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Abstract

In this research work, we cast the traffic identification problem
for multimedia network (ATM e.g.) as an optimization problem
and solve it by general optimization algorithms.

1 Introduction

Traffic modeling of multimedia networks consists of two steps:
traffic identification and queuing analysis . This research work
is mainly concerned with traffic identification.

The input {or arrival) iraffic process in high speed multime-
dia networks is strongly correlated and is modeled by a so-
called Markov Modulated Poisson Process (MMPP) [7, 6]. Let
P = [pi;] be the one-step state iransition matrix (also called
stochastic matrix) of an n-state Markov Chain (MC). That is
PeR"™" pi; > 0and 30 pi; = 1. Assume v = [n] € R,
where v; > 0 is the arrival rate of the Poisson process associ-
ated with state i. Then at time k, the MMPP (P, ) will emit
a(k) arrivals generated by the Poisson process with the arrival
rate v if the state of the MC is i at time k. See Fig. 1. Note
that a{k) can be measured. The ain of traffic identification is
to find P and 4 from arrivals a(k). P and v will then be used
in queuing analysis.

In this work, we will present one siep approach for the traffic
identification which is based optimization algorithms.

2 The first and the second order
statistics of arrivals

As already mentioned, the ultimate goal of the traffic identifica-
tion is to find the parameters (P, v) of an MMPP for analyzing
queue responses to this MMPP. For the following two reasons,
only the first and the second stalistics of arrivals a(k) are con-
sidered. First, the queuwing performance is found to be much
less dependent on the higher-order statistics of a{k}, second,

*Bart Dec Moor is a senior research associate of the N.IF.'W.Q. The
following text presents research results obtained within the frame-
work of the Belgian progranmme on interuniversity attraction poles
{IUAP-17 and TUAP-50) initiated by the Belgian State - Prime Min-
ister’s Office - Science Policy Programming. The scientific responsi-
hility is assumed by its authors. The research work was supported
by the F.K.F.O. project G0292.95.
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Figure 1: A 3-state MMPP.

the first and the second statistics are easy to be measured in
practice,

For steady-state queuing analysis, «{k)} is assumed to be a sta-
tionary random process and only the steady-state statistics are
considered.

Cumulative distribution function of
arrival a{k)

2.1

The first statistics is described by Cwmulative Distribution
Fanction (CDF) F{x) of the arrivals a(k) defined as:

F{z)= kiil}clo Pr(a(k) < =),

which is typically expressed as a piecewise step function.
For a MMPP,

hm Pr(y(k) = vi) = =i,

k—co
where (k) stands for the input rate process {without the lo-
cal Poisson processes), where r = [m;] is the left eigenvector
corresponding to the eigenvalue 1 of the stochastic matrix P:
7P = n {3]. Thus one has:

F(z) Hm Pr(a(k) < 2)
koo

N

Jim 57 Pr(y(k) = 1;)Pr(a(k) < zl(k) = 1)
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whete F.; (2} is the cumulative distribution function for a single
Poisson process:

floor(x) ‘Y"
Fy(z)=¢T" Z -,:_
i=0

2.2 Autocorrelation function of arrivals
a(k)

The second statistics of a(k} is characterized by the auniocorre-
lation function R(n) of a{k} and defined as:

£ E(a(kya(k)) = =(T +T%)e,

R(n) & E(a(k)a(k +n)) = w1 P"Te,

where T = diag(v), e=[11,...,1]7, see [
Now let ¢ = 7' and G = Te, lllen

R, (0) = R(0) - xle, n =1,
Rn—-1), n> 1.

(1)

[8] for the proof.

CP"iG = { (2)
This last observation indicates that the autocorrelation func-
tion of the arrival process a(k) basically consists of the Markov
parameters of a deterministic linear time invariant system with
state space model (P, @, €)(Note that xTe = mean{a(k)}), so
it can be easily calcuiated). This is an important observation
that might lead to use stochastic subspace identification algo-
rithms [11, 10} we have developed for linear stochastic systems.
We will discuss this problem in another paper. Later on we will
use this property to determine the order {the number of states)
of 2 MMPP from the measurements by checking the rank or
the singular values of the Hankel matrix formed with the R(n).

3 Optimization approach to statis-
tics matching

Suppose that the measured cumulative distribution function
and autocorrelation function are Fi,(z) and Rp(n). Now the
traffic identification problem is to find a pair of (P, v} such that
the first and the second statistics F(x) and R{n} of the corre-
sponding MMPP matches the measured Frn(z) and Rn(n).

3.1 Formulation as an optimization prob-
lem

Obviously the problem can be cast as the following optimiza-
tion problem:

(3)

where P stands for the set of all stochastic matrices, the cost
fanction J(P,v) is defined as

min
: B, 420

J(P, )

J(P,y) & Wel|(F(z) — Fn(2)) + Wr[R(n) — Ru(m)l| (%)

where || - |} stands for 2-norm:

I(F(5) ~ Pm(o))IF = f T (F@) - F(z)ds,  (5)

[[(R(n) — B () E(R( - R (1)), (6)

and W; and W, are two weighting factors. When Wy = 0,
only the second statistics is matched, or when W, = 0, only
the first statistics is matched. If one find a P and a +y such that
J{P,v) = 0, then the problem is solved.

3.2 Reformulation as an unconstrained
optimization problem - parameteriza-

tion
Let A € RB**", define the {ollowing map: A — (P, 7):
TW'{OY J=1, Vi,
P(A) = [pij], pi; = P
1+En 1 ";D l or j 75 Hl [

'7’(-"1) = [75}s Y= ﬂ?,,,Vi.

Now the constrained nonlinear optimization problem of (3)
over the stochastic matrix set P and the positive vector set is
changed to an unconstrained nonconvex optimization problem
over R"*™

min
AEEnXn

J(P(A), v(4)). (7}

One can use any general unconstrained optimization algorithm
to solve the problem.

3.3 Calculation of norms

The exact calculation of ||[F(z) — Fu(z)|l is time consuming.
We use the {ollowing approximation:

Ny

~ 3 () = B0

=1

I{F (=) = P (=)

Note also that Ny need not to be very large. It is in fact good
enough for Ny to be about 10 points with equalized interval
points x; covering all the possible range [0 max(a{k})]. See a
numerical example later on.

The calcnlation of || R(n)— Ry ()} is straight forward, However
instead calculating infinity number of terms in (6), only first
N, terms are calculated, N, should be larger than the order of
the MMPP which will discussed later on. For each correlation
term,

I oiBNalk
lim E _ﬂ(k)ﬂ(_k t+n)
I k=1 v

R(n) =

is approximated by
i
R(n) = z w
k=1

where ¢ +#n is the number of total data points. Since the steady
state statistics is used, { should be large enough.



Figure 2: Cumulative distributions of the identified
MMPP ( ), data of arrivals (— — —) and the original
MMPP (—-—-)

3.4 Examplel

We used Matlab funclion ’fminu’ to solve the unconstrained
optimization problem of (7). The algorithm in 'fmine’ is the
BFGS [2] quasi-Newton method using a mixed quadratic and
- cubic line search procedure.

The arrival data a(k) is generated by an MMPP with

0.3514 0.2521 0.3648 0.0317
po | 02045 01508 04315 0.2132
| 0.1831 00228 6.0079 0.7862 |’
0.2746 0.5123 6.2131 0.0001
and
y=[11 80 52 4].

see [9] for the algorithin for MMPP simulation. The number
of data points is 100,000. Wy =10 and W; = 1.

The optimization algorithin with random initial values con-
verges to the following point:

0.0001 07482 0.1224 0.1293
po | 02720 00790 0.4970 0.1519
7] 04717 00088 0.1118 0.4078 |
0.179¢ 0.2331 0.2691 0.3189
and
vm = | B0.0184 3.9748 52.0406 10.9785 |.

The corresponding cost is 4.11. Note that though P and Py
are not the same, but the cigenvalues of P:

1.0000, — 0.3019 4 0.3330{, 0.1140

and the cigenvalues of Py,
1.0000, — 0.3068 £ 0.32801, 0.1233

are almost same.

Iig. 2 and 3 shows the cumulative distributions and the aunto-
correlations of the identified MMPP { Py, 7m), data of arrivals
a({k) and the original MMPP (P, v) respectively. The differ-
ences between them are very small. This means that both
simulation algorithm and identification algorithm work quite
well.
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Figure 3: Autocorrelations of the identified MMPP (—
}, data of arrivals (— ——) and the original MMPP (—-—. )

4 MMPPs with double stochastic
matrices

One problem related to above optimization based MMPP iden-
tification algorithm for MMPPs with stochastic matrices is
high cost of computation. This is basically because of two rea-
sons: eigenvalue decomposition to fine = (the lelt eigenvector
of the stochastic matrix P) and matrix multiplication for P*,
In this section, a double stochastic Markov jumping matrix,
instead of a general row stochastic Markov jumping matrix, is
used such that the eigenvalue decomposition will be elimninated.

4.1 Doubly stochastic matrix

A special subsel of stochastic mairices is the so-called dou-
bly stochastic matrices. A stochastic matrix P with the prop-
erty that P7 is also stochastic is said to be doubly stochastic,
that is, P is both row and column stochastic and thus all row
and column sums are equal to 1. Further, a nonnegative ma-
trix P is doubly stochastic matrix if and only if both de = ¢
and eTA = 7, which mecans that the steady state probabil-
ity of each state is uniform for the Markov Chain with doubly
stochastic jumping matrix. The later is crucial since it shows
that eT is the left eigenvector of any doubly stochastic matrix
associated with the eigenvalue I, that is

x=c"/n.

(8)
This leads to elimination of eigenvalie decomposition during
optimization procedure.

4.2 Parameterization

Birkhoft’s theorem [3} gives a way for parameterization of all
doubly stochastic matrices:

Theorem 1 (Birkhoff) A matriz P € B"™" is a dou-
bly stochastic if and only if for some N < oo there are
permutation matrices Py, ..., Py € R™7" and positive
scalars ay,...,any € B such that a1+,...,+ay = 1, P =
[+%1 P1+, . +anPx.

The proof [3] relies on the facts that the set of doubly stochas-
lic matrices is a compact convex sef in B"*” and that every
point in a compact convex set is a convex combination of the
extreme points of the set. The extreme points of the set of dou-
bly stochastic matrices are precisely the permutation matrices,
In [3], it is shown that N < n? — 2n 4 2.




: N . )
Now we can map a € BY-1 4o o € BY with a; > and

a1y oy tany =1
- :E‘\T. fDIizl,
T —fer—fori# 1.
HEL e #

Howesier both Birkhoff’s theorem and its proof do not show
which permutation matrices should be used for the convex com-
binat.im. Thus the only possibility to parameterize all set of
dou bl stochastic matrices is to make a convex combination of
all possible extreme points or permutation matrices in Rrxn
In tlis case, N = n!. Obviously the main drawback of this
methhcd is over-parameterization, the dimension of the param-
eters over which the cost function of (4) is optimized increases
in a combinatorial explosion way with the size n of the states
of M NMPP. So the method can only be used for small n.

5 MMPPs with circulant stochas-
tic matrices

In the previous section, one sees that though the eigenvalue de-
compasition problem is circumvented by use of doubly stochas-
tic matrices, the number of the parameters increases in a com-
binatorial explosion way with the number of states of a MMPP,
which indeed increases the computational costs.

In this section, a special subset of doubly stochastic matrices,
called circulant stochastic matrices, will be considered. By
using a circulant matrix for a MMPP, one will not only cir-
cumvented the eigenvalue decomposition but also matrix mul-
tiplication in the autocorrelation function calculation (1) in
optimization algorithms.

5.1 Circulant stochastic matrix

A circulant stochastic matrix is defined as:

n

k

P E arC,
k=1

where C' is the so called basic circulant permutation matrix:

0 1 o - 0
= | G Ba g
-1

[ 1 0 o oo 0

and a; are positive scalars and 7 | ai = 1.

Obviously, since a circulant stochastic matrix is also a doubly

stochastic matrix, 7 = eT /n. Another very nice property of cir-

culant stochastic matrices is that any eigenvector of a circulant

matrix is independent from parameters a; and any eigenvalue

is just a linear combination of parameters a; [6]:
P=VAV', (9)

where 1V is a unitary matrix with:

[oif] = e S5V

H

and

A = diag(yv/naV),

with o & [er, ooy anl

5.2 Parameterization

The parameterization is the same as for doubly stochastic ma-

trix by mapping @ € B"! to a € B" with a; > 0 and
aj+,...,fan=1:
W, for 1 = 1
ap =
TZE&W’ for ¢ # 1.

Note that the number of the undetermined parameters for a
circulant matrix is equal to n — 1, while it is n(n — 1) for a
stochastic matrix and n! — 1 for a doubly stochastic matrix.
Now the correlation function can be rewritten as:

R(n) = xTP"Te = yVA"V'' /.

Note that V is constant and A is diagonal. Thus both eigen-
value decomposition and matrix (n x n) multiplication are
avoided in calculation of the cost function.

6 Orders of MMPPs

The problem is how to determine the order or the number of
states of a MMPP with a certain model from the given data
of arrivals: what is the smallest order of a MMPP with a cer-
tain model which matches the statistics of the given data of
the arrivals? Suppose that only the second statistics of the
data is to be matched. Then this problem looks like the real-
ization problem in system theory: given Markov parameters,
determine the order of the system matrix. However it is in
fact much more difficult than the realization problem for linear
time invariant systems [5] because of the constrains imposed
on P (stochastic, doubly stochastic or circulant) and C'(= =)
and G(= I'e). It is even more difficult than the nonnegative
realization problem [1] , which remains to be solved, since ¢
and G are not only nonnegative here.

However we can use the realization theory of linear systems
to get a lower bound of the order for given data. Let I be a
Hankel matrix formed by autocorrelation functions:

Ry(0)  R(1) R(2) R(i)
R(1)  R(2) R(3) R(i+1)
H=| RO R®) R R(i+2)
Rii) R(i+1) R(i+2) R(2i)

From system realization theory, the minimal order n,, of the
corresponding system is equal to the rank of the Hankel matrix
H. i should be large enough such that / is rank deficient.

By choosing n,, as the first try, one then could increase the
order if the cost function does not converge to zero or small
enough.

Fig. 4, shows the singular values for the Hankel matrices of
the identified MMPP (P, ym), data of arrivals a(k) and the
original MMPP (P,v) for Examples 1 (The largest singular
values are not plotted).

One could see that there is a clear cut between the nth singular
value and the (n + 1)th singular value for the example. That
is because we deliberately chose each model (P, ) such that
the ratio of the first singular value and the nth singular value
is small, which means, in system theory, that the correspond-
ing linear system (P, C, G) is both controllable and observable,
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Figure 4: Singular values of the identified MMPP { —
}, data of arrivals (— ——) and the original MMPP (—-—.)
for Example 1

7

thus the system is of minimum order and can be identified.
That is the exact reason why all eigenvalues of the Markov
jumping matrices can be recovered.

In previous sections, we discussed three models: MMPPs with
a {row) stochastic matrix, with a doubly stochastic matrix and
with a circulant stochastic matrix. FThe most general model is
with a stochastic matrix, the model with a circulant stochastic
matrix is most restricted one, and the model with a doubly
stochastic matrix is in between. Thus one could expect that the
orders of models are increasing from the order of the model with
a stochastic matrix, a doubly stochastic matrix, to a circulant
stochastic matrix. Thus if one expects a low order MMPP, then
use the model with a stochastic matrix, but the computation
cost can be high, or if one expects fast computing, then use the
model with a circulant stochastic matrix, but the order of the
MMPP can be high.

7 Comparison with the frequency
domain approach

7.1

The traffic identification problem was tackled by San Qi L1 [6, 4]
based on the so-called frequency domnain approach. The ap-
proach uses only a circulant stochastic matrix. The main dif-
ferences between our method and Li’s method are summarized
as follows,

Comparison

o The first statistics is not directly matched in Li’s method.
Instead, the Poisson parameters are matched, and the
Poisson parameters are from discretization of the cumula-
tive disiribution function which leads to very inaccurate
results when the order is lower since the order of a MMPP,
in this case, is forced to be equal to the number of points
where the cumulative distributed function is matched, as
Li indicated that 100 states are needed only for the first
statistic match. In our method, the first statistics is di-
rectly matched by optimizing the cost function, the order
of the MMPP is independent of the number of the match
points (which is set to be larger then the order), and thus
it works for a MMPP with any order.

¢ Li’s method starts from the power spectrum of the data of
the arrivals, and thus the second statistics of the datais in
fact not directly matched either. Since Li’s method works
only with circulant stochastic matrices, the order should

o /

Figure 5: Cumulative distributions of the data of arrivals
(— — —) and the original MMPP (~. — . )

be high. By contrast, our method starts from the data di-
rectly, and the second statistics is also directly matched by
optimizing the cost function. Our method also works for
any stochastic matrices. The users can choose the models
with stochastic, doubly stochastic and circulant stochastic
matrices (Note that even for the case of circulant matrices,
our method is different from Li’s.)

¢ Computational cost is of course one of the main concerns,
Li’s method consists of several steps. Our method uses
only one step: nonconvex optimization for both first and
second statistics matching without pre signal processing.
The exact cost comparison is difficult since in both meth-
ods, nonconvex optimization procedure is involved, But
we expect that our method with circulant statistic matri-
ces is comparable to Li’s methods

7.2 Example 2

To complete this section, we take an example from {4]. Con-
sider the integration of three types of 3-state MMPPs. The
tramsition matrix of each type is designed by P, = P, P, = P®
and Po = P?°, where P is a 3 x 3 Markov transition matrix:

0.1597 0.0296 0.8107
0.8104 0.0649 0.1247
0.1176 0.8753 0.0071

P=

The corresponding input rate veclors (of the Poisson processes)
are
7o = [0, 0.7, 0.3],

w = [0, 1.2, 2.3],
ve = [0, 1.5, 0.9].

A superimposed MMPP is assumed to consist of one type-a,
two type-b and one type-c elements, then this superimposed
MMPP have

P:Pﬂ®Pb®Pb®Pc;

T=Ya DY D Y6 D Ve.

where @ stands for Kronecker product and & for Kronecker
sum. The number of states of this MMPP is 3* = 81, 100,000
points of arrivals were generated by this MMPP. Fig, 5 and 6
show the cumulative distribution functions and the autocorre-
lation functions of the model (P, v) and the data respectively.
Now we use a 3-state MMPP with a stochastic matrix and a
T-state MMPP with a circulant stochastic matrix to match the
statistics of the data, Ny =10 for the first statistics matching
and Ny, = 20 for the second statistics matching. The weighting
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Figure 6: Autocorrelations of data of arrivals (———)and
the original MMPP (—-—- )
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Figure 7: Cumulative distributions of the identified 3-state
MMPP with a stochastic matrix { 3, data of arrivals
(- ——) and the identified 7-state MMPP with a circulant

stochastic matrix (— - — - )

factors are Wy = 10 and W, = 1 respectively. The initial values
for the algorithm are randomly generated. The cost functions
of the two MMPPs converge to 0.0699 and 0.0683 respectively.
Fig. 7 and 8 show the cumulative distribution functions and
the aulocorrelation functions of the two identified MMPP and
the data.

In fact, we tested that any MMPP with a circulant statistic
matrix with states less than 7 will kave the opiimal cost value
larger than 6.0699 which is the cost value of the 3-state MMPP
with a stochastic matrix. This results show that to get the same
- cost level, less states of a MMPP with a stochastic matrix is
" needed than the states of a MMPP with a circulant stochastic
matrix. In both cases, it takes less than 2 minus to finish all
the calculations in SUN ULTRA-1 station. TFor comparison,
in [4], a 100-state MMPP with a circulant statistic matrix was

Adseenreltion piot of arkals

Figure 8: Autocorrelations of the identified 3-state MMPP
with a stochastic matrix ( }, data of arrivals (— ——)
and the identified 7-state MMPP with a circulant stochas-
tic matrix (—-—- )

used, while here only a 7-state MMPP of the same type is used,
or even 3-state MMPP with a stochastic matrix is used.

8 Conclusions

In this research work, we cast the traffic identification problem
for multimedia network (ATM e.g.}) as an optimization problem
and solve il by general optimization algoritlims, Three types
of MMPPs are discussed, namely MMPPs with a stochastic
matrix, a doubly stochastic matrix and a circulant stochas-
tic matrix. Numerical examples show thai the method works
well. To get more practical algorithms, further research work is
needed, in fact, it is already undergoing, to find more fast algo-
rithms by use of the gradient information of the cost functions.
Another point which is worth to explore is to use the so-called
orthestochastic matrices [3] instead ol doubly stechaslic ma-
trices. The orthostochastic matrices have no combinatorial ex-
ploration problem for parameterization and have, indeed, very
nice structure.
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