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Abstract

The structured TLS problem arises in many engineering
applications, The Riemannian Singular Value Decompo-
sition is a generalized SVD which takes into account the
structure imposed on the rank deficient approximation of
the data matrix. We present a possible solution strategy
for the Riemannian SVD equations using continuous time
flows. We also derive & new min-max characterization of
tlie minimal Riemannian singular value.

1 Structured Total Least Squares
(STLS) problem formulation

We study the STLS problem, which can be formulated as
follows: Given an affine set of matrices determined by an
origin By € B"*T and a basis By,..., B, € RF¥9 .

Let A be a given matrix (structured or not). Find B =
By + 01 By + 2By + ... + b, B, such that:

¢ B is rank deficient,
o 3 (A, By) — br)?wy is minimal,
where w; are user specified weights and (A, By) is the

projection of A on the vector By.
Example: Given the set of 5 x 3 Hankel matrices. Let

A be a matrix in this set, find the rank deficient Hankel
mattix B such that A — B||p is minimal.

It was shown in {1} that the Lagrange multiplier equa-
tions for the STLS problem can be rewritten as a set of
nonlinear SVD-like equations, which will be called the
Riemannian SVD egquations.

Av = Dyur, (1)
AT'U = DN'UT; (2)
under the conditions
uTDau = 1, (3)
vTy = 1, (4)

where D, and D, are constructed as

n 1
D, = Zl ;}:BiU(BiU)T,
‘2:

n
— Loy o1 T
D, = !X:; w,'B" u{B; u)".

These are square matrices, quadratic in the elements of v
and u respectively. In general these matrices are positive
definite. The minimizing solution {u,v, 7) of the Rieman-
nian SVD equations corresponds to 7 = A — Bl|r and
enables us to construct a rank deficient approximation of
A in the following way: Suppose A = ¥ ;_, ap By with
By the basis of the imposed linear structure, the rank
deficient approximation B = >, _,. 0By is computed
as follows:

by =qar — uTBk'ur.
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This means that the norm of the error introduced on the
matrix A to get a rank deficient matrix is equal to 7.
Therefore we will be looking for the triplet (u,v,7) cor-
responding to the minimal 7 that solve the Riemannian
SVD equations.More details on the Riemannian SVD can
be found in [1], [3], [5] and [7].

2 The characterization of the Rie-
mannian Singular Value 7

We will mention two characterizations:

1. From equations (1), (2}, (3) and (4) it is easy to de-
rive that

72 = v AT D7 Av, (5)
provided that D, is invertible. At a local mini-
mum for this characterization, the corresponding v
will solve the Riemannian SVD equations if we take
u= D7 Av.

The minimization problem is not convex, except for
some special cases, and requives the inversion of
the matrix D, at every function evaluation/gradient
computation.

2. We can also characterize 7 in terms of v and v as

wf Av
7= LY (6)
VuT Dyu

At a saddie point for this characterization, the cor-
responding u and v will solve the Riemannian SVD
equations, which leads us to the optimization prob-
lem

(7)

. ul Av
min max

veER? ueRe /T.LTDUU‘

The proof consists of a series of Schur complement ar-
guments, and will be sketched here. Starting from the
positive definiteness of the matrix I, and the positivity
of 72 — v AT D! Av in the neighborhood of a minimum
Uopt for v7 AT D1 Av we can conclude that the matrix

DUDN Avo,,,g,
ST AT 2
Vgpr A 7{v)

is positive definite, which is equivalent with the positive
definiteness of

() g AT
A‘Uﬂpi D

Yopt

The Schur complement of this last matrix gives the posi-
tivity of 7(v)? and the positive definiteness of the matrix

1 .
D - Avapt,‘ﬁ(AUapt)I )

Yapt

from which the minmax criterion can be derived.

3 TFinding the saddle point of a
function

In this section we wili develop some ideas on finding a
saddle point for a function.

3.1 Characterization of a saddle point

Suppose we have a function f in two variables » ¢ R?
and v € R?, we ave looking for necessary conditions for
a couple (u,v) to be a local maximum in » and a local
minimum in v. First of all let’s define what we are looking
for:
Definition
Let f be areal-valued function in two sets of variables u €
R? and v € |K? .Suppose we denote the tangent vectors to
a point (ug,vp) € BFH by

T(uo,uO)R”*“' =T, R @& T,,R".

g

A point (ug,ve) is called a (local) minmaximum for f if
we have that

Va € Ty RY @ f{uo + ta) < fuo) for sufficiently small £,
V3 € Ty R 1 flug + tB) > f(wp) for sufficiently small ¢.

The following theorem gives first and second order nec-
essary conditions on f at a local minmaximum;
Theorem If at a point {ug, v} we reach a local maxi-
mum in ug and a local minimum in vy we have that
Wa € Ty o =0;V8 € T,,R? 44 = 0, this implies
that the derivatives in 1 and v are zero,

i)If we denote the tangent vectors at the point (ug,vo)
bY Tiug,v0)RETT = T R” @ T, R7, we have that

2
V(EGTuORp:[H 0]5{?;—{)—)5{3] < 4,

& f 0
VbETpORqZ[O b]m‘g{b]>0

We can prove that these conditions are also sufficient

3.2 Solving optimization problems with
continuous time algorithms

In this section we will review the idea of using continuous
time flows for optimization problems, see also {2], [4].

3.2.1 Solving minimization problems with con-
tinuous time algorithms

Under general conditions, the optimization problem

min f(v},

veRT

is solved by the gradient flow:

_9f
v’



If we look at the evolution in time of the function value
(I _ af T- af 9
SI00) = (570 = -5 I° <0,

we can see that the function decreases along the trajec-
tory of v(t) until we reach a point where %f[ = 0, which
is a local minimum for the function. Discrete time algo-
rithms for minimization of f{v) can be interpreted as an
interpolation for v(#} in the case that the flow cannot be
integrated explicitly.

It is tedious though straightforward to derive a gradi-
ent flow to minimize (5). The gradient of 7%(v) =
v ATD;! Av is given by

vIATD; (L D,)D; Av

dvy
v =—|24TD; Av —

vTATDIH D) D Av

where we have used the fact that for a matrix A(v) we
have that

((;__ifl(v)"l) = —A(v)"l(%A(U))A(U)_I'

3.2.2 Solving minmax problems with continucus
time algorithms

Inspired by the steepest descent continuous time flow (8)
we can suggest the following for the the ascent-descent
continuous time flow for the minmax problem:

min max fl{u, v
uequue‘RPf( y V),

which gives

L o= af
U = _?21)
U= -

in the neighborhood of a min-maximum this flow is guar-
anteed to converge to a local min-maximum, following the
candidate Lyapunov function:

_ 0 9f e 0F e
L=l st
We find that

LTI Oy OO

which is strictly negative in the neighborhood of a min-
maximum implying that the flow converges to a couple
satisfying:

9~
oo
i '

The interested reader can apply the minmax flow to find
the the saddle point of f(u,v) = —u? + v2,

4 A min-max flow for 7

We apply the ideas of the previous section to the minmax
problem related with the Riemannian SVD (7). For the
function,

o ul A
- ——_—————-,
VvuTDyu

the minmax flow is given by:

Av{u' Do) —(u' Av) Dy ae

=
Vi Dou® ’
L Alu{u' Dyu}—{u' Av) D,
vo= —g &)
vurDou

with 0 < ¢ < 1 a user defined constant to slow down
the flow in v. Further analysis is required to determine
the role of ¢ for the convergence of the minmax flow.
One can observe that for ¢ =~ 0 the trajectory of the
minmax flow in the v-space is similar to the trajectory
of the continuous time flow for the minimization of
7 = vTATD ' Av. The maximization of the minmax
flow corresponds with an iterative approximation of
D! Av of the minimization flow.

5 Example

We will consider the set of 3 x 2 Hankel matrices which
is a vector-subspace of R¥*2,

The D, matrix for the corresponding STLS problem is
given by:

’U% + %U% iﬂ} 2 0
_ 1 1,8, Lo i
D, = 5U1V2 U + 503 sV
0 %vwg %‘U% + ‘U%
Let 4 be a Hankel matrix
—0.0780  0.2203
A= 0.2203 —-0.1009
—-0.1009  0.1897

The results of the integration of the minmax can be seen
in figures 1 and 2,
Convergence of the minmax flow implies that the gradi-

ul Av

ents of 7 = Jarps must be equal to zero which means
u it

that the Riemannian SVD equations are solved at this
point.
The rank deficient approximation is given by

~(.1184  0.1359
B = 0.1359 —0.1560
—-0.1560  0.1790

More examples can be found in {2], [4].
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Figure 1: The convergence in the u coordinates
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Figure 2: The convergence in the v coordinates
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