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Abstract Wavelet Transformations and music have several things in common: both have something to do

with time-frequency descriptions and constant relative bandwidth analysis. In this paper, we describe some

applications of the Continuous Wavelet Transform in the processing of music. The main applications are

analysis and pitch-shifting (or the equivalent time-stretching), for which we give an algorithm.

1. Introduction

TheWavelet Transformat decomposes a signal into

a linear combination of basisfunctions (wavelets), which

are all derived from one mother wavelet by means of

dilation (scale) and translation (time). The mother

wavelet (and thus all derived basis functions) is local-

ized in time and in frequency. A one-dimensional sig-

nal is transformed in a two-dimensional time-frequency

representation.

The transform on one particular scale is a band-

pass �lter, since a wavelet is localized in frequency.

On all scales, these �lters have the same relative

bandwidth, because all wavelets are derived by di-

lation from the mother wavelet. The time-frequency

analysis thus studies low frequencies with more fre-

quency detail but less time-resolution than high fre-

quencies, which get a higher time-resolution.

Music is also a typical time-frequency phenomenon:

the notes contain frequency information (pitch), and

time information (duration, starting time). The fre-

quency information is logarithmically divided: rais-

ing one octave doubles the frequency. It is thus

necessary to analyse musical signals with more fre-

quency detail for the low frequencies, and less fre-

quency detail for the high frequencies, a constant

relative bandwidth �lter. . .

In the following sections, we go into some more

details of the Continuous Wavelet Transform, and

describe some applications of this CWT in the pro-

cessing of music.

2. The Continuous Wavelet Transform

The CWT is de�ned (see [1]) as
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are the wavelets derived by translation (b) and dila-

tion (a) from the mother wavelet  (t). We mostly

use the complex Morlet-wavelet (a modulated Gaus-

sian, see �g. 1)
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The function f(t) can be recovered from the CWT

using (again from [1])

f(t) = C

�1

 

Z

1

0

da

a

2

Z

1

�1

F(a; b) 

a;b

(t)db ; (3)

where C

 

is a �nite constant, dependent on the cho-

sen wavelet  (t). There are some approximate re-

synthesis formulas available, of which
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is most frequently used [2].

3. Implementation

In this section, some implementation details of the

CWT and its inverse will be dealt with.

3.1. Discretization

To calculate the CWT on a computer, one has to

discretize the signal f(t), the wavelet  , and the pa-

rameters b (time) and a (scale). The discretization



of the signal is often straightforward, since it is al-

most always given in sampled form (with sampling

frequency Fs). The choice of the scales is less trivial:

how do we space the di�erent scales (linear, logarith-

mic), what is the lowest and the highest scale?

Because of the constant relative bandwidth prop-

erty of the CWT, one normally uses logarithmic scales:

the higher the scale, the bigger the bandwidth of the

�lter on that scale, and the sparser the sampling of

the scales has to be. We take the scales a = 2

i=v

,

with i integer, and v the number of voices per octave

(the number of scales we consider in between each

power of 2, an octave).

The smallest usable scale can be calculated using

the Nyquist theorem: the Morlet wavelet with !

0

=

5

rad

s

has signi�cant (-54dB) frequency-extent from 0

to 10

rad

s

, i.e. from 0 to 1.6Hz. The Morlet wavelet

at scale a has frequency-extent from 0 to

1:6

a

Hz (see

�g. 1a), and this must be smaller or equal than the

sampling frequency Fs, so a

min

=

1:6

Fs

Hz.

The largest usable scale is dependent on the signal-

length: the Morlet wavelet at a particular scale has

signi�cant time-extent from �4a to 4a (see �g. 1b),

so we need 8 aFs samples for representing  on scale

a. Because the signal f(t) is �nite, we have boundary

problems for approximating the integral by a convo-

lution. To have at least one valid value, the length of

 should be less or equal to the length of the signal

(N), so the largest usable scale a

max

=

N

8Fs

.

The discretization of  is no problem either, since

we have the formula (2). The sampling of the pa-

rameter b is often taken equal to the sampling of the

signal, i.e. the coe�cients on each scale are calcu-

lated on each time step. This should not be always

the case, as indicated in one of the next paragraphs.

3.2. Convolution

Once discretized, we can approximate the integrals

in formula's 1 and 3 by convolutions, which we can

calculate in the time-domain, or in the frequency do-

main (using FFT's). The simpli�ed reconstruction

formula (4) does not even need convolutions, so this

is a lot faster than the full reconstruction formula.

Both (3 and 4) have an integration over the scales

as �nal step, this is approximated by the trapezium

rule.

3.3. Spacing of the wavelets

It does not always make much sense to calculate as

much coe�cients on high scales as on low scales: on

high scales, the wavelets have a big time-extent, and

so it seems a good idea to calculate the coe�cients

on time steps b which are proportional to the scale

a. This has also implications for the reconstruction

formula, but this is subject of current research.

3.4. Calculation in pieces

If we do the calculation of the CWT on a whole

piece of audio in one time, we run into problems if we

want to calculate the coe�cients on each time step

(on very high scales, the convolution needs a long cal-

culation time because the wavelet is very long), and

most of the times we are not really interested in the

lowest frequencies that can only be obtained on these

large scales (using the Morlet wavelet), the center fre-

quency f

c

of the �lter on a particular scale is

!
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a

, e.g.

for !

0

= 5

rad

s

, Fs = 8kHz, and N = 16000 (i.e. 2s),

f

c

= 3:2Hz (corresponding to an a

max

=

2000

Fs

= 0:25.

It should be better to do the calculation in blocks,

e.g. of N = 1024. In this example, f

c

= 50Hz, corre-

sponding to a

max

=

128

Fs

= 0:016. Using the overlap-

add method, we can avoid boundary-problems be-

tween the blocks. Such block-processing is also nec-

essary if we want to implement the algorithm on a

DSP.

3.5. Visualisation and analysis versus process-

ing

The choice of parameter v (number of voices per

octave), and the dependence of the time-sampling on

the scale, depends on the application: for visualisa-

tion and analysis, it is desirable to have the biggest

density of coe�cients, so we choose v as high as our

computer allows (e.g. 8 or 12), and calculate the co-

e�cients on each time-step b. If the aim is to pro-

cess the coe�cients and retransform, we choose the

sparsest sampling (of a and b) that still gives accu-

rate results. For our applications, this is also subject

of current research.

4. Applications on Music

4.1. Analysis

In the domain of computer music (i.e. all aspects

of music where computers are involved), one of the

basic operations is analysis of music: this is used

as a preprocessing step for some sound-synthesis al-

gorithms, for transcription, pattern-recognition, etc.

Traditionally, this is done using FFT's (e.g. the phase

vocoder approach), which boils down to a constant

bandwidth �lter-bank. All frequencies are studied

with the same frequency-resolution, and this is \over-

kill" for the high frequencies (e.g., a bandwidth of

10Hz at 8000Hz represents 1/555 of an octave, i.e.

an unhearable di�erence), but insu�cient for the low

frequencies (a bandwidth of 10Hz at 80Hz repre-

sents 1/6 of an octave, i.e. one whole tone). That

is why a constant relative bandwidth analysis like

the CWT should be more appropriate for this. The

drawback of the CWT is the relatively high com-

putational cost (on each scale, a convolution has

to be calculated), the complicated theory for dis-

crete computation (of which one can �nd the de-

tails in [1]), and with the used Morlet wavelet, the

relative big bandwidth in each frequency-band (on

�g. 1a, it is clear that

�f

f

� 1, i.e. from an oc-

tave below to a �fth above the center frequency).

This results in rather unclear time-frequency pic-

tures. We are currently investigating more appropri-

ate wavelets, which should have a smaller bandwidth,

but as consequence a larger time-extent (impulse-



response), due to the Heisenberg-principle.

4.2. Pitch-shifting

Amore appealing application is pitch-shifting : this

is changing the pitch of a piece of music without

changing the length. Remember that one can eas-

ily raise the pitch of a piece of audio by playing

it faster, but this reduces the length. The equiva-

lent problem is time-stretching, where the length of

a piece is changed without altering the frequency-

content. This can be accomplished by pitch-shifting

and resampling.

The solution to this problem in general is not well

de�ned, the processed piece should sound as if the

original recording is redone transposed. This is very

di�cult to automate, because the algorithm should

distinguish between steady notes and transient at-

tacks (e.g. for time-stretching: the start of a note of

a piano should not be changed in duration, because a

piano player does not change the attack of that note,

but only holds the key longer).

The algorithm we use here (from [2], [3]) does not

account for this features. It decomposes an audio

signal in its CWT using the Morlet wavelet, changes

the scale-axis, and retransforms the CWT to a sig-

nal. Changing the scale-axis is obviously the tricky

part: if one wants to raise the pitch of an audio sig-

nal by a factor c, and therefore divide all the scales

in the CWT of the signal by c, and retransform the

result, one does not get the expected result. The

point is that one can not just change the coe�cients

of the CWT. The CWT of a one-dimensional sig-

nal is a very redundant representation of that sig-

nal (an extra dimension is added), so there exist

lots of two-dimensional (time-scale) functions which

are no CWT of any signal whatsoever. All two-

dimensional functions that are a valid CWT of a par-

ticular signal, satisfy the reproducing kernel Hilbert

subspace (r.k.H.s.) property. One should modify the

coe�cients of the CWT with care, such as to keep

the CWT in the r.k.H.s. Using the complex Morlet

wavelet facilitates this: the phase of the coe�cients

is related to the frequency of the signal analyzed at

the scale of the coe�cients considered, so if we divide

the scales by a a factor c, and change the phases of

the coe�cients accordingly (unwrapping the phase

�rst, then multiplying by c), we should come a far

end in preserving the r.k.H.s. property. No rigourous

mathematical analysis has been done yet, but the

procedure delivers acceptable results (�g. 2e). The

algorithm is summarized:

coefs = cwt(f,scales)

absc = abs(coefs)

phac = angle(coefs)

phac unwrap = unwrap(phac)

coefs shifted = absc.*exp(i*phac unwrap*c)

scales shifted = scales/c

f shifted = icwt(coefs shifted,scales shifted)

Alg. 1: Pitch-shifting using the CWT. abs and angle calcu-

late the absolute value resp. the phase of a complex number,

unwrap gets rid of all 2� phase-jumps in the phase.

It works perfectly for pure sines, and gives accept-

able results for general audio. There is quite a dif-

ference between the reconstruction formula's (3) and

(4). At the moment of this writing, there is research

focused on how the parameters (see section 3) should

be chosen. Also the usage of other wavelets is inves-

tigated, but it seems that it is more di�cult to pre-

serve the r.k.H.s. property with other wavelets than

the Morlet wavelet. Finally, we're also working on a

DSP implementation of the algorithm.
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Fig. 2:

a) The original signal f(t), consisting of a sum of three sines,

each with a di�erent frequency, phase, and initial shift,

b) The absolute value of the CWT of f(t) (the y-axis contains

the scales),

c) The phase of the CWT of f(t),

d) The phase superimposed on the absolute value of the pitch-

shifted CWT (factor 1.5),

e) The resulting reconstructed signal.



4.3. Others

The CWT can be used for more sound transfor-

mations than described above. One could e.g. re-

transform the absolute values of the coe�cients of

the CWT of one signal, with the phases of the coef-

�cients of the CWT of another signal, knowing very

well that the resulting combination is not valid, but

apparently the retransformed sound is (at least in

the ears of the right persons). Other applications of

wavelets in music are described in [4].

5. Conclusions

The CWT is an interesting tool for analysing, pro-

cessing, and synthesizing music. In this paper, we

described some possible applications. The biggest

drawback of the CWT at this moment is the compu-

tational cost. There exist more e�cient schemes (for

the CWT, and de�nitely for the Discrete Wavelet

Transform), but on �rst sight they lose some of the

interesting properties we used. This also is subject

of current research.
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