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Abstract

In this paper we design a linear dynamic output feedback
controller for a ball and beam system based on an iden-
tified neural state space model. This is done by applying
dynamic backpropagation, constrained by NLg internal
or I/O stability conditions. The performance of the con-
troller has been tested on a real ball and beam set-up.

1 Introduction

A widely used algorithm in neural modet based controller
design is Narendra’s dynamic backpropagation procedure
{6]. Training is done then by means of optimising a cost
function which is based on the controller’s tracking per-
formance, defined on a set of specific reference inputs.
This method however doesn’t assure proper generalisa-
tion to reference inputs outside the training set, nor can
it guarantee closed-loop internal or IfO stability stabil-
ity. Recent work of Suykens et el [7][9] has introduced
criteria for internal and I/0 stability based on the so-
called NL, representation of the closed-loop system. The
NL, theory enables a top-down linear or neural controller
design for general non-linear systems, based on identified
neural state space models. In this paper we present a
case study for a ball and beam system. Controllets are
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designed by means of Narendra’s dynamic backpropaga-
tion procedure, modified with NL, stability criteria. It
will be shown that weaknesses of classical dynamic back-
propagation can be overcome to produce controllers of a
quality comparable to for example LQG controllers for
this system.

This paper is organised as follows. In Section 2 we
present the ball and beam system and its identification
using a neural state space model. In Section 3 the con-
troller and reference model are shown and the closed-loop
equations are rewritten in an NL; representation. The
NL; criteria for closed-loop internal and I/O stability are
described in Section 4. Section 5 discusses the controller
design using classical dynamic backpropagation. Section
6 demonstrates how the NL, criteria can be used in the
controller design and shows the validation of the con-
trollers during tests on the real ball and beam system.
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Figure 1: Ball and beam set-up.

2 Identification of the ball/beam
using neural state space models

The system to be controlled (Fig. 1) consists of a beam
on which a rolling ball has to be stabilised and positioned
[4]. The control action is performed by a stepper motor
that sets the angular position of the beam. The position




of the ball relative to the middle of the beam is taken as
the output (in meters) and is measured by means of a
potentiometer system attached to the beam.

First the dynamic relation between the angle of the
beam and the velocity of the ball was described in a de-
terministic neural state space model [8]. An integrator
is added to obtain a complete angle-to-position model of
the form

Bre1 = Waptanh(Vady + Vewg)
O = Weptanh(Vody + Vpuy) 1)
Skp1 = St %ﬁk (
e = Sk,

where f, is the sampling frequency (10 Hz), the state
is &z € R, the velocity 9 € IR, the integrator state
8, € K, the position §; € R and the input signal
uy € B", withm =1 =1 and n, = 2. The in-
terconnection matrices in the neural state space model
are Wap € RM=*%he Vy € RM:=XR= Vg € RMh=*m,
Wep € BX™hy | Vi € R™s X Vp € RMy ™ with iy,
and np, the number of hidden neurons in the velocity
model.

Using a priori knowledge by imposing the integrator in
the model is done because the intrinsic instability of the
system makes I/O-measurements difficult and obtained
data doesn’t contain enough information to model the
underlying behaviour.

Learning of the neural state space model was based
on numerically differentiated output data and was done
using a prediction error algorithm. Dynamic backpropa-
gation was used with a Narendra sensitivity modet [6] for
calculation of the gradient of the cost function. A quasi-
Newton method has been used for local optimisation [5].
Starting values for the model parameters were derived
from linear ARX models [7] and the numbers of hidden
neurons were chosen as np, = 2 and ny, = 1. The neural
velocity model has been successfully validated by means
of higher order correlation tests [1){8].

3 Control scheme and its NL; rep-
resentation
In order to design a controller based on the identified

model (1), a linear dynamic output feedback controller is
taken of the form

241 =
wp =

where z; € K" is the controller state, u; € R™ the model
input, 7 € R the output and 7 € K the reference
signal. The following specific structure is taken for this

Ezy + Fijy, + Farg
Gz + Hijp + Hary,

(2)

controller:
E = [%‘ C‘i""]
St T T o
G = [ @5 Qs ],
H = [0], Hy, = [@],

In this way integral control is obtained and steady state
errors are avoided.

A reference model with a low pass filter characteristic
is introduced, with state space representation

{ JLIER] = Aﬂuk +Bl’dk (4)
vy = Crpg,

where A, € RV *%, B, e R (. e BR*™ nsis
the order of the reference model, py. is the state, d; the
input of the reference model. A cut-off frequency of 5
Hz was chosen.

The closed-loop system is shown in Fig. 2. For the reg-
ulated output both the relatively weighted control signal
pug and the tracking error »; — 4, are considered.
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Figure 2: Closed-toop system

The equations for the closed-loop system are

( Erpr = Wapo(Vady + VB(GZk + Happ))
$ke1 = S+ 4 Wepo(Vods + Vb(Ga + Hapr))
¢ Zky1 = Bap + Fé + FCrpuy
et = Appg + Brdy
e~ Px = Crpr — 8
{ pux = pGzp+ pHaCrpixe.

(5)

After introduction of the following new state variables

& c(Vadi + VG + Ve Ha Gy pti) (6)

i o(Voir + VpGa + Vp HaCrpr),

these equations can be rewritten in the standard plant
NL; representation [2][7][9]

{Pk+1 = I'y(Vipr + Bywy)
e, = Al(wﬁ‘pk'{'D;wk)

i

{7)




with state vector pp = [£x; 8k; 2kt &k e, regulated
output ex = [rp — fix; Aug), exogenous input wy = dy and

[0 1) 0 0 Was 0
0o I 0 0 0 +-Wop
0o F B RCy 0 0
vi=|0 O 0 Ar 0 0
0 VgGF VgGE VpGFO, ViWap g
+FQCrAr
0 VpGF VpGE VpGRC, VeWup 0
| +FR Gy Ay i
0 W = [ 0 -1 0 ¢ 00
0 =10 0 pG pHaC, 0 0 |
Bi=1] 0
1 Br ] o o
vloe=[oa]

This is a special case (¢ = 1) of the general NL, repre-
sentation [7][9]

pry1 = Di(ViTa(Va .. .To(Vepr -+ Bown) . ..
+ngk) + B;wk)
e = Al(ﬂflAz(Hfg e Aq(quk + quk) e

+Dqwy) + Dywg).
(8)
4 NL, stability criteria

For the case of internal stability of the closed-loop sys-
tem, the NI, representation (8) becomes

Pry1 = (H Li(pe)Vidpr- 9

In this case the state vector can be simplified to pp =
(&3 8k; #r; €k i}, without the state p of the reference
model. The NL, (9) becomes

Pryt =Ty (P:.-)Vl(ﬂ)m (10)
with
0 0 0 Wap 0
0 I G G fl—“{'Vc D
vi@=10 F E 0 0 :
0 VgGF VgGE VsWug 0
0 VpGF VpGE VoWap 0

where Vl(“) € RtXre withny = ny +1+n; +np, +
ny,. According to {7] a sufficient condition for global
asymptotic stability of the autonomous NL; system {10)
is to find a matrix Py € R" X% guch that

&(P) |V P, < 1 (11)

where k(P;) = ||Pull,IPTl,- This criterion for global
asymptotic stability can be restated as a condition for

local stability at the origin

mink(P) st |PVOPY, <1, (12)

whereby minimising &(P,) enlarges the region of attrac-
tion at the origin. For the more general formulation in
the case ¢ > 1, we refer to [7]{9].

I/O stability criteria for NLys [7] make use of the fol-
lowing equivalent closed-loop system representations for

(8):

a8

Prar = (ITs Do (o we) Mi) { E;i ]

(13)
ex = (H?:lAi,e(Pk;wk)Ni)[,‘T;]
with
Fl,e = I Pa,e = [gl ?]
mo= (voB o omo= [P
Al,e = My At,e = [31 ?—}
No= [Wo D] N :“;V,- f,]
(f=2,...,9)
and _
P41 : P
v — i ext , ¢
r y*EQM”“)&ﬂwF] (14)
with
[T 0 0 M 0 0
Q"‘[ 0 Ae 0}’ R'—[ 0 N 0]’
My, 0O .
r=h0] =10
where w§*! consists of the input uy, extended with a ficti-

tious input signal in order to make []?_, R; square. This
additional input may be interpreted here as a noise in-
put, which is considered to be zero because of the purely
deterministic model.

For the NL; (7) the representation (14) reduces to

Pr41
T — Gk

,\uk

Pi
] = 4y (pr, dx) R { dy } , (15)
0

with .
W B O}

Rl:[wl D, 0




where R, € R" *"r, with np. =n, +{+n, +ng +np, +
ny, + {41

The following condition [7] guarantees I/O stability
with finite La-gain for the NLy system (15). If there ex-
ists a matrix Ps, =blockdiag{P, 615} with P; € R**nv
and J a real scalar, such that

cpfip <1 {16)

with cp = k{Ps,) en fp = [|PSIR1PS:1||2, then there
exists a positive constant ¢; such that

llell; < chBBllwlz + e llpoll2. (17)

when {w}re, € l2. In analogy with the internal stability
case (12), one considers

(18)

The conditions (12) and (18) can also be expressed as
LMIs (Linear Matrix Inequalities) [3){7).

minep = &(Pg,} s.t. ]lPislPS"lll|2 <1

5 Classical dynamic backpropaga-
tion

In classical neural control using Narendra’s dynamic
backpropagation [6], one trains a controller by optimiz-
ing on a set of specific reference inputs by solving the
parametric optimisation problem

ming, J(0e) = sh Dy {Irk — 5(00) e — 91(60)]

+Auk(9c)Tuk(gc)}

(19)
where 8, is the controller parameter vector, N is the time
horizon and A a positive constant.

For the ball and beam we trained the controller on a
step reference input. For the optimisation algorithm we
applied a quasi-Newton method, with BFGS update of
the Hessian [5]. The gradient of the cost function was
calculated numerically.

The instability of the ball and beam system limits the
length of time horizons in the cost function (19}, There-
fore we have taken N = 50 (5sec.) as shown on Fig. 3.
Starting from random initial controller parameter vec-
tors, the optimisation leads to bad results in the sense
that a closed-loop system is obtained in which the origin
is unstable and multiple equilibrium points appear. Also
poor generalisation outside the training set is observed.
Typical simulation results are shown on Fig. 3 and Fig. 4.

In general one can say that a controller design solely
based on optimisation of the cost function (19) cannot
guarantee closed-loop stability nor proper generalisation
to reference inputs outside the training set. In the next
Section we show how this problem can be avoided by
applying NL, stability constraints.

Figure 3: Simulation of the closed-loop behaviour shows that,
when using classical dynamic backpropagation, the tracking error
is small on the training interval (5sec., before the vertical line on
bottom figure), but that the generalisation outside the interval is
bad (rp: -5 upies fr: )
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Figure 4: The simulated behaviour of the autonomous closed-loop
system for a randomly chosen initial state vector. The closed-loop
system has unwanted multiple equilibria in case one applies classical
dynamic backpropagation.

6 Dynamic backpropagation with
NL, stability constraints

In order to guarantee closed-loop and I/0 stability, we
modify Narendra’s dynamic backpropagation with NL,
stability constraints [7].

6.1 Internal stability constraint

‘The optimisation problem (19) is modified using criterion
(12) in order to impose internal closed-loop stability. This
results into

1RV 6P, < 1

H’(Pl) <a, (20)

g?,ilgl J(8.) s.t. {
where J(8.) is defined in {19) and « is a user-defined
upper-bound on the condition number k(P ).

Using SQP (Sequential Quadratic Programming) [5] in
order to solve (20}, a better formulation of the problem
turned out to be

J(6:) < p

i (a) -1
pin IPO00R N, se { TEVSE )
where 8 is a user-defined upper-bound on the tracking

error.




Starting from random initial parameter vectors, the
problem was solved for a = 200 and 8 = 0.13 and with
the same specifications on the cost function (19) as in Sec-
tion 5: step reference input, N = 50 (5sec.}). The identity
matrix was taken as the starting point for P,. The ob-
tained controllers were found to be locally stable and by
lowering the upper bound on &(F,) to o = 80 the region
of attraction could be extended over the entire working
range of the ball and beam system. Fig. 5 shows the sim-
ulation of the autonomous closed-loop with a controller

for which || P,V (8.)P[ ||, = 0.97 and x(P,) = 75.
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Figure 5: Using the NL, constraint, internal stability is success-
fully imposed on the closed-loop system. When initialised with
values randomly spread over the entire working range of the ball
and beam system, all trajectories converge to the origin.

Also the controller’s tracking performance and general-
isation to other signals has improved as shown in Fig. 6.

Figure 6: Using the NI, internal stability constraint, the con-
troller's generalisation outside the training interval of Fig. 3 and to
other reference inputs (top: sine input) is better when compared
to classical dynamic backpropagation {rg:- -+ ugi-vi 910 —)

6.2 I/O stability constraint

Modification of the optimisation problem {19) by means
of the NL, I/O stability constraint {18), gives

. | Ps, R1(6:)P5, M, <1
1:}11511 J(0:) st { #(Ps,) < a. 1 (22)
Here the cost function has been redefined as
J(6e) = 202X Tk = Ty (23)

where 1y, is step reference signal and T'. is a user-defined
upper-bound on the rise time. Using this cost function
a better closed-loop system performance has been ob-
tained.

Like for the internal stability case (20), this optimisa-
tion problem was solved by means of SQP as

J(6:} < B

K‘(PS]) < a. (24)

: -1
i |Ps, Ri(8c)Pg, |, s {

With the specifications T, = 2sec., # = lem and
a = 100 and again starting from random parameter vec-
tors and taking the identity matrix for the starting point
of P, we obtained controllers that show improved gen-
eralisation to other reference signals and are comparable
in performance with LQG controllers [3] for the ball and
beam system. This is illustrated in Fig. 7, 8 and 9, where
we show output and control signal as measured on the
real ball and beam system, when testing a controller for
which [|Ps, R1(6;)Pg; [, = 0.98 and x(Ps,) = 86.
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Figure 7: Step response as measured on the real ball and
beam system for a controller obtained with NLy stahility con-
straints, The performance of the controller is comparable with
that of an LQG controller, shown on the next figure {ry: -
Upinmy Th ).

L
t
—0.02} il
i
[}

~0.04
o

Figure 8: Step response of LQG controller, measured on the
real system. The control signal is more nervous than on Fig. 7
(ree - wpey G -).




Figure 9: Same controller as on Fig. 7, tested on the real
system for a square wave as reference input. The centroller
generalises successfully to this reference signal (rp:- - - upie

Gk )

7 Conclusion

In this paper we have shown that in designing linear
output feedback controliers for the ball and beam sys-
tem serious problems with closed-loop stability can arise
when using Narendra’s dynamic backpropagation proce-
dure. By formulating the closed-loop system in NL, rep-
resentation form and by imposing NL, internal or I/O
stability constraints on dynamic backpropagation, the al-
porithm has been successfully modified in order to pro-
duce controllers for the ball and beam system that both
on simulation and during testing on the real system show
a performance comparable to LQG design.
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