

the system matrices. Special attention was paid 
to the positivity of the identified power spectrum. 
The algorithm was illustrated with two practical 
examples. 
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From standard discrete Fourier transform properties it also 
follows that: 

r;, = h:N-k = GT(A’)ZN-k-‘(I, - (AT)*.‘)-‘CT, (A.7) 

r;, = h,* = +A,, + GT(AT)ZN-‘(I. - (AT)2N)-‘CT. (A.8) 

The combination of (A.4), (A.6) and (A.8) leads to the proof of 
formula(l4), while the combination of (A.4), (AS) and (A.7) leads 
to the proof of formula (15). 

APPENDIX B. PROOF OF THEOREM 2 

Using Theorem 1, and the fact that for any r, s > 0 and for any 
t 2 max(r, s) 

A’M,J”-” = ,@MA’t-“’ 

we can rewrite and decompose the block-Hankel matrix (16) as 
follows: 

CMG CAMG ... CA’- ‘G 

CAMG CA’MG CA’G 
S= 

. . . . 

CAq-‘MG CA“MG CA’+q-‘t 

= [cf_) M(G AG... AV-IG) = [:I 

GT(AT)‘+VZMTCT GT(AT)‘-*MTcT GT(,@)‘-1MTCT 

. . 

+ 
GT(AT)qMTCT GT(AT)‘MTCT GTATMrCT 

GT(Ay9- If&CT GTATMTCT GTMTCT 

MT((AT)‘- ‘CT.. ATC’CT) 

I C GT(AT)q-‘\ 

1 CA ... \ /M 0 \/ G AG ... A’-‘G 

CT > 
= I-,.M.A, + &MT.ff =(r, A;).(: eT)(;). (B.1) 

=\,,_, GzT 1’0 MT)\(AT)‘-‘CT ... ATCT 

APPENDIX A. PROOF OF THEOREM 1 

The proof makes extensive use of the results of McKelvey et 
al. (1996). From (9) we find that S(z) can be split into the sum of 
two transfer matrices H(z) and HT(zel). The sampled values of 
these spectra are denoted (k = 0, ,2N - 1) as follows: 

Ht = H(z)l, = dnnw~, (A.1) 

HI, = H*(z - ‘) Iz = gww 64.2) 

= Hz. (A.3) 

We denote the inverse discrete Fourier transform of the signals 
Hk and A, with hk and &, respectively. Through linearity of the 
inverse discrete Fourier transform, we thus find: 

sk = h, + r;,. (A.4) 

In McKelvey et al. (1996) it is proven that ht can be written as 

h~=CAX-l(In-AZN)-lG, k>O, 64.5) 

ho=&+CA ZN- ‘(I, _ AZN)- ‘G, (‘4.6) 

This coincides exactly with equation (17). The other claims of 
Theorem 2 follow trivially from equation (B.l). 

APPENDIX C. PROOF OF EQUATION (26) 

From equation (19) we find: 

From equation (20) on the other hand, we find: 

(y ;T).(;;)= T-w”. 

Combining (C.l) and (C.2) leads to 

@(Tz TJ = rWT(TT)-’ 

This can be rewritten as 

Q+IIVT = (T, TJ (‘y :)(;I) 
= T,MT; + T,MTTT 1, 

which is equation (26). 

(C.2) 


