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Abstract

In this paper a new approach to the modelling of ATM-

tra�c is proposed. The tra�c is measured and charac-

terised by its �rst and second order statistic moments. A

Markov Modulated Poisson Process (MMPP) is used to

capture the information in these two stochastic moments.

Instead of a general MMPP, a circulant MMPP is used

to reduce the computational cost. A circulant MMPP

(CMMPP) is an MMPP with a circulant transition ma-

trix. The main advantages of this approach are that the

eigenvalue decomposition is a Fast Fourier Transform and

that the optimisation towards the two stochastic moments

is decoupled. Based on these properties, a fast time do-

main identi�cation algorithm is developed.

1 Introduction

Asynchronous Transfer Mode (ATM) is a protocol for

packet switched broadband ISDN networks. Its main

characteristic is that it combines the advantages of the

classic circuit mode and packet mode tra�c. Therefore

ATM uses the principle of statistical multiplexing, which

is very e�cient for variable bit rate applications : it is

assumed that not every user uses his maximal assigned

bit rate, so that more clients can be allocated to a chan-

nel than can be processed when every user consumes his

maximum bit rate, see e.g. [1] for details.

Bu�ers are placed in the nodes of the ATM-network

to absorb the largest part of the uctuations in the traf-

�c. Figure 1 gives a schematic representation of a server

with �nite bu�er length. The aggregated arrival pattern

fa

k

g

1

k=1

is the sum of the arrival patterns of the indi-

vidual clients. Each client demands a certain negotiated

level of Quality of Service(QoS). The following question

is important : given the currently processed tra�c, is it

possible to allocate a new client to the channel so that

the new client obtains his level of QoS, without loss of

the previously negotiated QoS of the other clients? The

new client will certainly increase the load on the server

and the QoS will certainly decrease. The amount of this

decline is calculated with queueing theory. This could

be done by simulation, but this approach is rejected be-

cause of the computational requirements. To obtain a
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Figure 1: Schematic representation of a server with �nite

bu�er length. The aggregated tra�c fa

k

g is composed of

the tra�c of the individual clients. Most of the uctua-

tions are absorbed in the bu�er. No cells are lost as long

as the bu�er size exceeds the length of the queue. This

length and the losses are calculated by queueing analysis

and depend on the tra�c and the server rate �.



swift Connection Admission Control, a better approach

is to use a mathematical model of the aggregated arrival

pattern and use this model in queueing analysis. In this

paper a new time domain approach is proposed for the

identi�cation of such a mathematical model.

2 Mathematical background

2.1 Model choice

The main purpose of the mathematical model is to in-

crease the speed of the queueing analysis. Therefore the

model only needs to capture the properties important for

the queueing analysis. In [2, 3] it is illustrated that the

most important features of the tra�c are the �rst and

second order statistic moments (probability distribution

function and autocorrelation). Moreover the lower fre-

quencies of the arrival pattern a�ect the queueing analysis

the most, which is in fact easy to comprehend.

Therefore a Markov Modulated Poisson Processes

(MMPP) is chosen as model class, since it is easily used

in queueing analysis and since it has the exibility to cap-

ture both statistic moments.

A general MMPP is characterised by its transition ma-

trix P 2 P

N�N

and its Poisson parameter vector �, where

P

N�N

is the set of all stochastic matrices of dimension N

and �

i

� 0 is the Poisson parameter of the Poisson pro-

cess associated with state i of the Markov chain. Let s

i

(k)

denote the probability that the Markov chain is in state

i at time k, then s(k + 1) = s(k) � P . In steady state,

the probabilities of the di�erent state will not change any

more. This state probability is given by s(1) � �, such

that � = � � P . The vector � is the left eigenvector of P

associated with the eigenvalue 1.

Figure 2 represents an MMPP of order 4. It consists of

a stochastic transition matrix P and a vector � with the

Poisson parameters. P describes the transition probabil-

ities between the 4 states. The Poisson parameter �

i

of

the Poisson process characterises the number of emitted

cells when the Markov chain is that state i.

2.2 Properties

An MMPP can also be completely described by its statis-

tic moments. Since only the �rst two moments are impor-

tant, only these moments of the Markov chain are given

here. The probability (f(x) = Prfa

k

= xg) and cu-

mulative (F (x) = Prfa

k

� xg) distribution functions

are (x 2 N) :

f(x)=

N

X
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Figure 2: MMPP of order 4: when the Markov chain is

in e.g. state 3, the number of ATM-cells is described by

probability or cumulative distribution function the asso-

ciated Poisson process of �

3

, i.e. f

�

3

or F

�

3

The autocorrelation of an MMPP is

1

:

R(0)=��

d

e+ ��

2

d

e = �

2

+ � (3)

R(n)=��

d

P

n

�

d

e (n > 0) (4)

R(1)=�

2

(5)

2.3 The inverse eigenvalue problem

The transition matrix P is a stochastic matrix, which

means that

P

N

i=1

p

ij

= 1;8j and that each element

p

ij

� 0. These restrictions implicate that there are sets of

eigenvalues which cannot belong to a stochastic matrix.

The theorem of Karpelevi�c formulates necessary condi-

tions, while su�cient conditions are described in [4] for

sets of real eigenvalues. Therefore it is not straightfor-

ward to impose an eigenvalue set, which describes the

dynamics of the arrival pattern fa

k

g, on an MMPP.

To avoid the inverse eigenvalue problem, a good ap-

proach is to start from an MMPP with its restrictions

and adapt it such that it resembles the given autocorre-

lation and distribution function, cf. [5].

2.4 Circulant matrices

Analysis of the above equations shows that the numerical

complexity of the computations is very high : the calcula-

tion of equation (4) requires O(N

3

) operations, while the

computation of the equations (1) and (2) requires large

computation times because of the calculation of the Pois-

son distributions, see [6]

2

for a comprehensive discussion.

Hence, this scheme is not appropriate in an optimisation

procedure.

1

x denotes the weighted average of x, while e is a column vector

of length N , containing all 1's and the index

d

in �

d

stands for a

diagonal matrix with the elements of � on the main diagonal.

2

This report is available by anonymous ftp

from ftp.esat.kuleuven.ac.be in the directory

pub/SISTA/decock/reports/97-90.ps.gz .
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Figure 3: Graphical representation of the identi�cation

procedure of the �rst order statistics. The cumulative

distribution function of the data F

d

is approximated by

a staircase function of Poisson processes with weight

1

N

.

The more restricted model class of circulant stochas-

tic matrices ([7]) is chosen to simplify the computational

load. Their eigenvalue decomposition can be written as

a Fast Fourier Transform

3

(fft) : P � F

�

�

d

F , where

F (i; j) =

1

p

N

exp (�

1

N

2�

p

�1(i� 1)(j � 1)). This sim-

pli�es equation (4) into :

R(n) =

1

N

2

fft(�)

�

�

n

d

fft(�) (6)

3 Identi�cation procedure

The identi�cation procedure consists of two consecutive

steps : 1. Identi�cation of the �rst order statistics : iden-

ti�cation of the Poisson parameters; 2. Identi�cation of

the second order statistics : �rstly the autocorrelation

is identi�ed by a linear time-invariant stochastic system,

secondly the poles are allocated to the amplitudes of the

poles of the linear time-invariant stochastic process and

thirdly the poles of the CMMPP are identi�ed.

3.1 First order statistics

Circulant stochastic matrices are a subclass of double

stochastic matrices and as a consequence the distribu-

tion function only depends on the size of the transition

matrix (�

i

=

1

N

) and the Poisson parameters �

i

. The

Poisson parameters f�

i

g

N�2

i=1

are identi�ed by approxi-

mating the cumulative distribution function by a (quasi)

staircase function, as pointed out in �gure 3. The order

N is chosen in the range 64 to 128.

Two �

i

's are left over since from equations (3) and (5)

also R(0) and R(1) depend only on the model order N

and the Poisson parameter vector �. This quadratic equa-

tion guarantees that the CMMPP is still consistent with

both beginning and end of the autocorrelation and has

the additional advantage that also the mean of the dis-

tribution function is correctly estimated, which is a very

important feature in the queueing analysis.

3

X

�

denotes the complex conjugate of X.

3.2 Second order statistics

The autocorrelation describes the dynamics of the sys-

tem. A slowly decaying autocorrelation means highly cor-

related tra�c and increases the load on the bu�er.

Stochastic system identi�cation

Decomposition of the autocorrelation R(n) in a sum of

exponentials is a very compact representation and there-

fore very well suited in an iterative identi�cation process.

The decomposition is done by stochastic subspace identi-

�cation [8, 9] and results in (N

s

� N):

R(n) = A

0

+

N

s

X

i=1

A

i

b

n

i

; (7)

where A

0

= R(1), because of the stability of the system.

Comparison of equation (4) with equation (7) leads to

the following identity :

1

N

2

fft(�)

�

�

n

d

fft(�) � A

0

+

N

s

X

i=1

A

i

b

n

i

: (8)

This means that both the (aggregated) amplitudes and

the roots of both systems must be the same. The match-

ing is done by solving two problems : an integer program-

ming problem and an optimisation problem. A short de-

scription of these problems is given in the following two

paragraphs, see [10]

4

for a more detailed description.

Integer programming problem

The �rst problem consists of �nding disjunct subsets from

the set C= f

1

N

2

jfft(�)

i

j

2

: i = 1 : : :Ng so that their sums

equal fA

i

g.

The problem of �nding a subset from a given set of

numbers C with the sum of the numbers in this subset

as close as possible to a given number G= A

i

can be

stated as an integer programming problem. In fact the

problem can be formulated as two 0/1 integer knapsack

problems : one (P1) for giving the closest approximation

which is lower than G and the other (P2) for �nding the

closest approximation which is larger than G. Using the

branch and bound algorithm of Fayard and Plateau [11],

the problem can be solved in about 1 second for a typical

set of 64 numbers

5

.

The knapsack solver is used in an iterative process.

First the problem for the largest given number G=A

i

is

solved. The subset of the current solution is removed from

the initial set C=f

1

N

2

jfft(�)

i

j

2

: i = 1 : : :Ng. Then the

knapsack solver is applied to the second largest A

i

, now

with the reduced set. Although it is obvious that one ob-

tains a sub-optimal solution, this approach is much faster

than the optimal solution and also puts the largest weight

on the most important exponentials.

4

This report is available by anonymous ftp

from ftp.esat.kuleuven.ac.be in the directory

pub/SISTA/vangestel/reports/97-108.ps.gz , K.U.Leuven, Bel-

gium, Nov. 1997.

5

A pentium 66 MHz was used to do the calculation.



Optimisation problem

The problem of �nding a circulant transition matrix such

that the poles 

i

approximate the corresponding poles b

i

of the selected amplitudes in the diagonal form of equa-

tion (6), is reformulated as a unconstrained optimisation

problem by using the parametrisation described in [5].

The sum of the squares of the di�erences between the

given poles and real poles is minimised, using the func-

tion leastsq in the Matlab

r

optimisation toolbox, with

the Levenberg-Marquardt option.

3.2.3 Example

As an example a third order (general) MMPP is identi�ed

with a CMMPP of order 64. Data were produced by sim-

ulating the original MMPP. A set fa

k

g of 100.000 points

was generated, the latter half was used for the identi�ca-

tion procedure to avoid the inuence of the choice of the

initial state. A third order original model was used since

it is illustrated in [5, 6] that higher order models do not

necessarily have more complex dynamics, only the �rst

order statistics are inuenced. This is also the reason for

the apparently large order of the identi�ed model.

Using an HP 9000 Model 712/80 workstation with

64 MB internal memory and clock speed 80 MHz, all

computations (except the knapsack solver) took about 60

seconds, starting from raw data. The cumulative distri-

bution function and autocorrelation of the original model

(full line) and of the identi�ed CMMPP (dashed line) are

given in �gures 4 and 5 .

One notices that the autocorrelations match very well

and that the distribution function is quite well approx-

imated. The error is mainly due to identi�ed Poisson

parameters in between the distinct Poisson parameters of

the original MMPP.
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Figure 4: Comparison of the cumulative distribution func-

tion of the original MMPP (full line) and the identi�ed

(circulant) MMPP (dashed line).
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Figure 5: Comparison of the autocorrelation of the

original MMPP (full line) and the identi�ed (circulant)

MMPP (dashed line).

4 Conclusions

In this paper a fast time domain approach was presented

to identify a circulant Markov Modulated Poisson Process

(MMPP), based on the autocorrelation and the cumula-

tive distribution function. To avoid the inverse eigenvalue

problem, optimisation was used. Models with low com-

putational cost were searched for. The use of a circulant

MMPP reduces the computational cost and decouples the

matching of the �rst and second order statistic moment.

To further reduce the number of calculations, a quasi

staircase approximation of the cumulative distribution

function was used, with attention to the beginning and

end of the autocorrelation and also the mean of the

distribution. The autocorrelation was approximated by

subspace-identi�cation as a sum of exponentials, the poles

were allocated by 0/1 knapsack solvers and identi�ed by

unconstrained optimisation.

References

[1] M. De Prycker. Asynchronous Transfer Mode : solution for

broadband ISDN. Prentice Hall, UK, 1995.

[2] W.C. Lau and S.Q. Li. Statistical multiplexing and bu�er shar-

ing in multimedia high-speed networks : a frequency domain

perspective. Proc. IEEE Globecom'95, Dec. 1995.

[3] S.Q. Li and C.L. Hwang. Queue response to input correlation

functions : discrete spectral analysis. IEEE/ACM Transac-

tions on Networking, 1(5):522{533, Oct. 1993.

[4] A. Borobia. On the nonnegative eigenvalue problem. Linear

algebra and its applications, 223/224:131{140, July 1995.

[5] C. Yi and B. De Moor. Tra�c identi�cation of atm networks

with optimisation algorithms. Proc. IEEE CDC, Kobe, Japan,

pages 277{282, Dec. 1996.

[6] K. De Cock, T. Van Gestel and B. De Moor. Stochastic Sys-

tem Identi�cation for ATM Network Tra�c Models: a Time

Domain Approach. Internal report ESAT-SISTA/97-90.

[7] Philip J. Davis. Circulant matrices. John Wiley & Sons, Inc.,

1979.

[8] P. Van Overschee and B. De Moor. Subspace identi�cation for

linear systems. Theory, implementation, applications. Kluwer

Academic Publishers, 1996.

[9] P. Van Overschee. Subspace identi�cation for linear systems.

Theory, implementation, applications. PhD thesis, Faculty of

Applied Sciences, K.U.Leuven, Belgium, Feb. 1995.

[10] T. Van Gestel, K. De Cock, R. Jans, B. De Schutter, Z. De-

graeve and B. De Moor. Discrete stochastic modelling of ATM-

tra�c with circulant transition matrices : a time domain ap-

proach. Internal report ESAT-SISTA/97-108.

[11] D. Fayard and G. Plateau. An Algorithm for the Solution of

the 0-1 Knapsack Problem. Computing, (28):269{287, 1982.

Acknowledgements

This research was done at the K.U.Leuven, Dept. of Electrical Engineering

(ESAT), SISTA, Kard. Mercierlaan 94, B-3001 Leuven, Belgium, tel. 32/16/321709,

fax. 32/16/321970. T. Van Gestel is a Research Assistant with the Fund for Sci-

entific Research-Flanders (FWO-Vlaanderen), K. De Cock is a Research Assistant

with the IWT (Flemish Institute for Scientific and Technological Research in In-

dustry), R. Jans is a Research Assistant with the K.U.Leuven at the Dept. of Ap-

plied Economics, B. De Schutter is a Senior Research Assistant with the FWO-

Vlaanderen, Z. Degraeve is Associate Professor of management science at the

K.U.Leuven Dept. of Applied Economics and B. De Moor is a Senior Research As-

sociate with the FWO-Vlaanderen. This work was supported by the Flemish Gov-

ernment (BOF (GOA-MIPS), AWI (Bil. Int. Coll.), FWO (projects, grants, res.

comm. (ICCoS)), IWT (IWT-VCST (CVT), ITA (ISIS), EUREKA (Sinopsys))), the

Belgian Federal Government (IUAP IV-02, IUAP IMechS), the European Com-

mission (HCM (Simonet), TMR (Alapedes), ACTS (Aspect), SCIENCE (ERNSI)).


